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Abstract. — Consider a conjugate-symplectic geometric representationρ of the Galois group of a CM field. Under
the assumption that ρ is automorphic, even-dimensional, and of minimal regular Hodge–Tate type, we construct
an Euler system for ρ in the sense of forthcoming work of Jetchev–Nekovář–Skinner. The construction is based
on Theta cycles as introduced in a previous paper, following works of Kudla and Liu on arithmetic theta series on
unitary Shimura varieties; it relies on a certain modularity hypothesis for those theta series.

Under some ordinariness assumptions, one can attach to ρ a p-adic L-function. By recent results of Liu and the
author, and the theory of Jetchev–Nekovář–Skinner, we deduce the following (unconditional) result under mild
assumptions: if the p-adic L-function of ρ vanishes to order 1 at the centre, then the Selmer group of ρ has rank 1,
generated by the class of an algebraic cycle. This confirms a case of the p-adic Beilinson–Bloch–Kato conjecture.
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1. Introduction

A remarkable construction of Kolyvagin shows that if a Heegner point is non-torsion, then the
Mordell–Weil and Selmer groups of a (modular) elliptic curve both have rank one [Kol88]. Combined
with the formulas of Gross–Zagier and Perrin-Riou [GZ86,PR87], which relate heights of Heegner points
and derivatives of L-functions in complex or p-adic coefficients, Kolyvagin’s work provides important
evidence for the Birch and Swinnerton-Dyer conjecture and its p-adic analogue.

We are interested in analogous pictures for higher-rank motives, or more simply geometric(1) Galois
representations, of weight −1 . The most accessible ones are arguably those over a CM field that are

(1)This and other unexplained notions will be defined in the main body of the paper.
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conjugate-symplectic. For those Galois representations, Jetchev–Nekovář–Skinner have recently theorised
a variant of Kolyvagin’s method based on the notion of (what we propose to call) a JNS Euler system;
this is still a system of Selmer classes satisfying certain compatibility conditions. The purpose of this
work is to construct such an Euler system, for those representations as above that are automorphic and
even-dimensional of minimal regular Hodge–Tate type.

The companion formulas of Gross–Zagier/Perrin-Riou type were recently proved in [LL21, LL22]
and [DL24], which allows to obtain various applications to the analogues (by Beilinson, Bloch, Kato, and
Perrin-Riou) of the Birch and Swinnerton-Dyer conjecture.(2)

In the rest of this introduction, we briefly state our main result and consequence, and the idea of
its proof. For an overview on the context and history of the constructions, and statements of other
arithmetic applications, we refer to [Dis].

1.1. Main result. — Let E be a CM field with absolute Galois group GE and maximal totally real subfield
F , and let c ∈Gal(E/F ) be the complex conjugation.

Let n = 2r be an even positive integer and let

ρ : GE →GLn(Qp )

be an irreducible continuous representation, that is geometric in the sense of [FM95, I, §1]. We denote
by ρc : GE →GLn(Qp ) the representation defined by ρc(g ) = ρ(c g c−1), where c ∈GE is any fixed lift of
c. (A different choice of lift would yield an isomorphic representation.)

Suppose that the following conditions are satisfied:

1. ρ is conjugate-symplectic in the sense that there exists a perfect pairing

ρ⊗Qp
ρc→Qp (1)

such that for the induced map u : ρc → ρ∗(1) (where ∗ denotes the linear dual) and its conjugate-dual
u∗(1)c : ρc→ ρc,∗(1)c = ρ∗(1), we have u =−u∗(1)c;

2. for every place w|p of E and every embedding ȷ : Ew ,→ Cp , the ȷ-Hodge–Tate weights(3) of ρ are
the n integers {−r,−r + 1, . . . , r − 1};

3. ρ is automorphic in the sense that for each ι : Qp ,→C, there is a cuspidal automorphic representation
Πι of GLn(AE ) such that Lι(ρ, s) = L(Πι, s + 1/2);

For a place v of F , denote by ρv the restriction of ρ to GEv
:=
∏

w|v GEw
(where the product ranges over

the one or two places of E above v). For each ideal m ⊂OE , we have a ring class field E[m]⊃ E ; we also
put E[0] := E . We denote by H 1

f (E[m],ρ) the Bloch–Kato Selmer groups [BK90].
LetM1 be a set consisting of all but finitely many of the places v of F that are split in E and at which

ρ is unramified, and letM be the set of finite subsets ofM1, which we identify with a set of squarefree
ideals inOF . Fix a set℘ of p-adic places of F that are split in E , such that for each v ∈℘, the representation
ρv is Panchishkin-ordinary (Definition 3.3.1) and crystalline,(4) and letM [℘] be the set of ideals of the
form m

∏

v∈℘ v sv with s = (sv ) ∈ Z℘⩾0.

Theorem A. — Let ρ be a representation satisfying conditions 1., 2., 3. above, and letM1,M ,℘,M [℘] be
as above. Assume that the root number ϵ(ρ) =−1, that F ̸=Q or n = 2, and that the Modularity Hypothesis
2.2.5 holds.

(2)In a future version, we plan to include applications to anticyclotomic Iwasawa theory.
(3)Our convention is that the cyclotomic character has weight −1.
(4)In fact the crystalline condition can be replaced by the considerably weaker condition of (3.3.4) and even entirely removed, see
Remark 3.3.6.
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The system of classes
Θm ∈H 1

f (E[m],ρ), m ∈M [℘]∪{0},

of Definition 2.3.2 forms a JNS Euler system.

For the definition of JNS Euler systems(5) and the precise statement of the theorem, see Theorem 2.3.3.

Remark 1.1.1. — Hypothesis 2.2.5 concerns the modularity of a certain generating series of Selmer classes
coming from cycles in unitary Shimura varieties, for which the evidence is discussed in [Dis, Remark
4.4] and references therein. We also rely on a description of part of the cohomology of those varieties,
Hypothesis 2.1.1, expected to be confirmed in a sequel to [KSZ].

The assumption on the root number is natural in the sense that, by (1.1.1) below and the Beilinson–
Bloch–Kato conjecture (e.g. [Dis, Conjecture 2.2]), in the complementary case ϵ(ρ) = +1 every JNS
Euler system is expected to be zero.

The main result of the work of Jetchev–Nekovář–Skinner (see [Ski] or [ACR23, § 8]) implies that,
under mild conditions on the image of ρ, we have

(1.1.1) Θ0 ̸= 0 =⇒ H 1
f (E ,ρ) =QpΘ0.

Thus Theorem A demands a nonvanishing criterion for Θ0. Under some ramification restrictions:

– Li and Liu have proved a nonvanishing criterion in terms of derivatives of L-functions [LL21,LL22],
conditionally on some standard conjectures on Abel–Jacobi map;

– Liu and the author, under the further assumption that one can take ℘ = {all places of F above p},
have proved an unconditional nonvansihing criterion in terms of p-adic L-functions, and confirmed
the Modularity Hypothesis in that context [DL24].

For the precise statements cast into the setup of the present paper, and their consequences towards the
complex and p-adic Beilinson–Bloch–Kato conjectures,(6) see [Dis, Theorem A].

In particular, we restate the following result from loc. cit., which appears to be the first complete result
towards the Beilinson–Bloch–Kato conjectures in analytic rank 1 for high dimensional representations.
It follows from combining [DL24, Theorems 1.7, 1.8], Theorem A above, and the theory of Jetchev–
Nekovář–Skinner as in [ACR23, Theorem 8.3].

Corollary. — Suppose further that E/F is totally split above 2 and p, that p > n, that places of F ramified
in E are unramified over Q, and that the representation ρ is:

– Panchishkin-ordinary and crystalline at all p-adic places of E;
– of ‘large image’ in the sense that it satisfies the analogue of [ACR23, Hypothesis (HW) in § 8.1];
– ‘mildly ramified’ in the sense that the associated automorphic representation π (§ 3.2) satisfies [DL24,

Assumption 1.6 (1)-(2)-(3)].

Denote by XF the Qp -scheme of continuous p-adic characters of GF that are unramified outside p, by m ⊂
O (XF ) the ideal of functions vanishing at 1, and by Lp (ρ) ∈ O (XF ) the p-adic L-function of ρ from [DL24]
(see [Dis, Proposition 5.2]).

Then
ordmLp (ρ) = 1 =⇒ dimQp

H 1
f (E ,ρ) = 1.

(5)Some of the (young) literature on the subject calls this notion “split anticylcotomic Euler system”.
(6)See [Dis, Conjecture 2.2] for a formulation
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Remark 1.1.2. — To the author’s knowledge, the vast literature on Euler systems contains only three
other constructions for high rank motives: one by Liu–Tian–Xiao–Zhang–Zhu [LTX+22] for conjugate-
symplectic Rankin–Selberg motives, which is of a type introduced by Bertolini–Darmon in [BD05]; one
by Cornut [Cor], for base-changes of some symplectic motives, of a type similar to the one of [Kol88];
and one, of JNS type, by Graham–Shah [GS23], for conjugate-symplectic motives that are also symplectic,
valid for an infinite range of Hodge–Tate weights.

1.2. Idea of the proof. — The construction of the Euler system of Theta cycles starts from the arithmetic
theta lifts on unitary Shimura varieties introduced by Liu in [Liu11] (partly based on a construction of
Kudla [Kud97]); as in [Dis], we recast them as trilinear forms valued in H 1

f (E ,ρ). The higher layers of
the system are given by taking connected components of the special cycles arising in the constructions,
and varying the input data in a well-chosen way.

To prove that the constructed classes indeed form an Euler system we need to establish that they are
integral and that they are bound up by certain norm relations (‘horizontal’ and ‘vertical’, i.e. at non- p-
adic and p-adic places). Following an idea pioneered in [YZZ12] and developed in the context of Euler
systems in [LSZ22], we prove the horizontal norm relations based on the fact that the space of (scalar-
valued) trilinear forms appearing in the constructions decomposes into a product of local spaces, each
of dimension 1 by the theory of the local theta correspondence. Then some equivalent relations may be
established in any models of these local spaces: in our context, an explicit one is given by the zeta integrals
used by Godement–Jacquet to construct the standard L-functions for GLn , where the desired identity is
easy to prove. This model in fact guides the choice of input data away from p; the integrality relations
are then established by explicit computation. At p-adic places, we use a variant of choices of data from
[DL24], and prove its local nontriviality again by a computation in the Godement–Jacquet model.

In § 2, we construct the system and reduce its fundamental properties to local statements. In § 3, we
prove those statements.

Acknowledgements. — I would like to thank Francesc Castella, Henri Darmon, Nadya Gurevich, Dim-
itar Jetchev, Christopher Skinner, Ariel Weiss, Wei Zhang, and especially Yifeng Liu and Waqar Ali Shah
for useful conversations or correspondence.

A substantial part of this paper was written during the KUMA International Summer School in Sara-
jevo in August 2021, and I’d like to thank its director Claudia Zini and all the staff for their hospitality.

2. The Euler system of Theta cycles

2.1. Setup. — We briefly review the setup for the construction of Theta cycles, referring to [Dis] and
references therein for the details.

2.1.1. Notation. — Suppose for the rest of this paper that E is a CM field with totally real subfield F .
We denote by c ∈Gal(E/F ) the complex conjugation, and by η : F ×\A×→ {±1} the quadratic character
attached to E/F . We denote by A the adèles of F ; if S is a finite set of places of F , we denote by AS the
adèles of F away from S. If G is a group over F and v is a place of F , we write Gv :=G(Fv ); if S a finite
set of places of F , we write GS :=

∏

v∈S G(FS ). (For notational purposes, we will identify a place of Q
with the set of places of F above it.) We denote by ψ : F \A→ C× the standard additive character with
ψ∞(x) = e2πiTrF∞/R x , and we set ψE :=ψ ◦TrE/F .

We fix a rational prime p and denote by Q◦ ⊂Qp the extension of Q generated by all roots of unity.
We fix an embedding ι◦ : Q◦ ,→ C, by which we view ψ|A∞ as valued in Q◦. We denote by O the

integral closure of Zp in Qp .
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2.1.2. Quasisplit unitary group. — Let W = E n = W + ⊕W − where W + = Span(e1, . . . , er ), W − =
Span(er+1, . . . , e2r ), equipped with the skew-hermitian form 〈 , 〉W with matrix

�

1r
−1r

�

(here 1r is the
identity matrix of size r ). We denote by G=U(W ) its unitary group, which we may view as a subgroup
of ResE/F GLn . Denote by P ⊂ G the parabolic subgroup stabilizing W −, and by Hermr the space of
hermitian r × r matrices.

We have:

– a Weyl element

w =
�

1r

−1r

�

∈G;

– a homomorphism
m : ResE/F GLr → P⊂G

a 7→ m(a) :=
�

a
tac,−1.

�

whose image is a Levi factor of P;
– a homomorphism

n : Herm→ P⊂G

b 7→ n(b ) :=
�

1r b
1r

�

,

whose image is the unipotent radical of P. Here, we denote by Herm the space of hermitian ma-
trices; we will also denote by Herm(F )+ ⊂ Herm(F ) the subspace consisting of totally positive
semidefinite matrices.

Attached to G, we have:

– a Qp -vector spaceHQp
of modular forms (see [DL24, § 2.2], [Dis, § 4.3]);

– for any ring R, the space SFR of those formal (Siegel–Fourier) expansions
∑

T∈Hermr (F )+
cT (a) q

T , cT ∈C∞(GLr (A
∞
E ), R)

satisfying ctacTa(y) = cT (ay) for all a ∈GLr (E);
– an injective p-adic q -expansion map

(2.1.1) q :HQp
−→ SFQp

,

denoted by q
p

in [Dis, § 4.2].

2.1.3. Incoherent unitary groups. — Let V be an incoherent, totally positive definite E/F -hermitian
space; this is simply a collection of Ev/Fv -hermitian spaces Vv of the same dimension, indexed by the
places of Fv , which is not isomorphic to one of the form (V0⊗F Fv )v for some hermitian space V0 over E ,
and such that Vv is positive definite for all v |∞. If S is a finite set of places of F , we put VAS =⊗v /∈SVv .
For x1, . . . , xr ∈Vv , we have the moment matrix

T (x) := ((xi , x j )Vv
)i j ∈Hermr (Fv ).

We denote by HV the incoherent unitary group associated with V in the sense of [Dis].
Attached to HV we have a tower of Shimura varieties

(XHV ,K )K⊂HV (A∞)

of dimension dimV − 1 over E as in [Dis, § 4.2].
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2.1.4. Weil representation. — Let v be a finite place of F , and let Vv be an Ev/Fv -hermitian space of
dimension n. The basis {e1, . . . , er } of W + identifies Vv ⊗Ev

W +
v =V r

v . We have a representation ωv :=
ωVv

of Gv × HVv
on the Schwartz space S (Vv ⊗Ev

W +
v ,Qp ), characterized by the property that for

φ ∈S (Vv ⊗Ev
W +

v ,Qp ):

– for h ∈HVv
, we have

ωv (h)φ(x) =φ(h
−1x);

– for a ∈GLr (Ev ) and b ∈Hermr (Fv ), we have

ωv (m(a))φ(x) = |deta|rE ·φ(xa),

ωv (n(b ))φ(x) =ψv (TrbT (x))φ(x),

ωv (wr )φ(x) = γ
r

Vv ,ψv
· bφ(x),

where γVv ,ψv
∈ {±1} is the Weil constant of Vv with respect to ψv , and bφ denotes the Fourier

transform
bφ(x) :=

∫

V r
v

φ(y)ψE ,v

�

r
∑

i=1

(xi , yi )V

�

dy

for the ψE ,v -self-dual Haar measure dy on V r
v .

For an incoherent E/F -hermitian space V , we put ω = ωV = ⊗vωVv
, the product running over all

finite places of F ; it is a representation of G(A∞)×HV (A
∞) on the space S (VA∞ ⊗E W +,Qp ).

2.1.5. p-adic automorphic representations. — Given our Galois representation ρ, we choose a relevant
p-adic automoprhic representation of G(A) over Qp (in the sense of [Dis, Definition 3.2])

π⊂HQp

whose base-change to GLn(AE ) is Πρ, which exists by [Dis, Proposition 3.4]. (The representation π is
not uniquely determined by this condition, although as noted in [Dis, Remark 3.5], there is a ‘standard’
choice.)

We enforce from now on the assumption that ϵ(ρ) =−1. Then by [Dis, Proposition 3.8], attached to
ρ and π we have a pair consisting of

– an incoherent totally definite E/F -hermitian space V of dimension n, and
– a relevant p-adic automorphic representation σ of H(A) over Qp (in the sense of [Dis, Definition

3.2])

uniquely characterised (up to isomorphism) by the condition that the space of coinvariants

Λρ := (π∨⊗ω⊗σ)G(A∞)×HV (A∞)

is nonzero. The space Λρ is then in fact 1-dimensional over Qp .
Henceforth, we write H=HV ,ω =ωV , X =XHV

.

2.1.6. Realisation of σ in cohomology. — From now on we assume that F ̸=Q or n = 2, which implies
that the varieties XHV ,K are projective – except in a case related to modular curves where XHV ,K can be
canonically compactified by adding finitely many cusps; in that case, we replace XHV ,K by its compactifi-
cation.

For each open compact K ⊂H(A∞), let

σK
ρ :=Hom Qp [GE ]

(H 2r−1
ét
(XHV ,K ,E ,Qp (r )),ρ).
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We will assume the following hypothesis (a variant of [Dis, Hypothesis 4.1]); it is known for n = 2, and
it is expected to be confirmed in general in a sequel to [KSZ].

Hypothesis 2.1.1. — For each open compact subgroup K ⊂ H(A∞), we have an isomorphism of
Qp[K\HV (A

∞)/K]-modules

(2.1.2) σK
ρ
∼=
⊕

σ ′
σ ′K ,

where the direct sum runs over the isomorphism classes of relevant p-adic automorphic representation (in the
sense of [Dis, Definition 3.2]) σ ′ of HV (A) with BC(σ ′) =Π.

We put Mσ ,K := σ∨,K⊗ρ, which we identify with a subspace of Mρ,K := σ∨,K
ρ ⊗ρ⊂H 2r−1

ét
(XK ,E ,Qp (r )).

We then identify

σ = lim−→
K

Hom Qp [K\HV (A∞)/K](Mσ ,K ,ρ)⊂ lim−→
K

Hom Qp [K\HV (A∞)/K](Mρ,K ,ρ) = lim−→
K

σρ,K .

2.2. Special cycles and generating series over ring class fields

2.2.1. Connected components of unitary Shimura varieties. — Let T be the unitary group of E with the
form induced by the norm NE/F (as an algebraic group over F ), and denote

C := {open compact subgroups C ⊂T(A∞)} ∪ {T(A∞)}.

(Elements C ∈C will often appear as sub/superscript, omitted when C = T(A∞).) For each C ∈C , let
EC be the abelian extension of E with

Gal(EC /E) =: Γ/C :=T(F )\T(A∞)/C

under the class field theory isomorphism (which we will view as an identification). Let Γ := lim←−C
Γ/C .

For any profinite group Γ ′, we will denote by bΓ := lim−→C ′
SpecQp[Γ

′/C ′] the space of locally constant

Qp -valued characters of Γ ′ (where the limit ranges over finite-index subgroups).

Let XT be the tower of 0-dimensional Shimura varieties over E associated with . For every coherent
or incoherent unitary group H′, we denote by νH′ : H′→ T the determinant character (the subscript will
be omitted when understood from the context). The tower XH′ = (XH′,K ′)K ′ of Shimura varieties maps to
the tower XT via surjective morphisms still denoted

ν : XH,K ′ →XT,ν(K ′).

These induce bijections on the set of geometrically connected components.
Fix an identification of Γ -sets XT(E

ab) ∼= Γ . A subset S ⊂ T(A∞) is said to be of level C ∈ C if C is
minimal for the property that S is a union of C -cosets. If S ⊂T(A∞) is of level C ⊃C ′, let

X S
T,C ′ ⊂XT,C ′,EC

be the EC -subscheme whose set of E ab-points is identified with the image of S in Γ/C ′ . If S ⊂T(A∞) is of
level C ⊃ ν(K), let

X S
H,K := ν−1(X (S)T,ν(K))⊂XH,K ,EC

.

Then for each i , j , each C ∈ C , and each t ∈ Γ/C we have a direct Qp[GEC
]-module summand

H i
ét(X

tC
K ,E

,Qp ( j ))⊂H i
ét(XK ,E ,Qp ( j )), and we denote by

(2.2.1) rtC : H i
ét(XK ,E ,Qp ( j ))→H i

ét(X
tC

K ,E
,Qp ( j ))

the projection induced by the inclusion X tC
K ,→XK ,EC

.
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2.2.2. Special cycles. — From now on, we abbreviate H=HV and X? :=XH,? =XHV ,? (for any decoration

‘?’). For a C ∈C and a compact open subgroup K ′ ⊂H′(A∞) (for some unitary group H′
ν→T), we write

K ′C :=K ′ ∩ ν−1(C ).
Let x ∈VA∞ ⊗E W + =V r

A∞ .

– Suppose that

(2.2.2) T (x) := ((xi , x j )V )i j ∈Hermr (F )
+ and V (x) := SpanE (x1, . . . , xr ) is positive-definite.

For any compact open subgroup K ⊂ G(A∞), any C ∈ C , and any t ∈ T(A∞), we have a cycle
Z tC (x)K defined as follows (see [Liu11, § 3A] or [LL21, § 4] for more details when tC =T(A∞)).

Pick an embedding ι : E ,→ C, and let V ι be the (unique up to isomorphism) totally definite
hermitian space over E with V ι

A∞
∼= VA∞ ; we fix such an identification. Then we may write x =

h−1x ′ for x ′ ∈ (V ι)r and h ∈H(A∞). Let H(x ′) be the unitary group of the subspace V (x ′)⊥ ⊂V ι,
where V (x ′) := SpanE (x

′
1, . . . , x ′r ); let Kx ′ := hK h−1 ∩H(x ′)(A∞). We also denote by H(x)(A) the

unitary group of V (x)⊥, and set Kx :=K ∩H(x)(A).
The natural inclusion jx ′ : H(x ′),→Hι of unitary groups induces a morphism of Shimura varieties

XH(x ′),Kx′

jx′ ,K−→XhK h−1
·h−→XK .

LetLK be the Hodge bundle on XK (or its base-change to EC ). We then define a cycle (see [Ful98,
§ 2.5] for general background)

Z tC (x)K := c1(L
∨

K )
dimV (x)−r
|X tC

K
⌢ [C ν(Kx ) : C ]−1 · [ jx,K (X

tC ν(Kx )
H(x),Kx

)] ∈Chr−1(XK ,EC
)Q,

where we have used the suggestive notation(7)

(2.2.3) jx,K (X
S
H(x),Kx

) := jx ′,K (X
ν−1(h)S
H(x ′),Kx′

)h,

in which the right multiplication denotes the action of H(A∞) on the tower (XH,K )K .
The definition is independent of the auxiliary choices made.

– If x does not satisfy (2.2.2), we put ZC (x)K := 0.

It is clear that TrEC ′/EC
ZC ′(x)K = ZC (x)K whenever C ′ ⊂C ∈C .

For a locally constant function χ : Γ →Qp , we also define

Z(x,χ )K :=
∑

t∈Γ/C

χ (t )Z tC (x)K ∈Chr−1(XK ,EC
)Qp

,

for any C ∈C such that χ factors through Γ/C . (Thus ZC (x)K = Z(x,1C )K for any C ∈C .)

Remark 2.2.1. — Suppose that χ : Γ →Q×p is a locally constant character. For every x ∈V r
A∞ , γ ∈ Γ, and

h ∈H(x)(A∞), we have

(2.2.4) Z(x,χ )γK = χ
−1(γ )Z(x,χ )K .

and

(2.2.5) ZC (x)K h = Z ν(h)C (h−1x)h−1K h , Z(x,χ )K h = χ−1
H (h)Z(h

−1x,χ )h−1K h .

where we still denote simply as a right multiplication the pushforward action on cycles induced by the
right action of H(A∞) on (XH,K )K .

(7)This notation can likely be given a substantive meaning in the framework of [ST].
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2.2.3. Projection to the ρ-component. — Let C ∈ C , and let K ⊂ H(A∞)∩ ν−1(C ) be an open compact
subgroup. Denote by Fil•,C ⊂H 2r

ét (XK ,EC
,Qp (r )) the filtration induced by the Hochschild–Serre spectral

sequence H i (EC , H 2r−i
ét
(XK ,EC

,Qp (r )))⇒H 2r
ét (XK ,EC

,Qp (r )). We have an absolute cycle class map

AJ: Chr−1(XK ,EC
)Qp
→H 2r

ét (XK ,EC
,Qp (r ))/Fil2,C .

Lemma 2.2.2. — The Hecke-eigenprojection

eρ :
⊕

i∈Z

H i
ét(XK ,E ,Qp (r ))→Mρ,K

induces a Hecke-equivariant projection, still denoted

eρ : H 2r
ét (XK ,EC

,Qp (r ))/Fil2,C →H 1(EC , Mρ,K ),

such that the composition

(−)ρ : Chr−1(XK ,EC
)Q

AJ
−→H 2r

ét (XK ,EC
,Qp (r ))/Fil2,C eρ−→H 1(EC , Mρ,K )

Z 7→ Zρ := eρAJ(Z)

takes values in H 1
f (EC , Mρ,K ).

Proof. — As in [Dis, Lemma 4.2].

2.2.4. Generating series. — Let χ : Γ →Qp be a locally constant function, and let C (χ ) ∈C be maximal
such that χ factors through Γ/C (χ ). For φ ∈S (V r

A∞) and any K ⊂H(A∞) fixing φ, let

ZT (φ,χ )K :=
∑

x∈K\V r
A∞ : T (x)=T

φ(x)Z(x,χ )K ∈Chr−1(XK )Q;

in the special case χ = 1tC for C ∈C , we write

Z tC
T (φ) := ZT (φ,1tC ),

qΘtC (φ)ρ,K =
qΘ(φ,1tC )ρ,K .

We define
qΘ(φ,χ )ρ,K (a) := vol(K)

∑

t∈Γ/C

χ (t )
∑

x∈K\V r
A∞

φ(xa)Z ν(m(a))tC (x)K ,ρ qT (x) ∈H 1
f (EC (χ ), Mρ,K )⊗Qp

SFQp
,

where vol is as in [LL21, Definition 3.8].

Lemma 2.2.3. — Let K ′ ⊂ K ⊂ H(A∞) be compact open subgroups, let φ ∈ S (V r
A∞)

K , and let p =
pK ′/K : XK ′ →XK denote the projection map. Then for every locally constant χ : Γ →Qp , we have

vol(K ′)p∗ZT (φ,χ )K ′ = vol(K)ZT (φ,χ )K .

Proof. — It suffices to show that p∗Z
C
T (φ)K ′ = [K : K ′]ZC

T (φ)K for every C ∈C .
Suppose first that, in the notation of §2.2.2, we may identify x with an element of (V ι)r . The finite

surjective map X C ν(K ′x )
H(x),K ′x

→X C ν(Kx )
H(x),Kx

has degree [Kx : K ′x] · [C ν(Kx ) : C ν(K ′x )]
−1. Since

p∗L ∨K =L
∨

K ′ ,

by the definitions and the projection formula, we find

p∗Z
C (x)K ′ = [Kx : K ′x] · [C ν(Kx ) : C ν(K ′x )]

−1[C ν(K ′x ) : C ]−1 [ jx,K (X
C ν(Kx )
H(x),Kx

)] = [Kx : K ′x]Z
C (x)K .

It is easy to verify that this result remains valid without the assumption x ∈ (V ι)r .
Then, setting

(2.2.6) φ|T (x) := 1[T (x)=T ]φ(x),
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we find

p∗Z
C
T (φ)K ′ =

∑

x∈K ′\V r
A∞

φ|T (k x)p∗Z
C (k x)K ′ =

∑

x∈K\V r
A∞

∑

k∈K ′\K/(K ′x\Kx )

φ|T (k x)[Kk x : K ′k x]Z
C (k x)K .

Now all the last three terms are independent of k, so that the inner sum equals
∑

x∈K\V r
A∞

[K : K ′]φ|T (x)Z
C (x)K = [K : K ′]ZC

T (φ)K ,

as desired.

Corollary 2.2.4. — The construction of qΘ(φ,χ )ρ,K is compatible under pushforward in the tower (XK )K .

2.2.5. Modularity. — For the history and evidence in favour of the following conjecture (which is [DL24,
Conjecture 4.17]),(8) see [Dis, Remark 4.4] and references therein.

Hypothesis 2.2.5 (Modularity). — For every φ ∈ S (V r
A∞) and every K ⊂H(A∞) fixing φ, there exists a

unique
Θ(φ)ρ,K ∈H 1

f (E , Mρ,K )⊗Qp
HQp

such that
q(Θ(φ)ρ,K ) =

qΘ(φ)ρ,K .

We can amplify the modularity to the other generating series.

Proposition 2.2.6. — Assume Hypothesis 2.2.5. Then for every locally constant function χ : Γ →Qp , every
φ ∈S (V r

A∞), and every K ⊂H(A∞) fixing φ, there exists a unique

Θ(φ,χ )ρ,K ∈H 1
f (Eχ , Mρ,K )⊗Qp

HQp

such that
q(Θ(φ,χ )ρ,K ) =

qΘ(φ,χ )ρ,K .

As usual, we will write ΘtC (φ)ρ,K :=Θ(φ,1tC )ρ,K .

Proof. — By Corollary 2.2.4, we may assume that K satisfies ν(K) ⊂ C . We define a slightly different
Siegel–Fourier expansion by

q
eΘ(φ,χ )ρ,K (a) := vol(K)

∑

x∈K\V r
A∞

ω(m(a))φ(xa)Z(x,χ )K ,ρ qT (x)

and we put q
eΘ

tC
(φ)ρ,K =

q
eΘ(φ,1tC )ρ,K . It suffices to prove the proposition when χ is a character, in

which case
qΘ(φ,χ )ρ,K (a) = χ (νG(m(a)))

−1
eΘ(φ,χ )ρ,K (a),

so that if eΘ(φ,χ )ρ,K is a (Selmer-group-valued) Siegel modular form with q -expansion q
eΘ(φ,χ )ρ,K , then

Θ(φ,χ )ρ,K (g ) := χ
−1 ◦ νG⊗ eΘ(φ,χ )ρ,K

is a Siegel modular form with q -expansion qΘ(φ,χ )ρ,K . Therefore it is equivalent to prove the modularity

of the series q
eΘ(φ,χ )ρ,K for all χ , and we may restrict to χ = 1tC for t ∈ Γ/C .

Now we have q
eΘ(φ,1tC )K ,ρ = rtC

∗
qΘ(φ)ρ,K , were rtC

∗ is induced by (2.2.1). Then

eΘ
tC
(φ)ρ,K := rtC

∗ Θ(φ)ρ,K ∈H 1
f (EC , Mρ,K )⊗Qp

HQp

(8)The formulation in loc. cit. is slightly different but easily seen to be equivalent.
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satisfies q(eΘ
tC
(φ)ρ,K ) =

q
eΘ

tC
(φ)ρ,K , as desired.

2.3. The Euler system of Theta cycles. — From now on we assume that Hyptohesis 2.2.5 holds.
If C ∈C and E ′ is a finite extension of EC , for z ∈H 1

f (E
′, M C

ρ,K ) and f ∈ σ we denote

z. f := f∗z ∈H 1
f (E

′,ρ).

2.3.1. Theta cycles. — For a relevant representation π′ ⊂ HQp
, denote by Φ 7→ Φπ′ the Hecke-

eigenprojection HQp
→ π′, and by 〈 , 〉π′ : π′∨ ⊗ π′ → Qp the canonical duality. We also abbreviate

〈ϕ′,Φ〉π′ := 〈ϕ′,Φπ′〉π′ for ϕ′ ∈π′, Φ ∈HQp
, and use the same names for any base-change.

For every ϕ ∈π∨, f ∈ σ , C ∈C , and every locally constant function χ : Γ/C →Qp , we define

Θ(ϕ,φ,χ )ρ,K := 〈ϕ,Θ(φ,χ )ρ,K 〉π ∈H 1
f (EC , Mρ,K ),

Θ(ϕ,φ, f ,χ ) :=Θ(ϕ,φ,χ )ρ,K . f ∈H 1
f (EC ,ρ),

where K ⊂H(A∞) is any open compact subgroup fixing f and φ.
As usual, in the special case χ = 1C for C ∈C , we will put ΘC (−) :=Θ(−,1C ).
If χ ∈bΓ (viewed as an automorphic character of T(A)), let χG := χ ◦ νG, χH := χ ◦ νH, and denote by

Sχ (V
r

A∞)

the space S (V r
A∞) with G(A∞)×H(A∞)-action byωχ :=ω⊗χ−1

G ⊗χH. Let

(2.3.1) Λρ,χ :=
�

π⊗Sχ (V
r

A∞)⊗σ
�

G(A∞)×H(A∞)
,

a Qp -line. For C ∈C , we also put
Λρ,C :=

⊕

χ∈bΓ/C

Λρ,χ .

Lemma 2.3.1 (Equivariance). — Let χ ∈bΓ . If Hypothesis 2.2.5 holds, the map

Θ( · ,χ ) : π⊗S (V r
A∞)⊗σ→H 1

f (E ,ρ(χ ))

(ϕ,φ, f ) 7→Θ(ϕ,φ, f ,χ )

factors through Λρ,χ .

It follows from the lemma that for any C ∈C , the map ΘC factors through Λρ,C .

Proof. — It follows from (2.2.4) that the target is H 1
f (E ,ρ(χ )) ⊂ H 1

f (EC (χ ),ρ). The equivariance for the
action of G(A∞) is clear. We then need to show that for every φ ∈S (V r

A∞), f ∈π, h ∈H(A∞),we have

(2.3.2) Θ(hφ,χ )ρ.h f = χ−1
H (h)Θ(φ,χ )ρ. f

Let K ⊂H(A∞) satisfy that f and φ are invariant under K ∩ h−1K h, and ν(K)⊂C :=C (χ ). Then, with
the notation φT of (2.2.6), we have

ZT (hφ,χ )ρ,K .h f =
∑

x∈K\V r
A∞

φ|T (h
−1x)Z(x,χ )K h. f

=
∑

x∈K\V r
A∞

φ|T (h
−1x)χ−1

H (h)Z(h
−1x,χ )h−1K h . f = χ−1

H (h)ZT (φ,χ ). f ,

where we have used (2.2.5) and a change of variables. This proves (2.3.2).

2.3.2. Choices of test vectors. — Denote by:
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– ℘ a fixed set of p-adic places of F such that for all v |p, v splits in E , the Galois representation ρ is
Panchishkin-ordinary (Definition 3.3.1) at each place of E above v, and the associated representation
πv satisfies the technical condition (3.3.4) below;

– S a fixed set of finite places of F , containing all the places v /∈ ℘ such that for some place w|v, the
representation ρ|GEw

is ramified or w is ramified over Q;
– M1 the set of split places of E not in S;
– M the set of subsets ofM1 (we will identifyM and ℘ with a set of squarefree ideals in OF );
– M [℘] the set of ideals of the form m

∏

v∈℘ v sv for m ∈M and s = (sv ) ∈ Z℘⩾0.

For v /∈ S℘, let Vv ⊂ Vv be a self-dual hermitian lattice in Vv , let K◦v ⊂ Hv be the stabliser of V r
v ,

and let U ◦v ⊂ Gv be the stabliser of
∑r

i=1OEv
ei . Fix decompositions π∨ = ⊗′vπ∨v , σ = ⊗′vσv , where the

restricted tensor products are with respect to some spherical vectors ϕ◦v ∈π
∨,◦
v , f ◦v ∈K◦v for all v /∈ S.

We make the following choices of test vectors in πv ⊗S (V r
v )⊗σv at all finite places v of F :

– for v /∈ S℘, define
φ◦v := 1V r

v
∈S (V r

v )
K◦v×U ◦v ,

λ◦v := ϕ◦v ⊗φ
◦
v ⊗ f ◦v .

– for v ∈ S, we let λv = ϕv ⊗φv ⊗ fv ∈ πv ⊗S (V r
v )⊗ σv be any element whose image in Λρ,v is

nonzero;
– for v ∈M1, we will define another Schwartz function

φ•v := (3.2.1) ∈S (V r
v )

K◦v×U ◦v

below (where the subscripts v will be omitted from the notation), and we put

λ•v := ϕ◦v ⊗φ
•
v ⊗ f ◦v ;

– for v ∈℘, we will define vectors ϕa ∈π∨, f a ∈ σ and a sequence of Schwartz functions

φ(s)v ∈S (V r
v ), s ⩾ 0,

in Definition 3.3.10 below (where the subscripts v will be omitted from the notation). We put

λ(s)v := ϕa⊗φ(s)v ⊗ f a.

For m =
∏

v |m,v∈M1
v
∏

v∈℘ v sv ∈M [℘], we put

λ(m) := (⊗v /∈S m℘λ
◦
v )⊗ (⊗v |m,v∈M1

λ•v )⊗ (⊗v∈℘λ
(sv )
v )⊗⊗v∈Sλv ∈π∨⊗S (V r

A∞)⊗σ ;

we also putλ(0) := λ(1), and defineϕ(m) ∈π∨, f (m)v ∈ σ in the obvious way so thatλ(m) = ϕ(m)⊗φ(m)⊗ f (m).
Note that ϕ(m) and f (m) are in fact independent of m ∈M [℘]∪{0}.

2.3.3. The Euler system. — For m ∈M [℘], we set

C (m) := (1+m ÒOE )∩T(A∞), E[m] := EC (m).

For m = 0, we put C (0) =T(A∞), E[0] := E .

Definition 2.3.2. — The Euler system of Theta cycles is the system of classes (Θm)m∈M [℘]∪{0} defined by

Θm :=ΘC (m)(λ(m)) ∈H 1
f (E[m],ρ).

The following theorem says precisely that (Θm)m is an Euler system in the sense of Jetchev-Nekovář-
Skinner. For a place w of E at which ρ is unramified, let Frw ∈GEw

be a geometric Frobenius at w, and
let Pw (t ) := det(1− tFrw |ρ∗(1)).
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Theorem 2.3.3. — The system of classes (Θm)m∈M [℘]∪{0} of Definition 2.3.2 satisfies TrE[1]/EΘ1 = Θ0 and
the following conditions.

1. Integrality. There exists a GE -stable Zp -lattice ρ0 ⊂ ρ such that for every m ∈M [℘]∪{0},

Θm ∈H 1
f (E[m],ρ0).

2. Horizontal norm relations. For every m ∈M and every v ∈M1 not dividing m,

TrE[mv]/E[m]Θmv = Pw (Frw )Θm ,

where w is any one of the places of E above v.
3. Vertical norm relations. For every m ∈M [℘] and every v ∈℘,

TrE[mv]/E[m]Θmv =Θm .

Remark 2.3.4. — By construction, the Qp -vector space Λρ,S = ⊗vΛρ,v is 1-dimensional; thus the ‘base
class’ Θ0, which only depends on the image of λS = ⊗vλv in Λρ,S , is independent of choices up to a
scalar (after the initial choice of the descent π). The following proposition verifies the resulting necessary
condition for the nonvanishing of (the base class of) our Euler system.

We say that ρ is exceptional at a place v ∈ ℘ if for some (equivalently,(9) every) place w|v of E and
embedding ι : Qp ,→C, the Deligne–Langlands γ -factor

γ (WDι(ρ
+
w ),ψE ,w , s)

of the complex Weil–Deligne representation attached to ρ+w by [Fon94] does not have a pole at s = 0. A
consideration of weighs shows that if ρ is crystalline at all w|v, then it is not exceptional.

Proposition 2.3.5. — The image of λ(0) inΛρ is nonzero if and only if ρ is not exceptional at any place v ∈℘.

This is clearly a local statement, which will be proved in § 3.3.6.

2.4. Reduction of the Euler-system properties to local statements. — We reduce Theorem 2.3.3 to
several local results, to be proved in the next section; for clarity, these results are marked with a ‘→’.

2.4.1. Integral structures. — Let K ⊂ H(A∞), U ⊂G(A∞) be compact open subgroups fixing ϕ(m) and
f (m). We consider the following integral structures on our representations.

– We let ρZp
be a Zp -lattice in ρ, stable under GE (this may require a choice that we now fix);

– Let Mρ,Zp ,K ⊂ Mρ,K be a Zp -lattice such that for each C , the image of Chr−1(XK ,EC
)Zp

of the cy-

cle class map (−)ρ from Lemma 2.2.2 is contained in H 1(EC , Mρ,Zp ,K ). (As explained in [Nek95,

§ II.1.10], we may take Mρ,Zp ,K = p−a eρH 2r−1
ét
(XK ,E ,Zp (r )), where pa is the order of the torsion

subgroup of H 2r−1
ét
(XK ,E ,Zp (r )).) Let Mσ ,Zp ,K :=Mσ ,K ∩Mρ,Zp ,K . We define

σK
Zp

:=Hom Qp [K\HV (A∞)/K](Mσ ,Zp ,K ,ρZp
),

a Zp -lattice.
– LetHZp

be the preimage of SFZp
under the map q of (2.1.1). We define

πU ,∨
Zp

:=πU ,∨ ∩Hom (H U
Zp

,Zp ),

(9)This follows from multiplicativity and functional equation of γ -factors, the selfduality of ρ, and the fact that, by weight consid-
erations, for every w the factor γ (WDι(ρw ),ψE ,w , s) has neither a zero nor a pole at s = 0.
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where πU ,∨ is viewed as a subspace of Hom (HQp
,Qp ) via the composition of the natural duality

and the projectionHQp
→π.

– For x ∈V r
A∞ and C ∈ C , let V (x) and H(x)(A∞) be as in § 2.2.2, and let Kx := K ∩H(x), KC

x :=
Kx ∩ ν−1

H(x)(C ). For each C ∈C , we define

S (V r
A∞ ,Zp,C )

K ⊂S (V r
A∞ ,Qp )

K

to be the Zp -module of functions satisfying that for every x ∈ Spt(φ),

vol(K) ·φ(x) · [Kx : KC
x ]
−1 ∈ Zp .

Similar integrality properties for Schwartz functions are considered by Shah in [Sha, §3.5].

Remark 2.4.1. — The Zp -submodule H U
Zp

is a Zp -lattice in the subspace H U ,◦
Qp

⊂ H U
Qp

consisting of

forms with (uniformly) bounded q -expansions. (We conjecture that H U ,◦
Qp

= H U
Qp

; at least when U is

hyperspecial at p-adic places, this should be provable by considering q -expansion maps on integral models
of PEL Shimura varieties related to G, cf. [Lan12, Remark 5.2.14].) This implies that πU ,∨

Zp

⊂ πU ,∨

contains a Zp -lattice.

Lemma 2.4.2. — For every C ∈C , we have

ϕ ∈πU ,∨
Zp

, φ ∈S (V r
A∞ ,Zp,C ))

U×K , f ∈ σK
Zp

=⇒ ΘC (ϕ,φ, f ) ∈H 1
f (EC ,ρZp

).

Proof. — By the definitions, it suffices to prove that

ΘC (φ)K ∈Chr−1(XK ,EC
)Zp
⊗Zp
H U

Zp
,

that is, that for all x ∈ Spt(φ) with T (x) ∈Hermr (F ) and for all t ∈ T (A∞), we have

vol(K) ·φ(x) · [Kx : KC
x ]
−1 ·

�

c1(L
∨

K )
dimV (x)−r
|X tC

K
⌢ [ jx (X

tC
H(x),Kx

)]
�

∈Chr−1(XK ,EC
)Zp

.

This is immediate from the definition of S (V r
A∞ ,Zp,C ))

U×K .

2.4.2. Integrality. — We reduce the integrality of the Euler system to a result on the local integrality of
our Schwartz functions.

For xv ∈V r
v , let V (xv ) = Span(xv,1, . . . , xv,r )

⊥, let H (xv ) =U (V (xv )). For open commpact subgroups

Uv ⊂Gv , Kv ⊂Hv and Cv ⊂ Tv , let Kxv
:=Kv ∩H (xv ), KCv

xv
:=Kxv

∩ ν−1
H (xv )
(Cv ). We define

S (V r
v ),Zp,Cv

)Uv×Kv ⊂S (V r
v )

Uv×Kv

to be the Zp -module of functions φv satisfying that for every xv ∈ Spt(φv ),

vol(Kv ) ·φv (xv ) · [Kxv
: KCv

xv
]−1 ∈ Zp .

For a finite place v of F , we denote byϖu a fixed uniformiser. If v is a split finite place of F , we denote
C (ϖe

v ) := 1+ϖe
vOE ,v ∩Tv . The following will be proved as Propositions 3.2.3 and 3.3.13 below.

Proposition→ 2.4.3. — We have:

1. for v ∈M1,
φ•v ∈S (V

r
v ),Zp,C (ϖv )

)U
◦

v ×K◦v ;

2. for v ∈ ℘, there exist open compact subgroups Uv ⊂ Gv , Kv ⊂ Hv fixing respectively ϕa
v and f a

v , such
that for every s ⩾ 0,

φ(s)v ∈S (V r
v ,Zp,C (ϖ s

v
)Uv×Kv .
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Proof of Theorem 2.3.3.1, assuming Proposition 2.4.3. — Proposition 2.4.3 implies that there are compact
open subgroups U ⊂G(A∞) and K ⊂H(A∞), and an integer e2 such that for every m ∈M [℘],

φ(m) ∈ p−e2S (V r
A∞ ,Zp,C (m))

K×U .

Now Lemma 2.4.2 shows that if e1, e3 ∈ Z are such that ϕ(m) ∈ p−e1π∨,U
Zp

, f (m) ∈ p−e3σK
Zp

(recall that ϕ(m)

and f (m) are independent of m, so this is possible by Remark 2.4.1), then for the Zp -lattice

ρ0 := p−e1−e2−e3ρZp
⊂ ρ

we have Θm ∈H 1
f (E[m],ρ0), as desired.

2.4.3. Horizontal norm relations. — We first reduce the norm relation of Theorem 2.3.3.2 to the follow-
ing proposition.

Proposition→ 2.4.4. — For all m ∈M and v ∈M1 with v ∤ m, all characters χ : Γ/C (m) → Q×p , and for
every λv ∈π∨,v ⊗S (V r

Av∞)⊗σv , we have

(2.4.1) Θ(λvλ•v ,χ ) = Pw (Frw )Θ(λ
vλ◦v ,χ )

in H 1
f (E[m],ρ)⊗Qp

HQp
.

Proof of Theorem 2.3.3.2, assuming Proposition 2.4.4. — The identity (2.4.1) remains valid for any func-
tion χ on Γ/C (m). Then it suffices to apply it to χ = 1C (m) and λv = λ(m),v .

We can further reduce Proposition 2.4.4 to the following abstract local analogue, to be proved in § 3.2.2.
Analogously to (2.3.1), denote by Sχv

(V r
v ) the space S (V r

v ) equipped with the (Gv × Hv )-action by
ωv,χv

:=ωv ⊗χ−1
G,v ⊗χH,v , and let

(2.4.2) Λρv ,χv
:=
�

π∨v ⊗Sχv
(V r

v )⊗σv

�

Gv×Hv

.

Proposition 2.4.5. — For every v ∈M1 and every unramified character χ of E×v , we have

(2.4.3) [λ•v] = L(ρ∗(1)w ,χ−1
w , 0)−1 · [λ◦v]

in Λρ,χ ,v .

Proof of Proposition 2.4.4, assuming Proposition 2.4.5. — Characters χ : Γ/C (m)→Q×p are unramified at v ∤
m, and by (2.2.4), Frw acts by χ−1(Frw ) on the generating series Θ(φ,χ )ρ. Thus the Galois element
Pw (Frw ) acts by the scalar Pw (χ

−1(Frw )) = L(ρ∗(1)w ,χ−1
w , 0)−1, and the desired identity (2.4.1) simplifies

to
Θ(λvλ•v ,χ ) = L(ρ∗(1)w ,χ−1

w , 0)−1 ·Θ(λvλ◦v ,χ ).

This identity is implied by Proposition 2.4.5 since, by Lemma 2.3.1, the map λv 7→ Θ(λvλv ,χ ) factors
through Λρ,χ ,v .

2.4.4. Vertical norm relations. — We reduce Theorem 2.3.3.3 to the following.

Proposition→ 2.4.6. — Let v ∈ ℘. For every compact open subgroup Cv ⊂ E×v , the image of λ(s)v in ΛCv
ρv
=

⊕

χv∈ØE×v /C
Λρv ,χv ,v is independent of s ⩾ 0.

Proof of Theorem 2.3.3.3, assuming Proposition 2.4.6. — Let s = v(m). We have

TrE[mv]/EΘmv =TrE[mv]/E[m]Θ
C (mv)(λ(m),vλ(s+1)

v ) =ΘC (m)(λ(m),vλ(s)v ) =Θm .
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3. Local study

The goal of this section is to prove Propositions 2.4.3, 2.4.5, and 2.4.6, after giving the definition of the
test vectors.

3.1. Preliminaries

3.1.1. Notation. — Let v be a finite place of F split in E . We work in a local setting over Fv and drop all
subscripts v (thus writing F , E , V , W , . . . for Fv , Ev , Vv , Wv , . . . ). We denote by d ∈ OF a generator of
the different ideal of F .

We fix an ordering of the two primes w1, w2 above v and write E = Ew1
× Ew2

= F × F ; we put
i := (1,−1) ∈ E . We fix a uniformiser ϖ of F , and we denote by k the residue filed of F , by q its
cardinality.

Write V =Vv =V1⊕V2 where the isotropic subspaces Vi :=V ⊗F Ewi
. Write W = E2r =W +⊕W −

where W + = Span(e1, . . . , er ), W − = Span(er+1, . . . , e2r ). For ? = ;,+,−, write W ? = W ?
1 ⊕W ?

2 . Let
W :=

⊕n
i=1OE ei , and if ‘?’ is any decoration, letW? =W? ∩W .

We denote

H =H(F )∼=AutF (V1), G =G(F )∼=AutF (W1), T =T(F )∼= F ×,

where H acts on V1 on the left, and G acts on W1 on the right.
Fix an isometry between V and W ∨, where the latter is endowed with the hermitian form dual to the

form (y, y ′)W := i〈y, y ′〉W on W . The chosen isometry between V and (the hermitian space attached to)
W ∨ induces isomorphisms(10)

(3.1.1) H =AutF (V1)→ IsomF (W
∨

1 ,V1)←AutF (W
∨

1 ) =G.

By the isomorphism Wi
∼= V ∨i (for i = 1,2), we have OF -lattices Vi = W ∨i , and direct summands

V ±i = (W
±

i )
∨ ⊂Vi ; we let V ±i := Vi ∩V ±i . We will often write

x±i =
�

x±i ,+

x±i ,−

�

∈Vi ⊗W ±
i =Hom (V ±i ,Vi ) =Hom (V ±i ,V +

i )⊕Hom (V ±i ,V −i ).

3.1.2. Subgroups of G and H . — We denote still by H the algebraic group over OF with H(R) =
AutR(V1⊗OF

R) for any OF -algebra R; we similarly extend G to a group over OF (isomorphic to H). We
write P = P(F )⊂G =GL(W1) =GLn(F ) for the Siegel parabolic, with Levi M ∼=GL(W +

1 )×GL(W −
1 ) =:

G+×G− and unipotent radical N =N(F ).
We put

K◦ :=G(OF ),

and define (deeper) pro- p parahoric subgroups of G(OF ) of level s ⩾ 1 by

Is =G(OF )×G(OF /ϖ sOF )
N(OF /ϖ

sOF ).

Via the identification (3.1.1), we may also view the above as subgroups of H ; when the context is ambigu-
ous (and the distinction is needed), we will add a superscript ‘G’ or ‘H ’ to the notation for those subgroups
in order to distinguish the ambient group in question.

Finally, we will need the following definition.

Definition 3.1.1. — Let H ′ be a general linear group over F and let s ⩾ 0 be an integer. We say that a
subgroup K ⊂H ′ has Galois-level at least s if det(K)⊂ 1+ϖ sOF .

(10)Note that G acts on the left on W ∨
1 .
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For the rest of this section, unless noted otherwise: all tensor products of finite-dimensional F -vector
spaces are taken over F ; Schwartz spaces consist of Qp -valued functions; all tensor products of Qp -vector

spaces are taken over Qp .

3.1.3. Weil action and linear action on Schwartz spaces. — For any smooth character of F ×, denote by

S ′χ (V1⊗W1)

the Schwartz space of V1⊗W1 endowed with the action of G×H given by

(3.1.2) (g , h).φ′(y) = χ−1(det g )χ (det h)|det h|−r |det g |rφ′(h−1y g ).

We still denote by Sχ (V ⊗E W +) the Schwartz space of

V ⊗E W + ∼= (V1⊗W +
1 )⊕ (V2⊗W +

2 )

endowed with the twisted Weil action ωχ = ω ⊗ χ−1
G ⊗ χH . (When we are interested in the Schwartz

space only and not the specific action, we will omit the subscript χ .)
Define a linear map

(3.1.3)
F : S ′χ (V1⊗W1) = S

′
χ ((V1⊗W +

1 )⊕ (V1⊗W −
1 ))

→Sχ ((V1⊗W +
1 )⊕ (V2⊗W +

2 )) =Sχ (V ⊗E W +)

by the partial Fourier transform

Fφ′(x+1 , x+2 ) =
∫

V1⊗W −
1

φ′(x+1 , x−1 )ψ(〈x
−
1 , x+2 〉) dx−1

where 〈 , 〉 is the natural duality between V1⊗W −
1 and V2⊗W +

2 given by the restriction of ( , )V ⊗ ( , )W ,
and dx−1 is the self-dual Haar measure, which assigns volume |d |r 2

to V1⊗OF
W +

1 .

Lemma 3.1.2. — The mapF : S ′χ (V1⊗W1)→Sχ (V ⊗E W +) is an isomorphism of (G×H )-modules.

Proof. — It is easy to verify by explicit computation thatF is (H ×G)-equivariant (for a brief discussion
in a more general context, see [GQT14, § 2.9]). It is also clear that the dual partial Fourier transform
gives an explicit inverse.

3.1.4. Godement–Jacquet zeta integrals as models for the Howe correspondence. — We fix an embedding
Qp ,→ C extending ι◦, via which we may base-change all L-values, functionals, and representations –
without changing the notation.

By the uniqueness of the Howe correspondent σ in § 2.1.5 together with Lemma 3.1.3 below, we have
σ ∼= π under the isomorphism (3.1.1). Fixing a nontrivial H -equivariant pairing ( , )π : π∨⊗π→C, we
have the Godement–Jacquet zeta integral

(3.1.4)
ζ (·,χ ) : π∨⊗S ′χ (V1⊗W1)⊗σ→C

(ϕ,φ′, f ) 7→
∫

G
(gϕ, f )π ·φ

′(g )χ−1(det g )|det g |r dg

where dg is the Haar measure on G assigning volume |d |n2/2 to K◦ :=AutOF
(V1)⊂G ∼=H . Let

(3.1.5) θ(·,χ ) := ζ (·,χ ) ◦F−1 ∈Λ∨ρ,χ

(where Λρ,χ = (2.4.2)).

Lemma 3.1.3. — The functional θ(·,χ ) is a generator of Λ∨ρ,χ .
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Proof. — By Lemma 3.1.2, this is equivalent to the assertion that ζ (·,χ ) is a nonzero element of
Hom G×H (π

∨⊗S ′χ (V1⊗W1)⊗σ ,C). The belonging is easily verified. For the nonvanishing, it suffices
to apply ζ (·,χ ) to a triple (ϕ,φ′, f ) such that (ϕ, f )π ̸= 0 and φ′ has small support near the identity.

3.2. Test vectors, norm relations and integrality at places inM1. — Suppose that v ∈M1.

3.2.1. Definition of the Schwartz function φ•. — If P is a logical proposition, denote by

1[P ] ∈ {1= true,0= false}

its truth value (thus for the characteristic function of a set A we have 1A(x) = 1[x ∈A]). Let

φ′• := 1AutOF
(V1)
=

∑

h∈K◦/I1

hφ′(v)0 ∈S ′(V1⊗W1),

where

φ′•0 (x1) := 1



x1 =
�

x+1,+ x−1,+

x+1,− x−1,−

�

∈

 

idV +1
+ϖEnd (V +1 ) Hom (V −1 ,V +1 )

ϖHom (V +1 ,V −1 ) idV −1
+ϖEnd (V −1 )

!



 .

The stabiliser of φ′•0 under the action (3.1.2) (for χ = 1) of K◦ ⊂H =AutF (V1) is I1.
W define

(3.2.1) φ• :=Fφ′• =
∑

h∈K◦/I1

hφ•0, φ•0 :=Fφ′•0 .

The choice of φ• is motivated by Proposition 3.2.1 below.

3.2.2. Local horizontal norm relations. — We prove Proposition 2.4.5 by a computation of zeta integrals.

Proposition 3.2.1. — For ? ∈ {◦,•}, let λ? := ϕ◦⊗φ?⊗ f ◦ ∈π⊗S (V r )⊗σ . For every unramified character
χ of F ×, we have

[λ•] = L(1/2,π(χ )∨)−1 · [λ◦]

in Λρ,χ .

Proof. — By [GJ72, Lemma 6.10] and, respectively, the definition, we have

ζ (ϕ◦,φ′◦, f ◦,χ ) = L(1/2,π(χ )∨) · (ϕ◦, f ◦)π,

ζ (ϕ◦,φ′•, f ◦,χ ) = (ϕ, f )π.

By Lemma 3.1.3, this implies the desired result.

Proof of Proposition 2.4.5. — It is equivalent to Proposition 3.2.1, once noted that L(ρ∗(1)w ,χ−1
w , s) =

L(s + 1/2,π(χ )∨v ).

3.2.3. A decomposition. — We begin a study of the function φ•, with the final goal of establishing its
integrality properties.

We have

Fφ′•0 (x
+
1 , x+2 ) = 1

��

x+1,+ x+2,+

x+1,− x+2,−

�

∈
�

idV +1
+ϖEnd (V +1 ) ϖ−1End (V +2 )

ϖHom (V +1 ,V −1 ) Hom (V +2 ,V −2 )

��

·ψ(Tr(x+2,+))

=
∑

y∈Y

φ•0,y (x
+
1 , x+2 ),

where Y :=ϖ−1End (V +2 )/End (V +2 ) and

φ•0,y (x
+
1 , x+2 ) :=ψ(Tr(y)) · 1

��

x+1,+ x+2,+

x+1,− x+2,−

�

∈
�

idV +1
+ϖEnd (V +1 ) y +End (V +2 )

ϖHom (V +1 ,V −1 ) Hom (V +2 ,V −2 )

��

.
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3.2.4. Rationality. — It is clear that the functions φ•0,y take values in Q(µℓ∞), where ℓ is the rational
prime underlying v. The following lemma is not strictly necessary, but we include it for completeness.

Lemma 3.2.2. — For u ∈ Z×
ℓ

, let σu ∈Gal(Q(µℓ∞/Q)) be its image under the reciprocity map.

1. For all u ∈ Z×p , we have φ•0,y (x)
σu =φ•0,u−1y

��

1r
u1r

�

x
�

.
2. The function φ• takes values in Z.

Proof. — Part 1 follows from the relation ψ(t )σu = ψ(u−1 t ) (for all t ∈ F ) and the definitions, using the
description of the action of

�

1r
u1r

�

∈GLn(F ) ∼= H on V ⊗E W + given in (3.2.3), (3.2.4) below. From

part 1 and the definitions, since
�

1r
u1r

�

∈ K◦ it follows that Gal(Q(µ∞
ℓ
/Q)) fixes φ•; it is also clear that

the values of φ are integers.

3.2.5. Levels and integrality. — We now consider V as endowed with the dual basis b1, . . . , bn to the
standard basis of W = E n ; thus V +

1 = Span(b1, . . . , br ), V −1 = Span(br+1, . . . , bn) and the hermitian form

on V has matrix i ·
�

0r −1r

1r 0r

�

in this basis. We may then identify V ±1 = F n and H = GL(V1) =

GL(W ∨
1 ) =GLn(F ).

We will prove the follwoing more precise form of Proposition 2.4.3.

Proposition 3.2.3. — For x ∈V r , set K (v)x :=Kx ∩ ν−1(C (ϖv ))⊂Kx .

1. There exists a decomposition into Z-valued Schwartz functions with disjoint supports

φ• =φ•,:+φ•,×

such that:
– φ•,: takes values in (q − 1)Z;
– if x ∈ Spt(φ•,×), then K (v)x :=K ∩H has Galois-level at least 1.

2. For all x ∈ Spt(φ•), we have φ•(x)[Kx : K (v)x ]−1 ∈ Z.

We start by studying the stabilisers of the functions φ•0,y .

Lemma 3.2.4. — Let y ∈ Y ∼=ϖ−1Mr (OF )/Mr (OF ), and let

K ′y := {d ∈GLr (OF ) | (d
t− 1r )y ⊂Mr (OF )}.

The stabiliser Ky of φ•0,y under the action of K◦ ⊂H is the subgroup

(3.2.2)

�

1r +ϖMr (OF ) Mr (OF )
ϖMr (OF ) K ′y

�

⊃ I1.

Proof. — It is clear that I1 ⊂Ky , so computing Ky is equivalent to computing its image K y ⊂H(k).

Let h =
�

a b
c d

�

∈K◦, where a, b , c , d ∈Mr (OF ). We have

(3.2.3) h

�

x1,+ x2,+

x1,− x2,−

�

=
��

a b
c d

�

�

x1,+

x1,−

�

,

�

a′ b ′

c ′ d ′

�

�

x2,+

x2,−

�

�

where the unitarity of h means that

�

a′ b ′

c ′ d ′

�

is characterised by

(3.2.4)







atd ′− c tb ′ = 1r

d ta′− b tc ′ = 1r







b td ′− d tb ′ = 0r

c ta′+ atc ′ = 0r .
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Denote by ‘≡’ the relation of congruence modulo ϖ on free OF -modules. If h ∈ Ky , then for
�

x1,+

x1,−

�

=
�

1r

0r

�

we have

�

a b
c d

�

�

x1,+

x1,−

�

≡
�

1r

0r

�

, so that

a ≡ 1r , c ≡ 0r ,

and (3.2.4) implies

�

a′ b ′

c ′ d ′

�

≡
�

d t,−1 d t,−1b t

0r 1r

�

. From this, (3.2.3), and the definition of φ•0,y , we

see that h ∈Ky if and only if further

d t,−1y + d t,−1b t Mr (OF )⊂ y +Mr (OF ),

that is (d t− 1r )y ⊂Mr (OF ), as desired.

For y ∈ Y , write d (y) = d if the image ofϖy in GLr (k) has rank d , and let

Y× := {y ∈ Y | d (y) = r } ⊂ Y.

From Lemma 3.2.4, we deduce the following.

Lemma 3.2.5. — Suppose y ∈ Y −Y×, and let Ky := (3.2.2). The integer |Ky/I1| is a multiple of q − 1.

Proof. — Note that if d (y) = d , then the reduction K ′y ⊂ GLr (k) of K ′y is GLr (k)-conjugate to K ′d :=
�

1d Md ,r−d (k)
0r−d ,r GLr−d (k)

�

. Therefore |Ky/I1|= |K ′d |, and when d < r the determinant maps the last group

onto k×.

Remark 3.2.6. — For x ∈ Spt(φ•), it is easy to see that there is exactly one integer 0 ≤ d ≤ r such that
for some y ∈ Y with d (y) = d and some h ∈K◦, we have h ∈ Spt(hφ•0,y ). We denote this integer by d (x).

Let us identify V ⊗E W + =V r and denote a typical element by x (rather than x+). For x ∈V r , denote
V (x) = Span(x)⊥ ⊂V (an r -dimensional hermitian subspace), and let H (x) =U (V (x))⊂U (V ) =H .

We complement the result of Lemma 3.2.5 by a lower bound for the Galois-level (Definition 3.1.1)
along part of the support of φ•0,y for y ∈Y ×.

Lemma 3.2.7. — Let y ∈ Y× and let x ∈ Spt(φ•0,y ) ⊂V r . The group Kx := K◦ ∩H (x) has Galois-level at
least 1.

Proof. — The same calculations as in the proof of Lemma 3.2.4 (with the same notation ‘≡’) show that
if h ∈ Kx ⊂ H (x), so that h x = x (in particular h x

�

1r
ϖ1r

�

≡ x
�

1r
ϖ1r

�

), then h ∈ Ky = I1. Thus
det h ≡ 1.

Proof of Proposition 3.2.3. — Part 2 follows from part 1: if x ∈ Spt(φ•,:), it suffices to observe that [Kx :
K (v)x ] is obviously a divisor of q − 1 = [C (1) : C (ϖ)]; whereas if x ∈ Spt(φ•,×), we have [Kx : K (v)x ] = 1
and φ(x) ∈ O .

We now prove part 1. We have

φ• =
∑

h∈K◦/I1

∑

y∈Y

hφ•0,y =
∑

y∈Y

∑

h∈K◦/Ky

|Ky/I1| · hφ
•
0,y

=φ•,:+φ•,×
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with
φ•,: :=

∑

y∈Y−Y×

∑

h∈K◦/Ky

|Ky/I1| · hφ
•
0,y .

φ•,× :=
∑

y∈Y×

∑

h∈K◦/I1

hφ•0,y .

By Remark 3.2.6, the supports of φ•,: and φ•,× are disjoint. Both functions take values in Q by the same
argument as in Lemma 3.2.2.2, and both are clearly integral.

By Lemma 3.2.5, the function φ•,: takes values in (q − 1)Z. By Lemma 3.2.7, if x ∈ Spt(φ•,×) =
⋃

h∈K◦,y∈Y× Spt(hφ•0,y ), then K (v)x has Galois-level at least 1.

3.3. Test vectors, norm relations and integrality at places in ℘. — We suppose now that v ∈℘.

3.3.1. P-ordinary representations. — We recall two notion of ordinariness and show that they correspond
under Langlands duality.

Definition 3.3.1. — A de Rham representation ρ : GF → GLn(Qp ) is said to be Panchishkin-ordinary
(after [Nek93, § 6.7]) if there exists a short exact sequence

0→ ρ+→ ρ→ ρ−→ 0

of de Rham representations of GF with coefficients in Qp , such that

F0DdR(ρ
+) =DdR(ρ

−)/F0DdR(V
−) = 0.

We denote by Fr ∈ GF a lift of the geometric Frobenius corresponding to the chosen uniformiser ϖ.
We denote by WD(ρ) the Weil–Deligne representation over Qp attached to a de Rham representation ρ
by [Fon94] (see also [TY07, § 1]).

Remark 3.3.2. — Suppose that ρ is Panchishkin-ordinary, and put r± :=WD(ρ±)Fr-ss, where the super-
script denotes Frobenius-semisemplification. By construction, the multiset of slopes (= p-adic valuations
of eigenvalues) of Fr on r± coincides with the multiset of slopes of the [F0 : Qp]

th power of the crystalline
Frobenius on Dpst(ρ

±). In particular, we observe all eigenvalues of of Fr on r+ (respectively r−) have
strictly negative (respectively non-negative) p-adic valuation, and this condition uniquely determines r±

and ρ± (up to isomorphism).

Remark 3.3.3. — Suppose that ρ is Panchishkin-ordinary, and assume that the ȷ-Hodge–Tate weight of
detρ± is independent of ȷ : F ,→ Cp and equal to w±. Let χcyc : GF → Q×p be the cyclotomic character,
and let

(3.3.1) α := χw+
cyc · detρ+(Fr).

Since the Newton and Hodge polygons of Dpst(ρ
+) have the same endpoints, we have that α ∈ Z×p .

Denote by IndG
P the unitarily normalised induction, and denote by ξπ? the central character of a rep-

resentation π? of a general linear griup. The following definition is adapted from [Hid98].

Definition 3.3.4. — Let π be a smooth irreducible generic representation of G = GLn(F ) with coeffi-
cients in Qp . Let w+ ∈ Z≤−1, w− ∈ Z⩾0. We say that π is P-ordinary for the Hodge–Tate weights (w+,w−)
if there exists a G-equivariant surjection

(3.3.2) pπ : IndG
P (π

−⊠π+)→π

for some irreducible admissible representations π± of Gr :=GLr (F ) such that

(3.3.3) ξπ+ | · |
r/2+w+(ϖ) ∈ Z×p .
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Lemma 3.3.5. — Let ρ : GF → GLn(Qp ) be a de Rham representation. Let π be the smooth irreducible

representation of GLn(F ) over Qp that corresponds to WD(ρ) under the local Langlands correspondence,
(re)normalised so that L(ρ, s) = L(s + 1/2,π).

Suppose thatρ is Panchishkin-ordinary and the ȷ-Hodge–Tate weight of detρ± is independent of ȷ : F ,→Cp

and equal to w±.
Then π is P -ordinary for the Hodge–Tate weights (w+,w−), with π± in (3.3.2) the representation corre-

sponding to WD(ρ±) under the above local Langlands correspondence, and

α= |ϖ|r/2+w+ξπ+(ϖ).

Proof. — We freely use the theory of Bernstein–Zelevinsky and the properties of the local Langlands
correspondence as summarised for instance in [Dis20, § 2], with the notation used there. We denote by

π−1/2 : r′ 7→πu(r(−1/2)), π−1/2,ss : r′ 7→πu,ss(r
′
|WF
(−1/2))

the twists of the unitarily normalised local Langlands correspondence and, respectively, semisimple local
Langlands correspondence of loc. cit.

Let π± =π−1/2(r
±), and write π? =πu(s

?) for some multisegments s?. Since π is generic, the segments
in s can be ordered so as to satisfy the ‘does not precede’ condition above [Dis20, (2.2.1)]. By construction,
the same is true of s±, which implies that π± is generic; and, together with Remark 3.3.2, no segment in
s+ precedes a segment in s−. Now (ii) implies that the unique irreducible quotient of IndG

P (π
− ⊠π+) is

generic; and by construction, its supercuspidal support is the representation π−1/2,ss(r). But there is a
unique up to isomorphism generic irreducible representation with a given supercuspidal support. Since
π is also generic and irreducible and has supercuspidal supportπ−1/2,ss(r), we conclude that the surjection
(3.3.2) exists. The formula for α is clear.

3.3.2. The elements ϕa and f a. — We specialise back to our running assumptions, so that ρ is pure of
weight −1 and Panchishkin-ordinary with ȷ-Hodge–Tate weights {−r, . . . , r − 1} (for every ȷ : F ,→Cp );
and π is the associated P -ordinary representation of G. In the notation of the previous paragraphs, we
have w+ = −

�r
2

�

, w− =
�r−1

2

�

. Then π∨ is also P -ordinary for the weight (w+,w−) with respect to the
representations π∨,± :=π∓,∨. We note that α= q r 2/2ξπ+(ϖ) and put

α∨ := q r 2/2ξπ∨,+(ϖ) = ξ −1
π (ϖ)α ∈ Z×p .

We fix perfect parings ( , )π± : π∨,∓⊗π±→Qp .
For any s ∈ Z, we define elements of G by

t :=
�

ϖ1r

1r

�

, ws :=
�

1r

−ϖ s 1r

�

= w t s

and we put t w = w−1 t w =
�

1r
ϖ1r

�

. We also put

Ut =
∑

b∈Mr (k)

�

1r b
1r

�

t ∈ Z[G];

then for all s ′ ⩾ s ⩾ 1, the double coset operator

Is ′ t Is

acts by Ut on any smooth G-module.
We introduce the following condition, which we assume from now on:

(3.3.4) either π is unramified or π± are both supercuspidal.
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Remark 3.3.6. — The reason for imposing this technical condition is that it(s second part) appears in the
current version of [Mar.a]; it is expected to be removed in a future update.

Proposition 3.3.7. — There exist

ϕ± ∈π∨,±, f ± ∈π±, ϕord ∈π, f ord ∈π

satisfying the following conditions:

1. (ϕ−, f +)π+ = (ϕ
+, f −)π− = 1;

2. there is a constant c(π) such that the vectors ϕord, f ord are invariant under Ic(π) and satisfy

Utϕ
ord = α∨ϕord, Ut f ord = α f ord;

3. for each c ⩾ c(π), setting

ϕa
c := q c r 2

α∨,−cπ∨(wc )ϕ
ord, f a

c := q c r 2
α−cπ(wc ) f

ord,

we have, for every y± ∈GLr (F ),

(π∨(
� y+

y−

�

w−1)ϕa
c , f a

c )π = |det y+|
r/2|det y−|

−r/2 · (π∨,+(y+)ϕ
+, f −)π−(π

∨,−(y−)ϕ
−, f +)π+ .

(The superscripts ‘a’ stand for ‘anti-ordinary’.)

Proof. — Consider first the case where π± are supercuspidal. We deduce the proposition form the results
of Marcil in [Mar.a, Mar.b]. Let c(π) ⩾ 1 be the minimal integer (denoted by r in [Mar.a, Mar.b]) for
which the construction that we are about to cite can be performed. Let

f +, f −; ϕ−, ϕ+; f M
c(π) ∈π

Ic(π) , ϕM
c(π) ∈ (π

∨)I
t
c(π)

be the vectors denoted respectively

φa , φb ; µeφa ,µeφb ; ϕ, eφ

in [Mar.b, pp. 14-15] (we omit all the subscripts ‘w’ when transcribing notation from [Mar.a, Mar.b]),
where we adjust the scalar µ ∈ Q× so that (ϕ∓, f ±)π± = 1. As noted in [Mar.b, Remarks 2.8, 2.11],
the existence of such vectors, which may depend on some choices that we fix, is guaranteed under our
assumptions by [Mar.a, Theorem 4.3, Lemma 4.6].

Moreover, denote by δP :
� g+

g−

�

7→ |det g+|r |det g−|−r the modulus character of P ; then by those
results we have

Ic(π) t
−1Ic(π) f

M
c(π) = δ

−1/2
P (t )ξπ∨,+(ϖ) f M

c(π),

that is

(3.3.5) Ic(π) t
w Ic(π) f

M
c(π) = δ

−1/2
P (t )ξπ∨,−,∨(ϖ) f M

c(π) = α f M
c(π);

and similarly

(3.3.6) I t
c(π) t I t

c(π)ϕ
M
c(π) = α

∨ϕM
c(π).

Finally, by the proof of [Mar.b, Proposition 4.3]:

(3.3.7) (π∨(
� g+

g−

�

)ϕM
c , f M

c )π =µ
′
c · |det g+|

r/2|det g−|
−r/2 · (π∨,+(g+)ϕ

+, f −)π−(π
∨,−(g−)ϕ

−, f +)π+ ,

for some constant µ′c .
Let

f a
c(π) :=µ

′
c(π)
−1 · f M

c(π), ϕa
c(π) :=π

∨(w)ϕM
c(π),

f ord := w−1
c(π) f

a
c(π), ϕord := w−1

c(π)ϕ
a
c(π);
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then by the definitions and (3.3.5), (3.3.6) we have part 2; and by (3.3.7) we have part 3.
The case where π is unramified can be similarly deduced from [DL24, Proposition 3.25], by taking

c(π) = 1 and ϕa
1 = w1ϕ

ord, f a
1 = w1 f ord to be the vectors denoted respectively by ϕ∨v and ϕv in loc.

cit.

3.3.3. Schwartz functions. — Let us first introduce some notation. For a compact open subgroup J ⊂
GLr (F ) and any Haar measure dy on J , put

δJ (y) := vol(J , dy)−1 · 1J (y)

ψJ (y
′) := vol(J , dy)−1 ·

∫

J
ψ(Tr(y ty ′)) dy.

If Φ= (Φi j ) is a matrix of Qp -valued functions of the variables Xi j (viewed as the entries of a matrix X ),
we write

Φ(X ) :=
∏

i , j

Φi j (Xi j ).

Let J+ ⊂GLr (OF ), respectively J− ⊂GLr (OF ), be an open subgroup fixing ϕ+ and f −, respectively ϕ−

and f +. We fix the generator d =ϖv(d ) ∈ OF of the different ideal to be a power of ϖ. For every pair of
integers s , s ′ ⩾ 0, let(11)

(3.3.8)

φ(s ,s ′)

��

x x ′

y y ′

��

:= 1[x ty ′− y tx ′ ∈ d−1Mr (O )] ·
�

1ϖ−s d−1Mr (O ) 1ϖ−s ′Mr (O )

δϖ−s d−1J−
δϖ−s ′ J+

���

x x ′

y y ′

��

Remark 3.3.8. — This is a variant of the function φ[(s ,s ′)v ]
2,v defined before [DL24, Lemma 4.29]; more

precisely, let md :=
�

d1r

1r

�

; then, when J± =GLr (OF ), we have φ(s ,s ′) = mdφ
[(s ,s ′)v ]
v,2 .

For the next two lemmas, recall we have fixed an isomorphism between the isomorphic groups G
and H , but that they act rather differently on Sχ (V r ); thus we add a superscript ‘G’ in the notation for
Ut ∈ Z[G], and denote by U H

t ∈ Z[H ] the corresponding operator for H ; likewise for the subgroups I ?
c

of G and H .

Lemma 3.3.9. — There exists an integer c ⩾ 1 such that for all s , s ′ ⩾ 0, φ(s ,s ′) is fixed under I G
c × I H

c , and

ωχ (U
G

t )φ
(s ,s ′) = χ (ϖ)−rφ(s+1,s ′),

ωχ (U
H

t )φ
(s ,s ′) = χ (ϖ)rφ(s ,s ′+1).

Proof. — It suffices to check that φ(0,0) is fixed under N(OF )
G ×N(OF )

H ⊂G×H , which is straightfor-
ward, and the two formulas.

The first formula is verified as in [DL24, Lemma 4.29 (1)]; to compare, see Remark 3.3.8, and note that

our U G
t equals the operator md U

1w1
v m−1

d used in loc. cit.
For the second formula, by the definitions and (3.2.4), we have

U H
t φ

��

x
y

�

,
�

x ′

y ′

��

= χ (ϖ)r
∑

b∈Mr (OF /ϖ)

φ

��

ϖ−11r ϖ−1b
1r

�

�

x
y

�

,

�

1r b t

ϖ1r

�

�

x ′

y ′

�

�

.

For φ = φ(s ,s ′), it is easy to check that each term in the sum vanishes unless

�

x x ′

y y ′

�

belongs to the

support of φ(s ,s ′+1), whereas if this condition is satisfied, then the sum contains only one nonzero term,

(11)For convenience, the choices in our naming of the coordinates here are different from those of § 3.2.
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with value vol(J+)
−1vol(J−)

−1, which is the one indexed by the class

b =−xy−1 ≡ (x ′y ′−1)t ∈Mr (OF /ϖ).

Definition 3.3.10. — Let c(π) and ϕa
c , f a

c be as in Proposition 3.3.7, and let c ⩾ c(π) be the minimal
integer satisfying the conditions of Lemma 3.3.9. We define for all s ⩾ 0:

ϕa := ϕa
c ∈π, φ(s) := α−s−v(d )α∨,−s ·φ(s ,s) ∈S (V r ), f a := f a

c ∈ σ ,

λ(s) := ϕa⊗φ(s)⊗ f a.

3.3.4. Norm relations. — We prove the local form of the vertical norm relations.

Lemma 3.3.11. — For every smooth admissible G×H -moduleS , every 1≤ d ≤ c, and everyφ ∈S I G
c ×I H

c ,
we have

[ϕa⊗U G
t φ] = α · [ϕ

a⊗φ] in (π∨⊗S )G ,

[U H
t φ⊗ f a] = α∨ · [φ⊗ f a] in (S ⊗σ)H .

Proof. — For the first equality, dropping all superscripts G, we have

[ϕa⊗ Id t Idφ] = [π
∨(Id t−1Id wc )ϕ⊗φ

ord] = [π∨(Ic t−1Ic wc )ϕ
ord⊗φ]

= [π∨(wc Ic t w,−1Ic )ϕ
ord⊗φ] = ξπ∨(ϖ)

−1α∨ · [π∨(wc )ϕ
ord⊗φ] = α · [ϕa⊗φ].

The proof of the second equality is virtually identical.

Proposition 3.3.12 ( = Proposition 2.4.6). — For every open compact subgroup C ⊂ F ×, the image of λ(s)

in ΛC
ρ is independent of s ⩾ 0.

Proof. — This follows from Definition 3.3.10, Lemma 3.3.9, and Lemma 3.3.11 applied to S =Sχ (V r )
for each character χ of F ×/C .

3.3.5. Integrality

Proposition 3.3.13. — For every s ⩾ 0, we have

φ(s) ∈S (V r ,Zp,C (ϖ s ))
Ic×Ic .

Proof. — It suffices to prove that for each x ∈ Spt(φ(s)), the group Kx has Galois-level at least s (Definition
3.1.1). This is proved in [DL24, Lemma 4.36] (for a slightly different Schwartz function, but the same
proof goes through).

Proof of Proposition 2.4.3. — It follows from Propositions 3.2.3.2 and 3.3.13.

3.3.6. Local non-vanishing. — We conclude by studying the image of λ(s) in Λρ.

Proposition 3.3.14. — For every s ⩾ 0, we have

θ(λ(s)) = qv(d )r 2/2γ (1/2,π∨,+,ψ)−1.

Proof of Proposition 2.3.5, assuming Proposition 3.3.14. — We restore the notation used in the global con-
text. Denote by [λ(0)v ] the image of λ(0)v in Λρ,v . It is clear that [λ(0)v ] ̸= 0 at all v ∈ S. At v /∈ S℘, the

nontriviality of [λ(0)v ] follows from [Dis, Proposition 3.6.4]. At v ∈℘, the desired assertion follows from
Proposition 3.3.14 since γ (1/2+ s ,π∨,+

v ,ψw ) = γ (WD(ρ+w2
),ψw , s).
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In order to prove Proposition 3.3.14, we need a lemma. Let φ′ :=Fφ(0), and consider the map

(3.3.9)

g : GLr (F )×Mr (F )×Mr (F )×GLr (F )−→G =GLn(F )

g (y+, x+, x−, y−) :=
�

1 x+
1

��

y+
y−

��

1
x− 1

�

w−1.

Lemma 3.3.15. — We have

φ′(g (y+, x+, x−, y−)) = |d |
r 2/2 ·

 

ψJ+
1Mr (O )

1Mr (O ) δd−1J−

!

��

y+ x+
x− y−

��

.

Proof. — With the change of variables x ′+ = y t,−1
− x t

+y ′−+ x ′′+, we have

φ′
��

x+ y+
y− x−

��

=
∫

Mr (F )

∫

Mr (F )
φ

��

x+ x ′+
y− y ′−

��

ψ(x ′+
tx−)ψ(−y ′−

ty+) dx ′+ dy ′−

= 1d−1Mr (O )(x+)δd−1J−
(y−)

∫

Mr (F )

∫

Mr (O )
ψ((y ′−

tx+y−1
− + x ′′+

t)x−)δJ+
(y ′−)ψ(−y ′−

ty+) dx ′′+ dy ′−

= 1d−1Mr (O )(x+)δd−1J−
(y−)

∫

Mr (O )
ψ(x ′′+

tx−) dx ′′+

∫

Mr (F )
δJ+
(y ′−)ψ(y

′
−

t(x+y−1
+ x−− y+))dy ′−

= |d |r 2/21d−1Mr (O )(x+)δd−1J−
(y−)1d−1Mr (O )(x−)ψJ+

(x+y−1
− x−− y+)

= |d |r 2/2

 

1d−1Mr (O ) ψJ+

δd−1J−
1d−1Mr (O )

!

��

x+ x+y−1
− x−− y+

y− x−

��

.

Then the desired formula follows from evaluating at

g (y+, x+, x−, y−) =
�

x+y− −y+− x+y−x−
y− −y−x−

�

.

Proof of Proposition 3.3.14. — By the definitions, we have

θ(λ(s)) = θ(λ(0)) =
∫

G
(gϕa

c , f a
c )π ·φ

′(g )|det g |r d g .

We integrate over the full-measure subset that is the image of the map g = (3.3.9), for which

dg (y+, x+, x−, y−) = |det y+|
−r |det y−|

r dx− dy+ dy− dx+.

where the Haar measures dy± on Gr =GLr (F ) and dx± on Mr (F ) are normalised by assigning volume
|d |r 2/2 respectively to GLr (OF ) and Mr (OF ). Then we obtain

θ(λ(0)) =
∫

G

�

π∨
�

g (y+, x+, x−, y−)
�

ϕa, f a�

π
·φ′

�

g (y+, x+, x−, y−)
�

|det y+ det y−|
r dg (y+, x+, x−, y−)

= α−v(d )|d |r 2/2
∫

Mr (OF )

∫

GLr (F )

∫

Mr (OF )

∫

GLr (F )

�

π∨
�� 1 x+

1

� � y+
y−

�

w−1 � 1 −x−
1

��

ϕa, f a�

π

·ψJ+
(y+)δd−1J−

(y−)|det y−|
2r dx− dy+ dy− dx+.

Since ϕa and f a are both invariant under N(O ), the integrations in dx± give 1, and we get

θ(λ(0)) = α−v(d )|d |r 2/2
∫

GLr (F )

∫

GLr (F )

�

π∨
�� y+

y−

�

w−1�ϕa, f a�

π
·ψJ+
(y+)δd−1J−

(y−)|det y−|
2r dy− dy+.

By the formula for the matrix coefficient in Proposition 3.3.7, we deduce

θ(λ(0)) = Z+Z−,
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where

Z+ := |d |−r 2/2
∫

GLr (F )
(π∨,+(y+)ϕ

+, f −)π− ·ψJ+
(y+)|det y+|

r/2 dy+,

Z− := α−v(d )|d |r 2
∫

GLr (F )
(π∨,−(y−)ϕ

−, f +)π+δd−1J−
(y−)|det y−|

3r/2 dy−.

Since α= |ϖ|r 2/2ξπ+(ϖ), we have

Z− = |d |
r 2
α−v(d )ξπ∨,−(d−1)|d |3r 2/2 = 1;

whereas by the Godement–Jacquet functional equation ([Jac79, Proposition 1.2 (3)], which has a typo
corrected in (1.3.7) ibid.),

|d |r 2/2 ·Z+ = γ (1/2,π∨,+,ψ)−1
∫

GLr (F )
(ϕ+,π−(y+) f

−)π−δJ+
(y+)|det y+|

r/2 dy+ = γ (1/2,π∨,+,ψ)−1.

This completes the proof.
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