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Abstract. — The formula of the title relates p-adic heights of Heegner points and derivatives of p-adic L-functions.
It was originally proved by Perrin-Riou for p-ordinary elliptic curves over the rationals, under the assumption that
p splits in the relevant quadratic extension. We remove this assumption, in the more general setting of Hilbert-
modular abelian varieties.
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1. Introduction and statement of the main result

The p-adic Gross–Zagier formula of Perrin-Riou relates p-adic heights of Heegner points and deriva-
tives of p-adic L-functions. In its original form [PR87], it concerns (modular) elliptic curves over Q, and
it is proved under two main assumptions: first, that the elliptic curve is p-ordinary; second, that p splits
in the field E of complex multiplications of the Heegner points. The formula has applications to both the
p-adic and the classical Birch and Swinnerton-Dyer conjecture.

FIGURE 1. A road sign in Croatia.

The first assumption was removed by Kobayashi [Kob13] (see also [BPS]). The purpose of this work
is to remove the second assumption.

We work in the context of [I], which will enable us in [Dis/c] to deduce, from the formula presented
here, the analogous one for higher-weight (Hilbert-) modular motives, as well as a version in the univer-
sal ordinary family with some new applications. Nevertheless, the new idea we introduce is essentially
orthogonal to previous innovations, including those of [I] (and in fact it can be applied, at least in princi-
ple, to the non-ordinary case as well). For this reason we start in § 1.1 by informally discussing it in the
simplest classical case of elliptic curves over Q. The general form of our results is presented in § 1.2.

1.1. The main ideas in a classical context. — Classically, Heegner points on the elliptic curve A/Q are
images of CM points (or divisors) on a modular curve X , under a parametrisation f : X → A. More
precisely, choosing an imaginary quadratic field E , for each ring class character χ : Gal(E/E)→Q

×
, one

can construct a point P ( f ,χ ) ∈ AE (χ ), the χ -isotypic part of A(E)Q. The landmark formula of Gross–
Zagier [GZ86] relates the height of P ( f ,χ ) to the derivative L′(AE ⊗χ , 1) of the L-function of a twisted
base-change of A. The analogous formula in p-adic coefficients(1)

(1.1.1) 〈P ( f ,χ ), P ( f ,χ−1)〉 .=
d
d s |s=0

Lp (AE ,χ ·χ s
cyc)

relates cyclotomic derivatives of p-adic L-functions to p-adic height pairings 〈 , 〉. We outline its proof for
p-ordinary elliptic curves.

(1)We denote by ‘ .=’ equality up to a less important nonzero factor.
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Review of Perrin-Riou’s proof. — Our basic strategy is still Perrin-Riou’s variant of the one of Gross–
Zagier; we briefly and informally review it, ignoring, for simplicity of exposition, the role of the char-
acter χ . Throughout the following discussion, we include pointers to corresponding statements in the
main body of the paper, as guideposts meant to assist the reader’s navigation through the more technical
framework used there.

Denoting by ϕ the ordinary eigenform attached to A, each side of (1.1.1) is expressed as the image under
a functional “ p-adic Petersson product with ϕ”, denoted by `ϕ = (3.1.6), of a certain kernel function (a
p-adic modular form).

For the left-hand side of (1.1.1), the form in question is the generating series (cf. (3.3.4))

(1.1.2) Z =
∑

m≥1

〈P 0,Tm P 0〉X qm =
∑

v
Zv ,

where P 0 ∈ Div0(X ) is a degree-zero modification of the CM point P ∈X , 〈 , 〉X is a p-adic height pairing
on X compatible with the one on A, and the decomposition (1.1.2) into a sum running over all the finite
places of Q (cf. (3.6.1)) follows from a general decomposition of the global height pairing into a sum of
local ones. More precisely, global height pairings are valued in the completed tensor product H×\H×A∞⊗̂L
of the finite idèles of the Hilbert class field H of E , and of a suitable finite extension L of Qp . The series
Zv collects the local pairings at w|v, each valued in H×w ⊗̂L.

The analytic kernel I ′ giving the right-hand side of (1.1.1) is the derivative of a p-adic family of mixed
theta-Eisenstein series (cf. (3.2.5)). It also enjoys a decomposition

I ′ =
∑

v 6=p

I ′v

where, unlike (1.1.2), the sum runs over the finite places of Q different from p (cf. (3.5.2)). Once estab-
lished that Zv

.= I ′v for v 6= p by computations similar to those of Gross–Zagier (cf. Theorem 3.6.1), it
remains to show that the p-adic modular form Zp is annihilated by `ϕ (cf. Proposition 3.6.2).

In order to achieve this, one aims at showing that, after acting on Zp by a Hecke operator to replace P 0

by P [ϕ] (a lift of the component of its image in the ϕ-part of Jac(X )), the resulting form Z [ϕ]p is p-critical
(cf. Proposition 3.6.3). That is, its coefficients

am p s := 〈P [ϕ],Tm p s P 0〉X , p

decay p-adically no slower than a constant multiple of p s . The p-shift of Fourier coefficients extends the
action on modular forms of the operator Up – which in contrast acts by a p-adic unit on the ordinary
form ϕ: this implies that p-critical forms are annihilated by `ϕ.

To study the terms am p s , one constructs a sequence of points Ps ∈ XH whose fields of definitions are
the layers Hs of the anticyclotomic p∞-extension of E . The relations they satisfy allow to express

am p s = 〈P [ϕ], Dm,s 〉X , p ,

where Dm,s is a degree-zero divisor supported at Hecke-translates of Ps , which are all essentially CM
points of conductor p s defined over Hs (cf. Proposition 4.1.4). By a projection formula for XHs

→ XH ,
the height am p s is then a sum, over primes w of H above p, of the images

Ns ,w (hm,s ,w )

of heights hm,s ,w computed on XHs ,w
, under the norm map Ns ,w : H×s ,w⊗̂L→ H×w ⊗̂L. Moreover it can be

shown that the L-denominators of hm,s ,w ∈ H×s ,w⊗̂L are uniformly bounded (cf. Proposition 4.4.1), so
that here we may ignore them and think of hm,s ,w ∈H×s ,w⊗̂OL.
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A simple observation from [I] is that the valuation w(hm,s ,w ) equals

(1.1.3) mXHw
(P [ϕ], Dm,s ),

the intersection multiplicity of the flat extensions (§ 4.2) of those divisors to some regular integral model
X of XHw

. In the split case, it is almost immediate to see that this intersection multiplicity vanishes. This
implies that

(1.1.4) Ns ,w (hm,s ) ∈Ns ,w (O
×
Hs ,w
)⊗̂OL ⊂H×w ⊗̂OL.

Since the extension Hs ,w/Hw is totally ramified of degree p s , the subset in (1.1.4) is p s (O ×Hw
⊗̂OL) ⊂

p s (H×w ⊗̂OL), as desired.

The nonsplit case. — In the nonsplit case, the p-adic intersection multiplicity has no reason to vanish.
However, the above argument will still go through if we more modestly show that (1.1.3) itself decays
at least like a multiple of p s (cf. Lemma 4.4.3). The idea to prove this is very simple: we show that if s
is large then, for the purposes of computing intersection multiplicities with other divisors D on X , the
Zariski closure of a CM point of conductor at least p s can almost be approximated by some irreducible
component V of the special fibre ofX ; hence the multiplicity will be zero if D arises as a flat extension
of its generic fibre. The qualifier ‘almost’ means that the above holds except if |D| contains V itself, which
will be responsible for a multiplicity error term equal to a constant multiple of p s .

The approximation result, Proposition 4.3.3, is precisely formulated in an (ultra)metric space of irre-
ducible divisors on the local ring of a regular arithmetic surface, which we introduce following a recent
work of García Barroso, González Pérez and Popescu-Pampu [GBGPPP18]. The proof of the result is
also rather simple (albeit not effective), relying on Gross’s theory of quasicanonical liftings [Gro86]. The
problem of effectively identifying the approximating divisor V is treated in [Dis/a].

Subtleties. — The above description ignores several difficulties of a relatively more technical nature, most
of which we deal with by the representation-theoretic approach of [I] (in turn adapted from Yuan–Zhang–
Zhang [YZZ12]). Namely, we allow for arbitrary modular parametrisations f , resulting into an extra
parameter φ in the kernels Z and I ′. By representation-theoretic results, one is free to some extent to
choose the parameter φ to work with without losing generality. A fine choice (or rather a pair of choices)
for its p-adic component is dictated by the goal of interpolation, while imposing suitable conditions on
its other components allows to circumvent many obstacles in the proof.

1.2. Statement. — We now describe our result in the general context in which we prove it – which is
the same as that of [I] (and [YZZ12]), to which we refer for a less terse discussion of the background. (At
some points, we find some slightly different formulations or normalisations from those of [I] to be more
natural: see § 2.2 for the equivalence.)

Abelian varieties parametrised by Shimura curves. — Let F be a totally real field and let A/F be a simple
abelian variety of GL2-type. Assume that L(A, s) is modular (this is known in many case if A is an elliptic
curve). Let B be a quaternion algebra over the adèles A = AF of F , whose ramification set ΣB has odd
cardinality and contains all the infinite places. To B is attached a tower of Shimura curves (XU/F )U⊂B∞× ,
with respective Albanese varieties JU . It carries a canonical system of divisor classes ξU ∈ Cl(XU )Q of
degree 1, providing a system ιξ of maps ιξ ,U ∈Hom F (XU , JU )Q defined by P 7→ P − deg(P )ξU .

The space
π=πA,B = lim−→

U

Hom 0(JU ,A)

is either zero or a smooth irreducible representation of B× (trivial at the infinite places), with coefficients in
the number field M := End 0(A). We assume we are in the case π=πA,B 6= 0, which under the modularity
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assumption and the condition (1.2.2) below can be arranged by suitably choosing B. Then for all places
v -∞, Lv (A, s) = Lv (s−1/2,π) in M⊗C. We denote byω : F ×\A×→M× the central character ofπ. We
have a canonical isomorphismπA∨,B

∼=π∨A,B, see [YZZ12, §1.2.2], and we denote by ( , )π : πA,B⊗πA∨,B→
M the duality pairing.

Heegner points. — Let E/F be a CM quadratic extension with associated quadratic character η, and assume
that E admits an A-embedding EA ,→ B, which we fix. Then E× acts on the right on X = lim←−U

XU . The

fixed-points subscheme X E× ⊂X is F -isomorphic to Spec E ab, and we fix a point P ∈X E×(E ab). Let

χ : E×\E×A∞ ∼=Gal(E ab/E)→ L(χ )×

be a character valued in a field extension of L(χ )⊃M , satisfying

ω ·χ|A∞× = 1,

and let
AE (χ ) := (A(E

ab)⊗M L(χ )χ )
Gal(E ab/E),

where L(χ )χ is an L(χ )-line with Galois action by χ .
Then we have a Heegner point functional

(1.2.1) f 7→ P ( f ,χ ) :=−
∫

Gal(E ab/E)
f (ιξ (P )

τ)⊗χ (τ)dτ ∈AE (χ )

(integration for the Haar measure of volume 1) in the space of invariant linear functionals

H(πA,B,χ )⊗L(χ ) AE (χ ), H(π,χ ) :=Hom E×A
(π⊗χ , L(χ ))

where E×A acts diagonally. There is a product decomposition H(π,χ ) =
⊗

v H(πv ,χv ), where similarly
H(πv ,χv ) :=Hom E×v (πv ⊗χv , L(χ )).

A local unit of measure for invariant functionals. — By foundational local results of Waldspurger, Tunnell,
and Saito, the dimension of H(π,χ ) (for any representation π of B×) is either 0 or 1. If A is modular and
the global root number

(1.2.2) ε(AE ⊗χ ) =−1

then the set of local root numbers determines a unique quaternion algebra B over A, satisfying the con-
ditions required above and containing EA, such that πA,B 6= 0 and dimL(χ )H(πA,B,χ ) = 1.(2) We place
ourselves in this case; then there is a canonical factorisable generator

Q(,),d t =
∏

v
Q(,)v ,d tv

∈H(π,χ )⊗H(π∨,χ−1)

depending on the choice of a pairing (, ) =
∏

v (, )v : π ⊗ π∨ → L(χ ) and a measure d t =
∏

v d tv on
E×A /A

×. It is defined locally as follows. Let us use symbols V(A,χ ) and V(A,χ ),v , which we informally think
of as denoting (up to abelian factors) the ‘virtual motive over F with coefficients in L(χ )’

“V(A,χ ) =ResE/F (h1(AE )⊗χ )	 ad(h1(A)(1))”

and its local components (the associated local Galois representation or, if v is archimedean, Hodge struc-
ture). Then we let, for each place v of F and any auxiliary ι : L(χ ) ,→C,(3)

L (ιV(A,χ ),v , s) :=
ζF ,v (2)L(1/2+ s , ιπE ,v ⊗ ιχv )

L(1,ηv )L(1, ιπv , ad)
·







1 if v is finite

π−1 if v |∞
∈ ιL(χ ),(1.2.3)

(2)If ε(AE ⊗χ ) = +1 there is no such quaternion algebra and all Heegner points automatically vanish.
(3)Explicitly, if v is archimedean we haveL (V(A,χ ),v , 0) = 2 and Q(,)v ,d tv

( f1,v , f2,v ) = 2−1vol(C×/R×, d tv )( f1,v , f2,v ).
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Q(,)v ,d tv
( f1,v , f2,v ,χv ) := ι

−1L (ιV(A,χ ),v , 0)−1
∫

E×v /F ×v

χ (tv )(πv (tv ) f1,v , f2,v )v d tv .(1.2.4)

We make the situation more canonical by choosing d t =
∏

v d tv to satisfy

vol(E×\E×A /A
×, d t ) = 1

and by defining, for any f3 ∈π, f4 ∈π∨ such that ( f3, f4) 6= 0,

(1.2.5) Q
�

f1⊗ f2
f3⊗ f4

;χ
�

:=
Q(,),d t ( f1, f2,χ )

( f3, f4)
.

p-adic heights. — Let us fix a prime p of M and denote by p the underlying rational prime. Suppose from
now on that for each v |p, AFv

has p-ordinary (potentially good or semistable) reduction. That is, that for
a sufficiently large finite extension L ⊃ Mp, the rational p-Tate module Wv := Vp A⊗M L is a reducible

2-dimensional representation of Gal(F v/Fv ):

(1.2.6) 0→W +
v →Wv →W −

v → 0.

Fix such a coefficient field L, and for each v |p let αv : F ×v ∼= Gal(F ab
v /Fv )→ L× be the character giving

the action on the twist W +
v (−1). The field L(χ ) considered above will from now on be assumed to be an

extension of L. Under those conditions there is a canonical p-adic height pairing

〈 , 〉 : AE (χ )⊗A∨E (χ
−1)→ ΓF ⊗̂L(χ ),

where ΓF :=A×/F × ÒO p,×
F (the bar denotes Zariski closure). It is normalised ‘over F ’ as in [I, §4.1].

For f1, f3 ∈ π, f2, f4 ∈ π∨, and P∨ : π∨⊗χ → A∨E (χ
−1) the Heegner point functional of the dual, our

result will measure the ratio 〈P ( f1,χ ), P∨( f2,χ−1)〉/( f3, f4)π, against the value at the fi of the ‘unit’ Q.
The size will be given by the derivative of the p-adic L-function that we now define.

The p-adic L-function. — We continue to assume that A is p-ordinary, and review the definition of the
p-adic L-function from [I, Theorem A] (in an equivalent form). We start by defining the space on which
it lives. Write ΓF = lim←−n

ΓF ,n as the limit of an inverse system of finite groups, and let

(1.2.7) Y l.c.
F :=

⋃

n

Spec L[ΓF ,n] ⊂ YF := SpecOLJΓF K⊗OL
L.

ThenYF is a space of continuous characters on ΓF , and the 0-dimensional ind-schemeY l.c.
F is its subspace

of locally constant (finite-order) characters.
For a character χ ′ : Gal(E ab/E)→ L′× together with an embedding ι : L′→C, we shall interpolate the

ratio of complete L-functions

L (ιV(A,χ ′), s) :=
∏

v
L (ιV(A,χ ′),v , s), L (ιV(A,χ ′),v , s) = (1.2.3), ℜ(s)� 0

where the product runs over all places of F .
We now define the p-interpolation factors for the p-adic L-function. First, recall that the (inverse)

Deligne–Langlands gamma factor of a Weil–Deligne representation W ′ of Gal(F v/Fv ) over a p-adic field
L′, with respect to a nontrivial character ψv : Fv →C× and an embedding ι : L′ ,→C, is defined as(4)

γ (W ′,ψv )
−1 :=

L(W ′)
ε(W ′,ψv )L(W ∗(1))

.

Let ψ =
∏

v ψv : F \A→ C× be the standard additive character such that ψ∞(·) = e2πiTrF∞/R(·); let ψE =
∏

w ψE ,w = ψ ◦ TrAE/A
. For a place v |p of F , let dv be a generator of the different ideal of Fv . For a

(4)The terms L and ε are normalised as in [Tat79].
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character χ ′ : Gal(E/E)→C×, we define

(1.2.8) ev (V(A,χ ′)) = |dv |
−1/2

∏

w|v γ (ιWD(W +
v |GE ,w

⊗χ ′w ),ψE ,w )
−1

γ (ιWD(ad(Wv )(1))++,ψv )−1
·L (V(A,χ ′),v )

−1,

where where ad(Wv )(1)
++ :=Hom (W −

v ,W +
v )(1) =ω

−1
v α

2
v | |2v , and ιWD is the functor from potentially

semistable Galois representations to complex Weil–Deligne representations of [Fon94].

Theorem A. — There is a function
Lp (V(A,χ )) ∈ O (YF )

characterised by the following property. For each complex geometric point s = χF ∈Y l.c.
F (C), with underlying

embedding ι : L(χF ) ,→C,

Lp (V(A,χ ), s) = ιep (V(A,χ ′)) ·L (ιV(A,χ ′), 0), χ ′ := χ ·χF |Gal(E/E),

where ep (V(A,χ ′)) :=
∏

v |p ev (V(A,χ ′)).

The factor ep (V(A,χ ′)) coincides with the one predicted by Coates and Perrin-Riou (see [Coa91]) for
V(A,χ ′) (their conjecture motivates the denominator terms in (1.2.8), which are constants), up to the re-
moval of a trivial zero from their interpolation factor for ad(Wv )(1).

The p-adic Gross–Zagier formula. — We are almost ready to state our main result. Denote by 0 ∈ YF the
point corresponding to χF = 1, and let

L ′p (V(A,χ ), 0) := dLp (V(A,χ ), 0) ∈ T0YF
∼= ΓF ⊗̂L(χ ).

We say that χp is sufficiently ramified if it is nontrivial on a certain open subgroup of O ×E , p depending
only onωp (see Assumption 3.4.1 below for the precise definition and a comment).

Theorem B. — Suppose that the abelian variety A/F is modular and that for all v |p, the Gal(F v/Fv )-
representation VpA is ordinary and potentially crystalline. Let χ : Gal(E ab/E) → L(χ )× be a finite-order
character satisfying

ε(AE ⊗χ ) =−1,

and suppose that χp sufficiently ramified.
Then for any f1, f3 ∈π, f2, f4 ∈π∨ such that ( f3, f4)π 6= 0, we have

〈P ( f1,χ ), P∨( f2,χ−1)〉
( f3, f4)π

= ep (V(A,χ ))
−1 ·L ′p (V(A,χ ), 0) ·Q

�

f1⊗ f2
f3⊗ f4

;χ
�

in ΓF ⊗̂L(χ ).

Remark 1.2.1. — The technical assumptions that χp is sufficiently ramified and that VpA is potentially
crystalline(5) are removed by p-adic analytic continuation in [Dis/c, Theorem B], and replaced by the
(necessary) assumption that that χp is not exceptional for A, that is ep (V(A,χ )) 6= 0 (which in our case is
implied by the potential crystallinity).

Note that for the removal of the former assumption, one only needs the anticyclotomic formula anal-
ogous to [I, Theorem C.4], and not the full generality of the multivariable formula in [Dis/c, Theorem
D].

Remark 1.2.2. — Concrete versions of the formula of Theorem B may be obtained by choosing explicit
parametrisations fi and evaluating the term Q. This is a local problem, solved in [CST14]. In particular,
by starting from Theorem B (as generalised to all characters following Remark 1.2.1) and applying the
same steps as in the proofs of [Dis20, Theorems 4.3.1, 4.3.3], we obtain the simple p-adic Gross–Zagier

(5)An assumption of this sort is equally necessary in the proof of the main theorem of [I], see Appendix B.
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formula in anticyclotomic families for elliptic curves A/Q proposed in [Dis20, Conjecture 4.3.2], and
similarly the direct analogue(6) of Perrin-Riou’s original result in [PR87].

The theorem has familiar applications extending to the nonsplit case those from [I] (when the other
ingredients are available); we leave their formulation to the interested reader, and highlight instead an
application specific to this case pointed out in [Dis20], as well as a new application to the non-vanishing
conjecture for p-adic heights.

A new proof of a result of Greenberg–Stevens. — As noted in [Dis20, Remark 5.2.3], the anticylcotomic
formula indicated in the previous remark, combined with a result of Bertolini–Darmon, gives yet another
proof (quite likely the most complicated so far, but amenable to generalisations) of the following famous
result of Greenberg and Stevens [GS93]. If A/Q is an elliptic curve of split multiplicative reduction at p,
with Néron period ΩA and p-adic L-function Lp (A,−) on YQ, then Lp (A,1) = 0 and

(1.2.9) L′p (A,1) = λp (A) ·
L(A, 1)
ΩA

,

where λp (A) is theL -invariant of Mazur–Tate–Teitelbaum [MTT86].
We recall a sketch of the argument, referring to [Dis20] for more details. One chooses an imaginary

quadratic field E such that p is inert in E and that the twist A(E) satisfies L(A(E), 1) 6= 0. By the anticy-
clotomic p-adic Gross–Zagier formula, L′p (AE ,1) is the value at χ = 1 of the height of an anticyclotomic
familyP of Heegner points. It is shown in [BD01, §5.2] that the valueP (1) equals, in an extended Selmer
group, the Tate parameter qA, p of AQp

multiplied by a square root of L(AE , 1)/ΩAE
. The height of qA, p ,

in the ‘extended’ sense of [MTT86, Nek06], essentially equals λp (A). This shows that, after harmlessly
multiplying by L(A(E), 1)/ΩA(E) , the two sides of (1.2.9) are equal.

Exceptional cases and non-vanishing results. — Suppose that A/Q has multiplicative reduction at a prime
p inert in E , and that L(AE , 1) 6= 0. Then for all but finitely many anticyclotomic characters χ of p-power
conductor, a Heegner point in AE (χ ) is nonzero and the p-adic height pairing on AE (χ ) is nondegenerate. This
follows from noting, similarly to the above, that in the p-adic Gross–Zagier formula in anticyclotomic
families for AE , both sides are nonzero since the heights side specialises, at the character χ = 1, to a
nonzero multiple of λp (A), which is in turn nonzero by [BSDGP96].

A similar argument, applied to the formula in Hida families of [Dis/c], will yield the following result:
if A/Q is an elliptic curve with multiplicative reduction and L(A, 1) 6= 0, then the Selmer group of the
selfdual Hida family f through A has generic rank one, and both the height regulator and the cyclotomic
derivative of the p-adic L-function of f do not vanish. The details will appear in [Dis/c].

1.3. Organisation of the paper. — In § 2, we restate our theorems in an equivalent form, direct gener-
alisation of the statements from [I] (up to a correction involving a factor of 2, discussed in Appendix B). In
§ 3 we recall the proof strategy from [I], with suitable modifications and corrections. The new argument
to treat p-adic local heights in the nonsplit case is developed in § 4.

We conclude with two appendices, one dedicated to some local results, the other containing a list of
errata to [I].

2. Comparison with [I]

We compare Theorems A and B with the corresponding results from [I]. We continue with the setup
and notation of § 1.2.

(6)Of course, this is a long detour to get there; readers interested exclusively in the removal of the ‘ p splits’ assumption from Perrin-
Riou’s formula, or from its analogue over totally real fields, may prefer to try and insert the new argument of the present paper into
Perrin-Riou’s proof, or respectively into [Dis15].
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2.1. The p-adic L-function. — We deduce our Theorem A from [I, Theorem A].
Let σ∞ be the nearly p-ordinary, M -rational ([I, Definition 1.2.1]) representation of GL2(A) attached

to A as in [I]. In Theorem A ibid. we have constructed a p-adic L-function

Lp,α(σE ),

which is a bounded function on a rigid space Y ′rig
/L (denoted by Y ′ in [I]). In the construction of loc.

cit. (and in all this paper), we use the same additive character ψp =
∏

v |p ψv as in Theorem A; see the
correction in Appendix B for the exact ring of definition of Lp,α(σE ).

The spaceY ′rig =Y ′rig
ω,V p parametrises certain continuous p-adic characters of E×\E×A invariant under

an arbitrarily fixed compact open subgroup V p ⊂ E×Ap∞ . The boundedness means precisely that we may
(and do) identify Lp,α(σE ) with a function on a corresponding scheme

(2.1.1) Y ′ ⊂ SpecOLJE×\E×A∞/V
pK⊗ L,

that, when also viewed as a space of characters χ ′, is the subscheme cut out by the closed condition
ω ·χ ′

|ÒO p,×
F

= 1. Similarly to YF , the scheme Y ′ contains a 0-dimensional subscheme Y ′l.c. parametrising

the locally constant characters in Y ′. The function Lp,α(σE ) is characterised by the following property.
Denote by DK the discriminant of a number field K . Then at all χ ′ ∈ Y ′ with underlying embedding
ι : L ,→C, we have

(2.1.2) Lp,α(σE )(χ
′) =

∏

v |p
Z◦v (χ

′
v ,ψv ) ·

π2[F :Q]|DF |1/2

2ζF (2)
·L (ιV(A,χ ′))

for certain local factors Z◦v .
Fix a finite-order character

χ : E×\E×A∞ ∼=Gal(E ab/E)→ L(χ )×

satisfyingω ·χ|A∞× = 1, and consider the map

jχ : YF →Y
′

χF 7→ χ ·χF ◦NEA∞×/A∞×
.

Proof of Theorem A. — Let

(2.1.3) C (χ ′p ) :=
ep (V(A,χ ′))

∏

v |p Z◦v (χ ′v ,ψv )
.

We show in Proposition A.1.2 that this is a constant in C ∈ L, independent of χ ′p .
Define

(2.1.4) Lp (V(A,χ )) :=
2ζF (2)

π2[F :Q]|DF |1/2
·C · L(1,σv , ad) · j ∗χ Lp,α(σE )

a function in O (YF ). It is clear from the definition and (2.1.2) that it satisfies the required interpolation
property.

2.2. Equivalence of statements. — We now restate Theorem B in a form that directly generalises [I,
Theorem B]. It is the form in which we will prove it, for convenience of reference.

We retain the setup of § 1.2. Let dF be the ΓF -differential defined before [I, Theorem B]. For all v -∞
let d tv be the measure on E×v /F ×v specified in [I, paragraph after (1.1.2)] if v -∞ and the measure giving
C×/R× volume 2 if v |∞.
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Theorem 2.2.1. — Retain the assumptions of Theorem B, and fix a decomposition (, )π =
∏

v (, )v , with
(1,1)v = 1 if v |∞. Then for all f1 ∈π, f2 ∈π∨,

(2.2.1) 〈P ( f1,χ ), P∨( f2,χ−1)〉= cE ·
∏

v |p
Z◦v (χv )

−1 · dF Lp,α(σA,E )(χ ) ·
∏

v -∞Q(,)v ,d tv
( f1, f2,χ )

in ΓF ⊗̂L(χ ), where

cE :=
ζF (2)

(π/2)[F :Q]|DE |1/2L(1,η)
∈Q×.

Lemma 2.2.2. — Theorem 2.2.1 is equivalent to Theorem B. When every prime v |p splits in E, it specialises
to [I, Theorem B] as corrected in Appendix B.

Proof. — The second assertion is immediate; we prove the first one. First, we note that (2.2.1) is equivalent
to

(2.2.2)
〈P ( f1,χ ), P∨( f2,χ−1)〉

( f3, f4)π
= cE ·

∏

v |p
Z◦v (χv )

−1 · dF Lp,α(σA,E )(χ ) · 2
−[F :Q]

∏

v

Q(,)v ,d tv
( f1, f2,χ )

( f3,v , f4,v )v

for any f3 ∈ π, f4 ∈ π∨ with f3,∞ = f4,∞ = 1 and ( f3, f4)π 6= 0 (the extra power of 2 comes from the
archimedean places). The left-hand side of (2.2.2) is the same as that of the formula of Theorem B, and
the product of the terms after the L-derivative in its right-hand side equals

2−[F :Q]
∏

v d tv

d t
·Q

�

f1⊗ f2
f3⊗ f4

;χ
�

= 21−[F :Q]|DE/F |
1/2|DF |

1/2π−[F :Q]L(1,η) ·Q
�

f1⊗ f2
f3⊗ f4

;χ
�

,

because the measure
∏

v d tv (respectively d t ) gives E×\A×E /A
× volume 2|DE/F |1/2|DF |1/2π−[F :Q]L(1,η)

(respectively 1).
Next, we have dF Lp,α(σE )(χ ) =

1
2 d( j ∗χ Lp,α(σE ))(1), and it is clear from comparing the interpolation

properties that

∏

v |p
Z◦v (χv )

−1 · 1
2

d
�

j ∗χ Lp,α(σE )
�

(1) =
π2[F :Q]|DF |1/2

2ζF (2)
· ep (V(A,χ ))

−1 ·L ′p (V(A,χ ), 0).

It follows that the right hand side of (2.2.1) equals c · ep (V(A,χ ))
−1 ·L ′p (V(A,χ ), 0) ·Q

�

f1⊗ f2
f3⊗ f4

;χ
�

, where

c = cE ·
π2[F :Q]|DF |1/2

2ζF (2)
· 21−[F :Q]|DE/F |

1/2|DF |
1/2π−[F :Q]L(1,η) = 1.

3. Structure of the proof

We review the formal structure of the proof in [I], dwelling only on those points where the arguments
need to be modified or corrected. For an introductory description with some more details than given in
§ 1.1, see [I, §1.7]. Readers interested in a detailed understanding of the present section are advised to keep
a copy of [I] handy.

3.1. Notation and setup. — We very briefly review some notation and definitions from [I], which will
be used throughout the paper.

Galois groups. — If K is a perfect field, we denote by GK :=Gal(K/K) its absolute Galois group.

Local fields. — For v finite a place of F , we denote by $v a fixed uniformiser and by qF ,v the cardinality
of the residue field of Fv . We denote by dv a generator of the absolute different of Fv , by Dv a generator
of the relative discriminant of Ev/Fv (equal to 1 unless v ramifies in E ), and by ev the ramification degree
of Ev/Fv . If w|v is a place of E , we denote by qv : Ev → Fv and qw : Ew → Fv the relative norm maps.
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We denote by ψ=
∏

v ψv : F \A→C× the additive character fixed before Theorem A.

Base-change of rings and schemes. — If R is a ring, R′ is an R-algebra, M is an R-module and S is an R-scheme,
we denote MR′ =M ⊗R R′, SR′ = S ×Spec R Spec R′.

Groups, measures, integration. — We adopt the same notation and choices of measures as in [I, §1.9], in-
cluding a regularised integration

∫ ∗. In particular T := ResE/F Gm,E , Z =Gm,F , and on the adelic points
of T /Z we use two measures d t (the same as introduced above Theorem 2.2.1) and d ◦ t . The measure
denoted by d t in the introduction will not be used.

Operators at p. — Let v |p be a place of F . We denote by $v a fixed uniformiser at v. For r ≥ 1 we let
K1

1 ($
r
v )⊂GL2(OF ,v ) be the subgroup of matrices which become upper unipotent upon reduction modulo

$ r . We denote by

Uv,∗ =K1
1 ($

r
v )
�

1
$−1

v

�

K1
1 ($

r
v ), U∗v =K1

1 ($
r
v )
�

$ r

1

�

K1
1 ($

r
v ),

the usual double coset operators, and by

wr,v :=
�

1
−$ r

v

�

∈GL2(Fv ).

We also let wr :=
∏

v |p wr,v ∈ GL2(Fp ) and, if (βv )v |p are characters of F ×v , we denote βp ($) :=
∏

v |p βv ($v ).

Spaces of characters. — We denote byYF ,Y ′,Y respectively the schemes over L defined in (1.2.7), (2.1.1)
and the subscheme ofY cut out by the condition χ|A∞× =ω

−1. We add to this notation a superscript ‘l.c.’
to denote the ind-subschemes of locally constant characters (which has a model over a finite extension of
M in L).

Let IY /Y ′ be the ideal sheaf of Y ⊂Y ′. IfM is a coherent OY ′ -module, we denote

dF :M ⊗OY ′ IY /Y ′ →M ⊗OY ′ IY /Y ′/I
2
Y /Y ′ =M|Y ⊗̂ΓF

the normal derivative (cf. the definition before [I, Theorems B].)

Kirillov models. — Let σ∞ =
⊗

v -∞σv be the M -rational automorphic representation of GL2(A) attached
to A, and denote abusively still by σ∞ its base-change to L. For every place v the representations σv of
B×v and πv of GL2(Fv ) are Jacquet–Langlands correspondents.

For v |p, we denote by
Kψv

: σv →C∞(F ×v , L)

a fixed rational Kirillov model.

Orthogonal spaces. — We let V := B equipped with the reduced norm q , a quadratic form valued in A.
The image of EA is a subspace V1 ot the orthogonal space V, and we let V2 be its orthogonal complement.
The restriction q|V1

is the adelisation of the norm of E/F .

Schwartz spaces and Weil representation. — If V′ is any one of the above spaces, we denote byS (V′×A×) =
⊗′

vS (V′v × F ×v ) the Fock space of Schwartz functions considered in [I]. (This differs from the usual
Schwartz space only at infinity.) There is a Weil representation

r = rψ : GL2(A)×O(V, q)→ EndS (V×A×),

defined as in [I, §3.1]. The orthogonal group of V naturally contains the product T (A)×T (A) acting by
left and right multiplication on V. The Weil representation also depends on a choice of additive characters
ψ. The restriction r|T (A)×T (A) preserves the decomposition V1⊕V2, hence it accordingly decomposes as
r1⊕ r2.
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Special data at p. — We list the functions at the places v |p that we use.
Define

(3.1.1) Wv (y) := 1OF ,v−0(y)|y|vαv (y),

the ordinary vector in the fixed Kirillov modelKψv
of σA,v . We consider

(3.1.2) ϕv = ϕv,r :=K −1
ψv
(αv ($v )

−r wr Wv ) ∈ σv .

Now we consider Schwartz functions. We let

Bv
∼=M2(Fv )

be the indefinite quaternion algebra over Fv ; this choice is justified a posteriori by Corollary A.2.3. The
following choices of functions correct and modify the ones fixed in [I] (cf. the Errata in Appendix B);
note in particular that we will use two different functions on V2,v .

Decompose orthogonally Vv =V1,v ⊕V2,v , where V1,v = Ev under the fixed embedding EA∞ ,→ B∞.
We define the following Schwartz functions on, respectively, F ×v and its product with V1,v , V2,v , Vv :

(3.1.3)

φF ,r (u) := δ1,UF ,r
(u), where δ1,UF ,r

(u) :=
vol(O ×F ,v )

vol(1+$ rOF ,v )
11+$ rOF ,v

(u);

φ1,r (x1, u) := δ1,UT ,r
(x1)δ1,UF ,r

(u), where δ1,UT ,r
(x1) =

vol(OE ,v )
vol(1+$ rOE ,v )

11+$ rOE ,v
(x1);

and

(3.1.4)

φ◦2(x2, u) := 1OV2,v
(x2)1O ×F ,v

(u);

φ2,r (x2, u) := e−1
v |d |v · 1OV2,v

∩q−1(−1+$ rOF ,v )
(x2)11+$ rOF ,v

(u);

φr (x, u) :=φ1,r (x1, u)φ2,r (x2, u).

p-adic modular forms and q-expansions. — In [I, §2], we have defined the notion of Hilbert automorphic
forms and twisted Hilbert automorphic forms (the latter depend on an extra variable u ∈ A×). We have
also defined the associated space of q -expansions, and a less redundant space of reduced q -expansions.
When the coefficient field is a finite extension L of Qp these spaces are endowed with a topology. We have
an (injective) reduced-q -expansion map on modular forms, denoted by

ϕ′ 7→ qϕ′.

The image of modular forms (respectively cuspforms) of level K p K1
1 (p

∞)⊂GL2(A
p∞), parallel weight 2

and central characterω−1 is denoted by M=M(K p ,ω−1) (respectively S). The closure of M (respectively
S) in the space of q -expansions with coefficients in L is denoted M′, respectively S′ and its elements are
called p-adic modular forms (respectively cuspforms).

If Y ? = YF ,Y ′, we define the notion of a Y ?-family of modular forms by copying word for word
[I, Definition 2.1.3]; the resulting notion coincides with that of bounded families on the analogous rigid
spaces considered in loc. cit.

For a finite set of places S disjoint from those above p, we have also defined a certain quotient space
S
′
S of cuspidal reduced q -expansions modulo those all of whose coefficients of index a ∈ F ×AS∞× vanish.

According to [I, Lemma 2.1.2], for any S the reduced-q -expansion map induces an injection

(3.1.5) S ,→ S
′
S .



THE p-ADIC GROSS–ZAGIER FORMULA AT NONSPLIT PRIMES 13

p-adic Petersson product and p-critical forms. — For ϕ p ∈ σ , we defined in [I, Proposition 2.4.4] a func-
tional

(3.1.6) `ϕ p ,α : M(K p ,ω−1, L)→ L,

whose restriction to classical modular forms equals, up to an adjoint L-value, the limit as r → ∞ of
Petersson products with antiholomorphic forms ϕ pϕp,r ∈ σ with component ϕp,r =

∏

v |p ϕv,r as in
(3.1.2).

Let v |p. We say that a form or q -expansion over a finite-dimensional Qp -vector space L is v-critical if
its coefficients a∗ (where ∗ ∈A∞×) satisfy

(3.1.7) am$ s
v
=O(q s

F ,v )

in L, uniformly in m ∈A∞×. Here for two functions f , g : N→ L, we write

f =O(g )⇐⇒ there is a constant c > 0 such that | f (s)| ≤ c |g (s)| for all sufficiently large s .

The space of p-critical forms is the sum of the spaces of v-critical forms for v |p. Any element in those
spaces is annihilated by `ϕ p ,α.

3.2. Analytic kernel. — The analytic kernel is a p-adic family of theta-Eisenstein series, related to the
p-adic L-function. We review its main properties.

Proposition 3.2.1. — There exist p-adic families of q-expansions of modular forms E over YF and I over
Y ′, satisfying:

1. For any χF ∈Y l.c.
F (C) and any r = (rv )v |p satisfying c(χF )|p r , we have the identity of q-expansions of

twisted modular forms of weight 1:

E (u,φp∞
2 ;χF ) = |DF |

L(p)(1,ηχF )
L(p)(1,η)

qEr (u,φ2,χF ),

where

(3.2.1) Er (g , u,φ2,χF ) :=
∑

γ∈P 1(F )\SL2(F )

δχF ,r (γ g wr )r (γ g )φ2(0, u)

is the Eisenstein series defined in [I, §3.2], with respect to φ2 =φ
p∞
2 (χF )φ

◦
2, p∞ with φ◦2,v as in (3.1.4)

for v |p, and φ2,v (χv ) for v -∞ and φ◦2,v for v |∞ as defined in loc. cit.
2. For φ1 ∈ S (V1×A×) and χ ′ ∈ Y ′l.c., consider the twisted modular form of weight 1 with parameter

t ∈ E×A :

(3.2.2) θ(g , (t , 1)u,φ1) :=
∑

x1∈E

r1(g , (t , 1))φ1(x, u).

For anyχ ′ ∈Y ′l.c., letχF :=ω−1χ ′|A× ∈Y
l.c.

F . Then for any r = (rv )v |p satisfying rv ≥ 1 and c(χF )|p r

we have

(3.2.3) I (φp∞;χ ′) =
cU p |DE |1/2

|DF |1/2

∫ ∗

[T ]
χ ′(t )

∑

u∈µ2
U p \F ×

qθ((t , 1), u,φ1;χ ′)E (q(t )u,φp∞
2 ;χF )d

◦ t ,

where for v |p, φ1,v =φ1,v,r is as in (3.1.3).
3. We have

`ϕ p ,α(I (φ
p∞)) = Lp,α(σE ) ·

∏

v |p
|d |2v |D |v

∏

v -p∞R
\
v (Wv ,φv ,χ ′v )(3.2.4)

where the local termsR \
v are as in [I, Propositions 3.5.1, 3.6.1].
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Proof. — Part 1 is [I, Proposition 3.3.2]. Part 2 summarises [I, §3.4]. Part 3 is [I, (3.7.1)] with the correc-
tion of Appendix B below.

Derivative of the analytic kernel. — We denote

(3.2.5) I ′(φp∞;χ ) := dFI (φ
p∞;χ ),

a p-adic modular form with coefficients in ΓF ⊗̂L(χ ).

3.3. Geometric kernel. — The geometric kernel function, see [I, §§5.2-5.3], is related to the heights of
Heegner points. We recall its construction and modularity.

CM divisors. — For any x ∈ B∞×, we have a Hecke translation Tx : X →X , and a Hecke correspondence
Z(x)U on XU ×XU . Fix any P ∈X E×(E ab), and for x ∈ B∞×, let [x] :=Tx P be the Hecke-translate of P
by x, and let [x]U be its image in XU . If H/E is any finite extension, the points in XU ,H corresponding
to Galois orbits of points of the form [x]U are called CM points (for the CM field E ).

Let Cl(XU ,F )Q ⊃ Cl0(XU ,F )Q be the space of divisor classes with Q-coefficients and, respectively, its
subspace consisting of classes with degree 0 on every connected component. Denote by ( )0 : Cl(XU ,F )Q→
Cl0(XU ,F )Q the linear section of the inclusion whose kernel is spanned by the pushforwards to XU ,F of
the classes of the canonical bundles of the connected components of XU ′,F , for any sufficiently small U ′.

We define the χ -isotypic CM divisors

tχ :=
∫ ∗

[T ]
χ (t )[t−1]U d ◦ t ∈ Div(XU ,F )L(χ ),

t 0
χ :=

∫ ∗

[T ]
χ (t )[t−1]0U d ◦ t ∈ Div0(XU ,F )L(χ ),

where the integrations simply reduce to (normalised) finite sums.

Generating series. — For a ∈A∞×, φ∞ ∈S (V×A×), consider the correspondences

(3.3.1) eZa(φ
∞) := cU p wU |a|

∑

x∈U\B∞×/U

φ∞(x,aq(x)−1)Z(x)U

where wU = |{±1} ∩U | and cU p is defined in [I, (3.4.3)]. By [I, Theorem 5.2.1] (due to Yuan–Zhang–
Zhang), there is an automorphic form

(3.3.2) eZ(φ∞) ∈ C∞(GL2(F )\GL2(A),C)⊗Q Pic(XU ×XU )Q,

whose ath reduced coefficient is the image of eZa(φ
∞) for each a ∈A∞×.

Let

(3.3.3) 〈 , 〉= 〈 , 〉X : J∨(F )× J (F )→ ΓF ⊗̂L

be the p-adic height pairing defined as in(7) [I, Lemma 5.3.1]. (We abusively omit the subscript X as we
will no longer need to use the pairing on AE (χ )⊗A∨E (χ ).)

We define the geometric kernel to be

(3.3.4)
eZ(φ∞,χ ) :=

∑

a∈F ×
〈eZa(φ

∞)[1]0U , t 0
χ 〉q

a .

By [I, Proposition 5.3.2 and formula following its proof], the series eZ(φ∞,χ ) is (the q -expansion of) a
weight-2 cuspidal Hilbert modular form of central characterω−1, with coefficients in ΓF ⊗̂L(χ ).

(7)There is a typo in loc. cit. (also noted in Appendix B below): the left-hand side of the last equation in the statement should be
〈 f ′1 (P1), f ′2 (P2)〉J ,∗.
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Geometric kernel and Shimizu lifts. — Let

θιp : (σ∞⊗S (V∞×A∞,×))⊗M L→ (π⊗π∨)⊗M ,ιp
L

be Shimizu’s theta lifting defined in [I, §5.1]. Let

Talg : πU ⊗M π
∨,U →Hom (JU , J∨U )⊗M

be defined by Talg( f1, f2) := f ∨2 ◦ f1.

Proposition 3.3.1. — If φv =φr,v is as in (3.1.4) for all v |p, then for any sufficiently large r ′, the geometric
kernel

eZ(φ∞,χ )

is invariant under
∏

v |p K1
1 ($

r ′
v ), and it satisfies

`ϕ p ,α(eZ(φ
∞,χ )) = 2|DF |

1/2|DE |
1/2L(1,η) · 〈Talg,ιp

(θιp(ϕ,αp | · |p ($)
−r ′w−1

r ′ φ))Pχ , P−1
χ 〉X .(3.3.5)

Proof. — The invariance under
∏

v |p K1
1 ($

r ′
v ) follows from the invariance of φr under the action of

�

1 OF , p
1

�

and the continuity of the Weil representation. The proof of (3.3.5) is indicated in [I, proof of
Proposition 5.4.3] (with the correction of Appendix B).

3.4. Kernel identity. — We state our kernel identity and recall how it implies the main theorem.

Assumptions on the data. — Consider the following local assumptions on the data at primes above p.

Assumption 3.4.1. — Let U ◦F ,v := 1+$n
vOF ,v with n ≥ 1 be such that ωv is invariant under U ◦F ,v . The

character χp is sufficiently ramified in the sense that it is nontrivial on

V ◦p :=
∏

v |p
q−1

v |OE ,v
(U ◦F ,v )⊂O

×
E , p .

(Recall from § 3.1 that qv : Ev → Fv is the norm map.)

Under this assumption, we have tχ = t 0
χ ; see [I, Proposition 8.1.1.3], where ξU ∈Cl(XU )Q denotes the

Hodge class defining the section Cl(XU )Q→Cl0(XU )Q. The technical advantage gained, which is the same
as in [I] and is implicitly reaped in Theorem 3.6.1 below, is that one may analyse the height generating
series purely in terms of pairs of CM divisors of degree zero, thus avoiding a study of ξU and the recourse
to p-adic Arakelov theory made in [Dis15].

Assumption 3.4.2. — For each v |p, the open compact Uv ⊂ B×v satisfies:

– Uv =Uv,r = 1+$ r M2(OF ,v ) for some r ≥ 1;
– the integer r ≥ n is sufficiently large so that the characters χv and αv ◦ qv of E×v are invariant under

Uv,r ∩O ×E ,v .

Convention on citations from [I]. — In [I], we have denoted by Snonsplit the set of places of F nonsplit in
E , and by Sp the set of places of F above p. When referring to results from [I], we henceforth stipulate
that one should read any assumption such as ‘let v ∈ Snonsplit’ or ‘let v be a place in F nonsplit in E ’ as ‘let
v ∈ Snonsplit− Sp ’. Similarly, the set S1 fixed in [I, §6.1] should be understood to consist only of places not
above p.

Theorem 3.4.3 (Kernel identity). — Assume the hypotheses of Theorem B, and that U , ϕ p , φp∞, χ , r
satisfy the assumptions of [I, §6.1] as well as Assumptions 3.4.1, 3.4.2. Letφp :=⊗v |pφv,r withφv,r =(3.1.4).
Then

`ϕ p ,α(dFI (φ
p∞;χ )) = 2|DF |L(p)(1,η) · `ϕ p ,α(eZ(φ

∞,χ )).

The elements of the proof will be gathered in § 3.6.
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Lemma 3.4.4. — Theorem 3.4.3 implies Theorem 2.2.1.

Proof. — As in [I, Proposition 5.4.3] corrected in Appendix B, we consider the following equivalent (by
[I, Lemma 5.3.1]) form of the identity of Theorem 2.2.1:

〈Talg,ιp
( f1⊗ f2)Pχ , Pχ−1〉J =

ζ∞F (2)
(π2/2)[F :Q]|DE |1/2L(1,η)

∏

v |p
Z◦v (αv ,χv )

−1 · dF Lp,α(σA,E )(χ ) ·Q( f1, f2,χ )

(3.4.1)

where ιp : M ,→ L(χ ), and Pχ = −
∫

[T ]Tt (P − ξP )χ (t )d t ∈ J (F )L(χ ). By linearity, (3.4.1) extends to an
identity that makes sense for any element f ∈ π⊗π∨. By the multiplicity-one result for E×A∞ -invariant
linear functionals on each of π, π∨, it suffices to prove (3.4.1) for one element f ∈ π ⊗ π∨ such that
Q(f,χ ) 6= 0 (cf. [YZZ12, Lemma 3.23]).

We claim that Theorem 3.4.3 gives (3.4.1) for f= θ(ϕ,φ), where:

– ϕ∞ is standard antiholomoprhic in the sense of [I], φ∞ is standard in the sense of [I];
– for all v |p, ϕv =(3.1.2) and φv =φv,r =(3.1.4) for any sufficiently large r .

The claim follows from (3.2.4), (3.3.5), the local comparison betweenR \
v and Qv◦θv for v - p of [I, Lemma

5.1.1], and the local calculation at v |p of Proposition A.2.2.
Finally, the existence of ϕ,φ satisfying both the required assumptions and Q(θ(ϕ,φ)) 6= 0 follows from

[I, Lemma 6.1.6] away from p, and the explicit formula of Proposition A.2.2 at p.

3.5. Derivative of the analytic kernel. — We start by studying the incoherent Eisenstein series
E (φp∞

2 ). For a ∈ F ×v , denote by
W ◦

a,v

the normalised local Whittaker function of Er (φ
p∞
2 (χF )φ

◦
2, p ,χF ) = (3.2.1), defined as in [I, Proposition

3.2.1 and paragraph following its proof].
The following reviews and corrects [I, Proposition 7.1.1].

Proposition 3.5.1. — For each v |p, let φ2,v =φ2,r,v be as in (3.1.4).

1. Let v be a place of F and a ∈ F ×v .
(a) If a is not represented by (V2,v , uq) then W ◦

a,v (g , u,1) = 0.
(b) (Local Siegel–Weil formula.) If v - p and there exists xa ∈V2,v such that uq(xa) = a, then

W ◦
a,v (

� y
1

�

, u,1) =
∫

E1
v

r (
� y

1

�

, h)φ2,v (xa , u)d h

(c) (Local Siegel–Weil formula at p.) If v |p, a ∈−1+$ rOF ,v , u ∈ 1+$ rOF ,v , let xa ∈V2,v be
such that uq(xa) = a. Then

(3.5.1) W ◦
a,v (

� y
1

�

, u,1) = |d |v
∫

E1
v

r (
� y

1

�

, h)φ2,v (xa , u)d h.

2. For any a ∈ F ×v ∩
∏

v |p (−1+$ rOF ,v ), u ∈ F × ∩
∏

v |p (1+$
rOF ,v ), there is a place v - p of F such

that a is not represented by (V2, uq).

Proof. — Parts 1(a)-(b) are as in [I, Proposition 7.1.1]. Before continuing, observe that, under our assump-
tions, a is always represented by (V2,v , uqv ) for all v |p: this is clear if v splits in E and, up to possibly
enlarging the integer r , it may be seen by the local constancy of qv and the explicit identity qv (jv ) =−1,
where jv=(4.1.2) below if v is nonsplit. Then part 1(c) follows by explicit computation of both sides
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(starting e.g. as in [YZZ12, proof of Proposition 6.8] for the left-hand side). Explicitly, we have

(3.5.1)=







e−1
v |d |vvol(E1

v ∩O ×E ,v , d h)|y|1/21OF ,v
(ay)1O ×F ,v

(y−1u) if v(a)≥ 0 and v(u) = 0

0 otherwise.

Finally, part 2 follows from the observation of the previous paragraph and [YZZ12, Lemma 6.3].

Lemma 3.5.2. — Suppose that, for all v |p, φ1,v = φ1,r,v is as in (3.1.3). Then, for any t ∈ T (A), the ath

q-expansion coefficient of the the theta series of (3.2.2) vanishes unless

a ∈
⋂

v |p

1+$ rOF ,v .

Proof. — Straightforward.

Denote
Ur

p,∗ := (
∏

v |p
Uv,∗)

r ,

an operator on modular forms that extends to an operator on all the spaces of p-adic q -expansions defined
so far.

Corollary 3.5.3. — Suppose that φp∞ ∈ S (Vp∞
2 ×Ap∞,×) satisfies the assumptions of [I, §6.1]. Let χ ∈

Y l.c.
ω . For any sufficiently large r , we have

Ur
p,∗I (φ

p∞;χ ) = 0.

Proof. — For the first assertion, we need to show that the ath reduced q -expansion coefficient of I van-
ishes for all a satisfying v(a) ≥ r for all v |p. By the defining property 3.2.3 of I (χ ′) and the choice
of φp , the group T (Fp ) ⊂ T (A) acts trivially on the q -expansion coefficients of I (χ ′). The remaining
integration on T (F )Z(A)V p\T (A)/T (Fp ) is a finite sum, so the coefficients a is a sum of products of the
coefficients of index a1 of θ and of index a2 of E (1), for pairs (a1,a2) with a1 + a2 = a. When a = 0, the
vanishing follows from the vanishing of the constant term of E , which is proved as in [YZZ12, Propo-
sition 6.7]. For a 6= 0, by Lemma 3.5.2 only the pairs (a1,a2) with a1 ∈

⋂

v |p 1+$ rOF ,v contribute. If
v(a)≥ r for v |p, this forces a2 ∈

⋂

v |p−1+$ r
vOF ,v . Then the coefficient of index a2 of E (1) vanishes by

Proposition 3.5.1.

We can now proceed as in [I, §7.2], except for the insertion of the operator Ur
p,∗. (This will be innocu-

ous for the purposes of Theorem 3.4.3, since the kernel of Ur
p,∗ is contained in the kernel of `ϕ p ,α.) We

obtain, under the assumptions of [I, §6.1], a decomposition of (3.2.5)

(3.5.2) Ur
p,∗I

′(φp∞;χ ) =
∑

v∈Snonsplit−Sp

Ur
p,∗I

′(φp∞;χ )(v)

valid in the space S of p-adic q -expansions with coefficients in ΓF ⊗̂L(χ ). See loc. cit. for the definition of
I ′(φp∞;χ )(v).

3.6. Decomposition of the geometric kernel and comparison. — Suppose that Assumptions 3.4.1,
3.4.2 as well as the assumptions of [I, §6.1] are satisfied. Then we may decompose (see [I, §8.2]) the
generating series (3.3.4) as

(3.6.1) eZ(φ∞,χ ) =
∑

v

eZ(φ∞,χ )(v),

according to the decomposition 〈 , 〉X =
∑

v〈 , 〉X ,v of the height pairing. Here the sum runs over all finite
places of F .
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The following is the main result of [I] on the local comparison away from p. Let S′ = S′S1
be the

quotient of the space of p-adic q -expansions recalled above (3.1.5).

Theorem 3.6.1 ([I, Theorem 8.3.2]). — Let φ∞ = φp∞φp with φp =
∏

v |p φv as in (3.1.4). Suppose
that Assumptions 3.4.1, 3.4.2 as well as the assumptions of [I, §6.1] are satisfied. Then we have the following
identities of reduced q-expansions in S′:

1. If v ∈ Ssplit− Sp , then
eZ(φ∞,χ )(v) = 0.

2. If v ∈ Snonsplit− S1− Sp , then

Ur
p,∗I

′(φp∞;χ )(v) = 2|DF |L(p)(1,η)Ur
p,∗
eZ(φ∞,χ )(v).

3. If v ∈ S1, then

Ur
p,∗I

′(φp∞;χ )(v), Ur
p,∗
eZ(φ∞,χ )(v)

are theta series attached to a quaternion algebra over F .
4. The sum

Ur
p,∗
eZ(φ∞,χ )(p) :=

∑

v∈Sp

Ur
p,∗
eZ(φ∞,χ )(v)

belongs to the isomorphic image S⊂ S′ of the space of p-adic modular forms S.

By this theorem and the decompositions of I ′ and eZ , the proof of the kernel identity of Theorem
3.4.3 (hence of the main theorem) is now reduced to showing the following proposition. (See [I, §8.3, last
paragraph] for the details of the deduction.)

Proposition 3.6.2. — Retain the assumptions of Theorem 3.6.1, and further assume that VpA is potentially
crystalline at all v |p. Then the p-adic modular form

Ur
p,∗
eZ(φ∞,χ )(p) ∈ S

is annihilated by `ϕ p ,α.

Let S be a finite set of non-archimedean places of F such that, for all v /∈ S, all the data are unramified,
Uv is maximal, and φv is standard. Let K =K p Kp be the level of the modular form eZ(φ∞), and let

Tιp(σ
∨) ∈H S (L) =H S (M )⊗M ,ιp

L

be any σ∨-idempotent in the Hecke algebra as in [I, Proposition 2.4.4]. By that result, in order to establish
Proposition 3.6.2 it suffices to prove that

`ϕ p ,α(U
r
p,∗Tιp(σ

∨)eZ(φ∞,χ )(p)) = 0.(3.6.2)

As in [I], we will in fact prove the following, which implies (3.6.2).

Proposition 3.6.3. — Let v |p. Under the assumptions of Proposition 3.6.2, for all v |p, the element

Tιp(σ
∨)eZ(φ∞,χ )(v) ∈ S′

is v-critical in the sense of (3.1.7).

The proof will occupy the following section.

4. Local heights at p

The goal of this section is to prove Proposition 3.6.3, whose assumptions we retain throughout except
for an innocuous modification to the data at the places v |p. Namely, let eφv be the Schwartz function
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denoted byφr in (3.1.4), and let eU v ⊂ B×v be the open compact subgroup denoted by Uv,r in Assumption
3.4.2. Then we let

Uv := eU v U ◦F ,v , φv :=−
∫

U ◦F ,v

r (z, 1)eφv d z.

Since χv |F ×v = ω−1
v is by construction invariant under U ◦F ,v , the geometric kernels eZ(φp∞eφp ,χ ) and

eZ(φp∞φp ,χ ) are equal. Therefore we may work on the curve XU .
We fix a place v |p. If v splits in E then the desired result is proven in [I, §9] with a correction in

Appendix B. Therefore we may and do assume that v is nonsplit. We denote by w the place of E above v.

We refer the reader to § 1.1 for a general sketch of our argument. It is developed here as follows. In
§ 4.1, we prove that after acting by a high power of Uv,∗, the coefficients of the generating series are height
pairings with CM points of high v-conductor (norm relation). After some general background in § 4.2,
we use the norm relation to prove the decay property of arithmetic intersection multiplicities in § 4.3.
Finally, in § 4.4 we use again the norm relation and some p-adic Hodge theory to prove the decay property
of local heights.

4.1. Norm relation for the generating series. — The goal of this subsection will be to show that, for s
large enough, each q -expansion coefficient of Us

p,∗
eZ(φ∞,χ ) is a height pairing of CM divisors of which

one is supported on Galois orbits of CM points of ‘pseudo-conductor’ s (as defined below).
We start by considering the Uv,∗-action on the generating series eZ(φ∞) = (3.3.2). Recall that dv (§ 3.1)

is a generator of the different ideal of Fv .

Lemma 4.1.1. — If a ∈A∞× satisfies v(a)≥−v(dv ), the ath reduced q-expansion coefficient of Uv,∗
eZ(φ∞)

equals
eZa$v

(φ∞),

where eZa′(φ
∞) is defined in (3.3.1).

Proof. — After computing the Weil action of Uv,∗ on φ, this is a simple change of variables.

We can factor
eZa(φ

∞) = eZav (φv∞)Zav
(φv ),

as the composition of the commuting correspondences

eZ
v
a (φ

v∞) := cU p

∑

xv∈U v\Bv∞×/U v

φv∞(xv ,aq(xv )−1)Z(xv )U ,

Zav
(φv ) :=

∑

xv∈Uv\B×v /Uv

φv (xv ,aq(xv )
−1)Z(xv )U .(4.1.1)

From here until after the proof of Lemma 4.1.2, we work in a local situation and drop v from the
notation. Let θ ∈ OE be such that OE = OF + θOF , and write T = TrE/F (θ), N = NE/F(θ). Fix the
embedding E→ B =M2(F) to be

t = a+θb 7→
�

a+ bT bN
−b a

�

.

Let

(4.1.2) j :=
�

1 T
−1

�

.

Then j2 = 1, q(j) =−1, and for all t ∈ E , jt = t c j; and in the orthogonal decomposition V=V1⊕V2, we
have

OV2
=V2 ∩M2(OF ) = jOE .
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LetΞ($ r ) = 1+$ rOE+j(OE∩q−1(1+$ rOF )); thenφ is a fixed multiple of the characteristic function
of Ξ($ r )× (1+$ rOF )⊂ B× F ×. For a ∈ F ×, let

Ξ($ r )a = {x ∈ Ξ($
r ) | q(x) ∈ a(1+$ rOF )}.

Then the local component (4.1.1) of the generating series equals

Za(φ) =
∑

x∈U\Ξ($ r )a U ◦F /U

Z(x)U ,

up to a constant that is independent of a.

Lemma 4.1.2. — Let a ∈ F × satisfy v(a) = s ≥ r . The natural map Ξ($ r )a U ◦F /U → U\Ξ($ r )a U ◦F /U is
a bijection. For either quotient set, a complete set of representatives is given by the elements

x(b ) := 1+ jb

as b ranges through a complete set of representatives for

q−1(1− a(1+$ rOF ))/(1+$
r+sOE )⊂ (OE/$

r+sOE )
×.

Proof. — It is equivalent to prove the same statement for the quotients of Ξ($ r )a by the group eU =
1+$ r M2(OF ). By acting on the right with elements of OE ∩U , we can bring any element of Ξ to one of
the form x(b ). Write any γ ∈ eU as γ = 1+$ r u1+ j$ r u2 with u1, u2 ∈ OE . Then

x(b )γ = (1+ jb )(1+$ r u1+ j$ r u2) = 1+$ r (u1+ b c u2)+ j(b +$ r (b u1+ u2)

is another element of the form x(b ′) if and only if u1 =−b c u2. In this case

b ′ = b +$ r (1− q(b ))u2 ∈ b (1+$ r+sOE ).

Thus the class of b modulo $ r+s is the only invariant of the quotient Ξ/ eU . The eU -action on the left
similarly preserves this invariant.

We go back to a global setting and notation, restoring the subscripts v and w. Denote by recEw
: E×w →

G ab
E ,w the reciprocity map of class field theory. Recall that for x ∈ B∞×, we have a point [x]U ∈XU ; for a

subset Ξ′ ⊂ B∞×, we similarly denote [Ξ′]U = {[x]U | x ∈ Ξ′}.

Lemma 4.1.3. — Fix a ∈ OF ,v with v(a) = s ≥ r .

1. Let b ∈ (OE ,w/$
r+s
v OE ,w )

×, t ∈ 1+$ r
vOE ,w . Then

recEw
(t )[x(b )]U = [x(b t c/t )]U .

2. We have

[Ξ($ r
v )a U ◦F ,v]U =

⊔

b

recEw
((1+$ r

vOE ,w )/(1+$
r
vOF ,v )(1+$

r+s
v OE ,w ))[x(b )]U ,

where the Galois action is faithful, and b ranges through a set of representatives for

(4.1.3) q−1
v (1− a(1+$ r

vOF ,v ))/(1+$
r+s
v OE ,w ) · (1+$

r+v(θ−θc )
v OE ,w ∩ q−1

v (1)).

The size of the set (4.1.3) is bounded uniformly in a.

Proof. — For part 1, we have

recEw
(t )[x(b )]U = [t + t jb ]U = [t + jt c b ]U = [1+ jb t c/t ]U .
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Part 2 follows Lemma 4.1.2 and part 1, noting that the group (1+$ r+v(θ−θc )
v OE ,w )∩ q−1

v (1) is the image
of the map t 7→ t c/t on 1+$ r

vOE ,w . Finally, the map (projection, qv ) gives an injection from

q−1
v (1− a(1+$ r

vOF ,v ))/(1+$
r+s
v OE ,w ) · (1+$

r+v(θ−θc )
v OE ,w ∩ q−1

v (1))

to
(OE ,w/$

r+v(θ−θc )
v OE ,w )

×× (1− a(1+$ r
vOF ,v ))/q(1+$ r+s

v OE ,w ),

whose size is bounded uniformly in a (more precisely, the second factor is isomorphic to OF ,v/Tr(OE ,v )
via the map 1− a(1+$ r

v x) 7→ x).

We denote by w an extension of the place w to E ab. For s ≥ 0, let

Hs ⊂ E ab

be the finite abelian extension of E with norm group U ◦F U v
T (1+$

rv+s
v OE ,v ), where U v

T =U v ∩E×A∞ . Let
H∞ =

⋃

s≥0 Hs . If rv is sufficiently large, for all s ≥ 0 the extension Hs/H0 is totally ramified at w of
degree q s

F ,v , and

Gal(Hs/H0)∼=Gal(Hs ,w/H0,w )∼= (1+$
rv
v OE ,v )/(1+$

rv
v OF ,v )(1+$

rv+s
v OE ,v ).

In particular,
[Hs : H0] = [Hs ,w : H0,w] = q s

F ,v .

We will say that a CM point z ∈XH0
has pseudo-conductor s ≥ 0 (at w) if H0,w (z) =Hs ,w .

Proposition 4.1.4. — There exists an integer d > 0 such that for all a ∈A∞,x with v(a) = s ≥ rv , there exists
a degree-zero divisor Da ∈ d−1Div0(XU ,Hs

), supported on CM points, such that

eZa(φ
∞)[1]U =TrHs/H0

(Da)

in Div0(XU ,H0
). All prime divisor components of Da are CM points of pseudo-conductor s .

Proof. — This follows from Lemma 4.1.3.2, by taking Da to be a fixed rational multiple (independent of
a) of

eZ
v
a (φ

v∞)
∑

b∈(4.1.3)

[x(b )]U .

The divisor is of degree zero by [I, Proposition 8.1.1]. Its prime components are not defined over proper
subfields Hs ′ ⊂Hs because of the faithfulness statement of Lemma 4.1.3.2.

4.2. Intersection multiplicities on arithmetic surfaces. — Before continuing, we gather some defini-
tions and a key result.

Ultrametricity of intersections on surfaces. — LetX be a 2-dimensional regular Noetherian scheme, finite
flat over a field κ or a discrete valuation ring O with residue field κ. We denote by ( · )X the usual Z-
bilinear intersection-multiplicity pairing of divisors intersecting properly onX ; for effective divisors D j

( j = 1,2) with OD j
= OX /I j , it is defined by

(D1 ·D2)X = lengthκOX /(I1+I2).

The subscriptX will be omitted when clear from context.
We will need the following result of García Barroso, González Pérez and Popescu-Pampu.
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Proposition 4.2.1. — Let R be a noetherian regular local ring of dimension 2, which is a flat module over a
field or a discrete valuation ring. Let∆ be any irreducible curve in Spec R. Then the function

d∆(D1, D2) :=







(D1 ·∆)(D2 ·∆)/(D1 ·D2) if D1 6=D2

0 if D1 =D2

is an ultrametric distance on the space of irreducible curves in Spec R different from∆.

Proof. — For those rings R that further satisfy the property of containing C, this is proved in
[GBGPPP18]. The proof only relies on (i) the existence of embedded resolutions of divisors in the
spectra of such rings, and (ii) the negativity of the intersection matrix of the exceptional divisor of a
projective birational morphism between spectra of such rings. Both results still hold under our weaker
assumptions: see [Liu02, Theorem 9.2.26] for (i) and [Liu02, Theorem 9.1.27, Remark 9.1.28] for (ii).

Arithmetic intersection multiplicities. — Suppose now that X is a 2-dimensional regular Noetherian
scheme, proper flat over a discrete valuation ring O with residue field κ. A divisor on X is called
horizontal (respectively vertical) if each of the irreducible components of the support |D | is flat over O
(respectively contained in the special fibreXκ). We extend ( · ) := ( · )X to a bilinear form ( • ) on pairs
of divisors onX sharing no common horizontal irreducible component of the support by

(Xκ •V ) := 0

if V is any vertical divisor.
Denote by X the generic fibre ofX . If D ∈ Div0(X ) with Zariski closure D inX , a flat extension of

D is a divisor ÒD ∈ Div(X )Q such that ÒD −D is vertical and

(ÒD •V ) = 0

for any vertical divisor V on X . A flat extension of D exists and it is unique up to addition of rational
linear combinations of the connected components ofXκ.

The arithmetic intersection multiplicity on divisors with disjoint supports in Div0(X ) is then defined
by

mX (D1, D2) := (D1 •ÒD2) = (ÒD1 •D2) ∈Q.

4.3. Decay of intersection multiplicities. — We continue using the notation introduced in § 4.1. Let
mw := mXH0,w

. Developing the approximation argument sketched in the introduction, we will show that

for any degree-0 divisor D on XH0
, we have

mw (eZa$ s (φ∞)[1]U , D) =O(q s
F ,v )

in L, uniformly in a.
Let U0,v :=GL2(OF ,v )⊂ B×v , let X0 :=XU v U0,v

, letX0 be the canonical model of X0,Fv
over OF ,v , which

is smooth (see [Car86]), and let X ′0 be its base-change to OH0,w
. Let X be the integral closure of X ′0 in

XH0,w
, which is a regular model of XH0,w

over OH0,w
, and let p:X →X ′0 be the natural map. Thus we have
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a diagram
XH0,w

��

// X

p

��
X0,H0,w

//

��

X ′0 =X0,OH ,w

��
X0,Ev

// X0,OE ,w

of curves and regular integral models. (The bottom row will be used in proving Lemma 4.3.2 below.)

Some intersection multiplicities. — As a preliminary, we first compute the intersection multiplicities of
Zariski closures of CM points with the special fibre ofX , then bound their intersections with horizontal
divisors.

We denote by κ the residue field of H0,w , and by k the algebraic closure of κ. For a scheme C and a
point y ∈C , we denote Cy := SpecOC ,y .

Lemma 4.3.1. — Let zs ∈ XH0
be a CM point with pseudo-conductor s , let z s be its closure in X , and let

y ∈Xκ be its reduction modulo w. Then

(z s · [Xy,κ])Xy
= [κ(y) : κ]q s

F ,v .

(Recall that, following § 3.1,Xy,κ denotes the special fibre ofXy .)

Proof. — We will deduce this from Gross’s theory of quasicanonical liftings [Gro86], which we recall.
The situation is purely local and we drop all subscripts v, w, and w. For a finite extension K ⊃ E contained
in E ab, let Kun be the maximal unramified extension of K contained in E ab (thus the residue field of Kun

is identified with k).
By [Car86, §7.4], for any supersingular point y0 ∈ X0,O un

E
, the completed local ring of X0,O un

E
at y0 is

isomorphic to OEunJuK and it is the deformation ring of formal modules studied by Gross. The main
result of [Gro86] is that for any CM point z0 ∈X0,Eun , there exist a unique integer t (the conductor of z0)
such that the following hold. First, the field Eun(z0) is the abelian extension E (t ) of Eun with norm group
(OF +$

t
vOE )

×/O ×F , which is totally ramified of some degree dt . Second, the inclusion of the Zariski
closure z0 ,→X0,O un

E
gives rise to a map of complete local rings

OEunJuK→OE (t ) = O (z0)

which sends u to a uniformiser$(t ) of E (t ). It follows that if µt is the minimal polynomial of$(t ),

(4.3.1) (z0 ·X0,k )X0,O un
E ,y0
= dimk OEunJuK/($E ,µt (u)) = dimk OE (t )/$E = dt .

Consider now the situation of the lemma. By the projection formula,

(z s · [Xy,κ])Xy
= (z s · p

∗X0,κ0
)Xy
= (p∗z s ·X0,κ)X ′

0,y′
= [H0(zs ) : H0(z0,s )] · (z0,s ·X0,κ)X ′

0,y′

where y ′ = p(y) and z0,s = p(zs ) ∈ X0,H0
is a CM point. The last intersection multiplicity is [κ(y) : κ]

times the multiplicities of the base-changed divisors to the ring of integers of H un
0 , where z0,s remains an

irreducible divisor since H0(z0,s ) ⊂ H0(zs ) is totally ramified over H0. We perform such base-change to
OH un

0
without altering the notation. Let z be the image of z0,s ∈ XH un

0
in XEun , and let t be the conductor

of z; so E (t ) ⊂H un
0 (z0,s ). The fibre above z ∼= Spec E (t ) in XH un

0
is

Spec E (t )⊗Eun H un
0 = Spec H un

0 (z0,s )
⊕c
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for c = [E (t ) : Eun] · [H un
0 : Eun]/[H0(z0,s ) : H0], and z0,s is one of the factors in the right hand side. By

the projection formula applied toX0× SpecOH un
0
→X0× SpecOEun and (4.3.1), we have

[H0(zs ) : H0(z0,s )] · (z0,s ·X0,κ)X ′
0,y′
= [κ(y) : κ]c−1 · [H0(zs ) : H0(z0,s )] · [H

un
0 : Eun] · dt

= [κ(y) : κ] · [H0(zs ) : H0] · d
−1
t · dt = [κ(y) : κ]q

s
F ,

as desired.

Lemma 4.3.2. — Let∆ be an irreducible horizontal divisor inX . The intersection multiplicities

(∆ · z)

are bounded by an absolute constant as z ranges among CM points of sufficiently large pseudo-conductor reduc-
ing to y.

Proof. — The intersection multiplicity (∆·z) is bounded by the degree of the natural map q:X →X0,OE ,v

near y, times the intersection multiplicities of the pushforward divisors toX0,OE ,v
. Similarly to the proof

of Lemma 4.3.1, we may estimate this intersection in the base change of X0 to O un
E . The base-change of

the divisor q∗z equals a sum of CM points ofX0,OEun
; because the extensions Hs/H0 are totally ramified,

the number of points in this divisor is bounded by an absolute constant, and the conductors of all those
CM points go to infinity with the pseudo-conductor s of z. Thus it suffices to show that if ∆0 is a fixed
horizontal divisor on X0,Eun , its intersection multiplicity with CM points of conductor t is bounded as
t →∞.

Let z ∈ X0,O un
E

be a CM point of conductor t , and let y0 ∈ X0,k be the image of the reduction of t .
Now write the image of∆0 in the completion ofX0,OEun

at y0 as

Ò∆0 = SpecOEunJuK/( f )⊂ SpecOEunJuK,

with f =
∑d

i=1 ai u i an integral non-constant monic polynomial. Let ef ∈ k[u] be the reduction of f .
Then

(∆0 · z) = dimk OEunJuK/( f ,µt ) = dimk OE (t )/( f ($
(t ))) = dimk OE (t )/(($

(t ))deg( f̃ )) = deg( f̃ )≤ d

if t is sufficiently large, since the normalised valuations of $(t ) decrease to 0 as t →∞. This completes
the proof of the lemma.

Approximation by vertical divisors. — The following proposition contains the essential new ingredient of
this work. We denote by

CM(XH0
)≥s ⊃CM(XH0

)s
respectively the set of CM points of XH0

that have pseudo-conductor at least, or equal to, a given integer s .
We denote by V the set of irreducible components of Xκ (henceforth: ‘vertical components’), and if
y ∈ Xκ is a closed point we denote by Vy ⊂ V the set of vertical components ofXy,κ. We still use a bar
to denote Zariski closure.

Proposition 4.3.3. — There exist an integer s0 ≥ 1, depending only on XH0
, and a function

(V ,ρ) : CM(XH0
)≥s0
−→V ×Q×

satisfying the following property.
For every divisor D ∈ Div(X )L, there exists a constant sD ≥ s0 depending only on the support of D, such

that if z ∈ XH0
is a CM point of conductor s ≥ sD , then (z ·D) may be computed as follows. Let V =V (z),

ρ= ρ(z), and write
D = cXκ+D ′
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with c ∈ L and D ′ ∈ Div(X )L a divisor whose support does not contain V . Then

(4.3.2) (z ·D) = c[κ(y) : κ]q s
F ,v +ρ(V •D),

where y ∈Xκ denotes the reduction of z modulo w.

Remark 4.3.4. — The vertical component V (z) will be characterised as the one maximising the inter-
section multiplicity with z. We refer the reader to [Dis/a, § 2; see also Figure 1 in § 1] for an equivalent
and possibly more vivid geometric description(8) of the relation of V to zs : one can define pairwise dis-
joint open subsets (‘geometric basins’) of the Berkovich analytification of X , labelled by the irreducible
components of the special fibre; then zs belongs to the basin corresponding to V .

Proof. — We will omit all subscripts v, w, w and use some of the notation introduced in the proof of
Lemma 4.3.1.

Let y ∈ Xκ be a closed point, and write [Xy,κ] =
∑

V ′∈Vy
eV ′V

′ as divisors. By Lemma 4.3.1, the
weighted sum

(4.3.3)
∑

V ′
eV ′(z s ·V

′) = (z s · [Xy,κ]) = [κ(y) : κ]q
s
F

is independent of the choice of a CM point zs ∈XH0
of pseudo-conductor s reducing to y. As (4.3.3) goes

to infinity with s (and the coefficients eV ′ are independent of s ), the quantity

(4.3.4) maxV ′∈V (z s ·V ′)

(more precisely, the minimum of those maxima as zs varies in CM(XH0
)s ) goes to infinity with s .

Fix now a CM point zs ∈ XH0
of pseudo-conductor s , let y ∈Xκ be its reduction, and let V ∈ Vy be a

vertical component realising the maximum in (4.3.4). Let D 6=V be an irreducible divisor inXy . Pick any
irreducible horizontal divisor ∆ 6= D , z s inXy , and consider the ultrametric distance d∆ of Proposition
4.2.1 for R= OX ,y . (Note that∆may be drawn from a finite set independent of zs and D ; in fact we may
fix any set∆ of at least two irreducible horizontal divisors that are not Zariski closures of CM points, and
for given D pick any∆ ∈∆−{D}.)

By the choice of V and Lemma 4.3.2, if s is sufficiently large (a condition depending on D), we have

d∆(z s ,V ) =
(z s ·∆)(V ·∆)
(z s ·V )

< d∆(V , D),

so that by Proposition 4.2.1,
d∆(z s , D) = d∆(V , D).

Unwinding the definitions,

(4.3.5) (z s ·D) = ρ(V ·D)

for ρ := (z s ·∆)/(V ·∆). Applied to a vertical component D =V ′ 6=V , the formula (4.3.5) together with
Lemma 4.3.2 shows the uniqueness of the maximising V =: V (zs ) for large s ; it is clear that ρ=: ρ(zs ) is
then uniquely determined as well. Now the intersection formula (4.3.2) follows by linearity from (4.3.5)
and Lemma 4.3.1.

Corollary 4.3.5. — If D ∈ Div0(XH0
)L is any degree-zero divisor, then for all sufficiently large s and all a,

mw (eZa$ s (φ∞)[1]U , D) =O(q s
F ,v )

in L, where the implied constant can be fixed independently of a and s .

(8)Note however that the substantial results of [Dis/a] hold for the curve X over the field Fv .
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Proof. — Let ÒD be a flat extension of D to a divisor onX (with coefficients in L), and abbreviate Za,s :=
eZa$ s (φ∞)[1]U . Then by Propositions 4.1.4 and 4.3.3,

mw (Za,s , D) = (Za,s ·ÒD) =Aq s
F ,v +

∑

i

λi (Vi •ÒD)

for some vertical components Vi ⊂X and some A, λi ∈ L. By the definition of flat extension, (Vi •ÒD) = 0
for all i . The constant A is a linear combination of the constants c in (4.3.2) (which depend only on ÒD),
with coefficients whose denominators are bounded by those of Za,s ; by Proposition 4.1.4, the latter are
bounded independently of a and s .

4.4. Decay of local heights. — Recall that we need to prove (Proposition 3.6.3) that

Tιp(σ
∨)eZ(φ∞,χ )(v)

is a v-critical element of S′.
As in [I, §9.2, proof of Proposition 9.2.1], this is reduced to the following. For any s ≥ 0, denote by

〈 , 〉s ,w the local height pairing on XHs ,w
, which is valued in H×s ,w⊗̂L; and let

〈 , 〉w = [Hs ,w : Fv]
−1 ·NHs ,w/Fv

(〈 , 〉s ,w ),

which is valued in F ×v ⊗̂L ⊂ ΓF ⊗̂L and is compatible with varying s by [I, (4.1.6)]. Then we will show
that for all w|v and all a ∈AS1∞,× with v(a) = rv , we have

(4.4.1)
〈eZa$ s (φ∞)[1]U ,Tιp(σ

∨)tU tχ 〉w =O(q s
F ,v ) in F ×v ⊗̂L(χ )

〈eZa$ s (φ∞)[1]U ,Tιp(σ
∨)tU tχ 〉0,w =O(q s

F ,v ) in H×0,w⊗̂L(χ )

where the second statement implies the first one. Until Lemma 4.4.3 below, the argument follows the
lines of previous works [Nek95, Shn16, I].

The norm relation and heights. — Denote by Ns the norm from Hs ,w to H0,w , let L′ := L(χ ), and let p′ ⊂
OL′ be the maximal ideal. By the norm relation of Proposition 4.1.4, the aforementioned compatibility
[I, (4.1.6)], and the integrality result of [I, Proposition 4.3.2],(9)

(4.4.2)

〈eZa$ s (φ∞)[1]U ,Tιp(σ
∨)tU tχ 〉0,w = 〈TrHs/H0

(Da$ s ),Tιp(σ
∨)tU tχ 〉0,w

=Ns (〈Da$ s ,Tιp(σ
∨)tU tχ 〉s ,w )

∈ p′−(d00+d0+d1,s+d2,s )Ns (H
×
s ,w⊗̂OL′)

for some integers di ,(s) ≥ 0 that we now define and study.

Boundedness of denominators. — Let

V ′ :=πU
A∨ ⊗M VpA∨(χ−1) ⊂ V :=Vp JU ⊗Qp

L′

considered as GEw
-modules; let V ′′ be its direct complement in the decomposition of V in [I, (9.2.4)],

and let 0 → V ′+ → V ′ → V ′− → 0 be the ordinary filtration analogous to (1.2.6). If ? ∈ {′,′′ , ′+}, let
T ? := Tp JU ⊗Zp

OL′ ∩V ?, and let T ′− = T ′/T ′+. Then the integers di ,(s) are defined as follows:

– d00 accounts for the denominators of the divisors, and it can be taken to be independent of s by
Proposition 4.1.4;

– d0 is such that p′d0 T ⊂ T ′⊕T ′′;
– d1,s := lengthOL′

H 1(Hs ,w ,T ′′∗(1))tors;

(9)When comparing with the similar argument of [I, §9.2, proof of Proposition 9.2.1], our field Hs should be assimilated to the H ′s
of loc. cit.
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– d2,s := lengthOL′
H 1

f (Hs ,w ,T ′)/N∞H 1
f (Hs ,w ,T ′), where N∞ denotes the universal norms ([Nek93,

§ 6], [I, § 4.3]) with respect to the infinite abelian extension of Hs ,w cut out by the closure inG ab
Hs ,w
⊃

H×s ,w of

Ker [H×s ,w

NHs ,w /Fv−→ F ×v → ΓF ⊗̂L].

Proposition 4.4.1. — Suppose that VpA is potentially crystalline as a representation ofGFv
; then the sequences

of integers (d1,s ) and (d2,s ) are bounded.

We will use the following vanishing result, in which L denotes an algebraic closure of L′.

Lemma 4.4.2. — Let Γ∞ :=Gal(H∞,w/Ew )∼= E×\E×A∞/U v U ◦F ,v . For all Hodge–Tate charactersψ : GEw
→

L
×

factoring through Γ∞, and for any

V ? ∈ {V ,V ′′∗(1),V ′+,∗(1),V ′−},

we have
H 0(Ew ,V ?(ψ)) = 0.

Proof. — The proof is largely similar to that of [I, Lemma 9.2.4], to which we refer for the background
on the p-adic Hodge theory of characters.

We have
H 0(Ew ,V ?) =Dcrys(V

?(ψ))ϕ=1,

where ϕ is the crystalline Frobenius, and it suffices to prove that Dcrys(V
?(ψ))ϕd=1 = 0 for d = [Ew : Ew,0]

where Ew,0 the maximal unramified extension of Qp contained in Ew . As V ′ has been assumed potentially
crystalline, it is pure of weight−1, hence so are all the subquotients of V ′ and V ′∗(1). In particular, ϕd acts
with negative weights on Dcrys(V

?) for V ? =V ′+,∗(1),V ′−; by [Mok93, Theorem 5.3], this last assertion
is also true of V ? = V ∼= V ∗(1) and its subquotients such as V ? = V ′′∗(1). Therefore, it suffices to show
that ϕd acts with weight 0 on Dcrys(ψ

m) for m such that ψm is crystalline.
Since ψ is trivial on U ◦F , the Hodge–Tate weights (nτ)τ∈Hom (Ew ,L) satisfy nτ + nτc = 0 where c is the

complex conjugation of Ew/Fv . The action of ϕd on Dcrys(ψ
m) is by

(4.4.3) ψ ◦ recE ,w ($w )
−m ·

∏

τ∈Hom (Ew ,L)

$mnτ
w ,

where$w ∈ Ew is any uniformiser. Choose$w so that$e(Ew/Fv )
w =$v is a uniformiser in Fv . Then$c

w =
±$w , so that the second factor in (4.4.3) is ±1. On the other hand, the subgroup F ×\F ×A∞/U ◦F ,v (U

v ∩
F ×A∞)⊂ Γ∞ is finite, hence $v and $w have finite order in Γ∞. It follows that the first factor in (4.4.3) is
a root of unity too, hence ϕd acts with weight 0 on Dcrys(ψ

m).

Proof of Proposition 4.4.1. — By the long exact sequence attached to

0→ T ′′∗(1)→V ′′∗(1)→ T ′′∗(1)⊗ L′/OL′ → 0

and the vanishing of H 0(Hs ,w ,V ′∗(1)) (which follows from Lemma 4.4.2), we have

H 1(Hs ,w ,T ′′∗(1))tors
∼=H 0(Hs ,w ,T ′′∗(1)⊗OL′

L′/OL′)

=H 0
�

Ew ,T ′′∗(1)⊗OL
OL[Gal(Hs ,w/Ew )]⊗OL

L′/OL′
�

.

By [Nek93, Theorems 6.6, 6.9] (or strictly speaking, a slightly generalised form thereof which still holds
true by the arguments in [I, proof of Proposition 4.3.2]) and the vanishing of H 0(Hs ,w ,V ′+,∗(1)⊕V ′−)
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(which follows from Lemma 4.4.2), we have

d2,s ≤ lengthOL′
H 0(Hs ,w ,T ′+,∗(1)⊗OL′

L′/OL′)+ lengthOL′
H 0(Hs ,w ,T ′−⊗OL′

L′/OL′)

= lengthOL′
H 0

�

Ew , (T ′+,∗(1)⊕T ′−)⊗OL
OL[Gal(Hs ,w/Ew )]⊗OL

L′/OL′
�

.

Then the boundedness of d1,s and d2,s follows as in [Shn16, proof of Proposition 8.10] from the vanishing
of

H 0(H∞,w ,V ?) ⊂
⊕

ψ : Γ∞→L
×

Hodge–Tate

H 0(Ew ,V ?(ψ))

for V ? ∈ {V ′′∗(1),V ′+,∗(1),V ′}, which is a consequence of Lemma 4.4.2.

Completion of the proofs. — We are ready to reduce our decay statement for local heights to the decay
statement for intersection multiplicities proved in § 4.3.

Lemma 4.4.3. — For all s ′ ≤ s , the restriction of the w-adic valuation yields an isomorphism of OL′ -modules

w : Ns (H
×
s ,w⊗̂OL′)/q s ′ · (H×0,w⊗̂OL′)→OL′/q s ′OL′ .

Proof. — We drop all subscripts w. Recall that the extension Hs/H0 is totally ramified of degree q s .
Let $s ∈ OHs

be a uniformiser; then ω0 := Ns ($s ) is a uniformiser of H0. For ∗ = 0, s we have the
decompositions

H×∗ ⊗̂OL′ = O
×
H∗
⊗̂OL′ ⊕$∗⊗OL′ .

The map Ns respects the decompositions and, by local class field theory, has image

q s · (O ×H0
⊗̂OL′)⊕$0⊗OL′ .

The valuation map annihilates the first summand and sends the second one isomorphically to OL′ . The
result follows.

Proof of Proposition 3.6.3. — By the comparison of the valuation-component of local heights with arith-
metic intersections in [I, Proposition 4.3.1], applied to the curve XU ,H0

, the image of the left-hand side of
(4.4.2) under w is

(4.4.4) m(eZa$ s (φ∞)U [1],Tιp(σ
∨)tU tχ ).

By Corollary 4.3.5 applied to D =Tιp(σ
∨)tU tχ , the right-hand side of (4.4.4) is O(q s

F ,v ). By (4.4.2), Propo-
sition 4.4.1 and Lemma 4.4.3, we deduce the desired decay statement (4.4.1).

Summary. — We have just completed the proof of Proposition 3.6.3. It implies Proposition 3.6.2, which
together with Theorem 3.6.1 implies the kernel identity of Theorem 3.4.3. By Lemma 3.4.4, that implies
Theorem 2.2.1, which is in turn an equivalent form of Theorem B by Lemma 2.2.2.

ACKNOWLEDGMENT. — I would like to thank the referees for a sharp reading.

Appendix A. Local integrals

Throughout this appendix, v denotes a place of F above p unless specified otherwise. We use some of
the notation introduced in § 3.1, in particular the Weil representation r (see [I, §3.1] or [YZZ12] for the
formulas defining it).

A.1. Interpolation factors. — We relate the interpolation factors of the p-adic L-function of this paper
with those from [I].
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Lemma A.1.1. — Let ξ : E×w →C× and ψ : Ew →C× be characters, with ψ 6= 1. Let d t be a Haar measure
on E×w . Then

∫

E×w

ξ (t )ψ(t )d t =
d t
d
ψ

t
· ξ (−1) · γ (ξ ,ψ)−1.

The left-hand side is to be understood in the sense of analytic continuation from characters ξ | · |s for
ℜ(s)� 0.

Proof. — We may fix d t = d
ψ

t . Then the result follows from the functional equation for GL1 ([BH06,
(23.4.4)]):

(A.1.1) Z(φ,ξ ) = γ (ξ ,ψ)−1Z(φ̂,ξ −1| |),

where for a Schwartz function φ on Ew ,

Z(φ,ξ ) :=
∫

E×w

φ(t )ξ (t )dψ t , φ̂(t ) :=
∫

Ew

φ(x)ψ(x t )dψx.

Namely, we insert in (A.1.1) the function

φ̂ := δ−1+$n
vOF

:= vol(1+$n
vOF ,v , dψ t )−11−1+$v

nOF ,v
, n ≥ 1,

approximating a delta function at t = −1. Then by Fourier inversion φ(t ) =
ˆ̂
φ(−t ) = δ1+$n

vOF
∗ψ(t ),

which if n is sufficiently large (depending on the conductor of ξ ) has the same integral against ξ as ψ(t ).

Proposition A.1.2. — The ratio C (χ ′p ) defined in (2.1.3) is a constant C ∈ L independent of χ ′p .

Proof. — By the definition of ep (V(A,χ ′)) and a comparison of [I, Lemma A.1.1]with Lemma A.1.1 applied
to
∏

w|v χ
′
wαv | · |v ◦ qw , we have

C (χ ′p ) =
∏

v |p
γ (ad(Wv (1)

++),ψv )
−1 ∈ L.

A.2. Toric period at p. — We compare the toric period at a p-adic place with the interpolation factor.
Denote by Pv ⊂GL2(Fv ) the upper triangular Borel subgroup.

Lemma A.2.1. — The quotient space K1
1 ($

r ′)\GL2(Fv )/Pv admits the set of representatives

n−(c) :=







( 1c 1 ) if c 6=∞
�

1
−1

�

if c =∞,
c ∈ OF ,v/$

r ′OF ,v ∪{∞}.

Proposition A.2.2. — Let χ ∈Y l.c. be a finite-order character, let r be sufficiently large (that is, satisfying the
v-component of Assumption 3.4.2), and let Wv be as in (3.1.1), φv =φv,r be as in (3.1.4).

Let πv = σv and let (, )v : πv × π∨v → L be a duality pairing satisfying the compatibility of [I, (5.1.2)]
with the local Shimizu lift.(10) Finally, let Z◦v (αv ,χv ) be the interpolation factor of the p-adic L-function of
[I, Theorem A].

Then for all sufficiently large r ′ > r ,

Q(,),v,d ◦ tv
(θv (Wv ,α| · |v ($v )

−r ′v w−1
r ′,vφv ),χv ) = |d |

2
v |D |v · L(1,ηv )

−1 ·Z◦v (αv ,χv ),

where Q(,),v,d ◦ tv
uses the measure d ◦ tv = |d |

−1/2
v |D |−1/2

v d t .

(10)In loc. cit., the pairing (, )v is denoted byFv .
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Proof. — We drop all subscripts v, and assume as usual that ψ is our fixed character of level d−1. Let

Q]
(,)( f1, f2,χv ) =

∫

E×/F ×
χ (t )(π(t ) f1, f2)d t ,(A.2.1)

where d t is the usual Haar measure on E×/F ×, giving volume |d |1/2|D |1/2 to O ×E /O
×
F .

By the definitions and [I, Lemma A.1.1] (which expresses Z◦ as a normalised integral), it suffices to
show that

Q](θ(W,α| · |($)−r ′w−1
r ′ φ),χ) = |d |

3/2|D | · L(1,η)−1 ·
∫

E×
α| · | ◦ q(t )χ (t )ψE (t )d t .

By [I, Lemma 5.1.1] (which spells out a consequence of the normalisation of the local Shimizu lifting)
and Lemma A.2.1 we can write

Q] :=Q(θ(W,α| · |($)−r ′w−1
r ′ φr ),χv ) =

∑

c∈P1(OF /$ r ′ )

Q] (c)

where for each c ,

Q] (c) := |d |−3/2 ·α| |($)−r
∫

F ×
W (

� y
1

�

n−(c))
∫

T (F )
χ (t )

∫

P ($ r ′ )\K1
1 ($ r ′ )

|y|r (n−(c)kw−1
r )φ(y t−1, y−1q(t ))d k d t

d×y
|y|

.

Here P ($ r ′) = P ∩K1
1 ($

r ′).
It is easy to see that Q](∞) = 0 (observe that φ2,r (0) = 0). For c 6=∞, we have

n−(c)w−1
r ′ = w−1

r ′

�

1 −c$−r ′

1

�

,

and when x = (x1, x2) with x2 = 0:

r (n−(c)w−1
r ′ )φ(x, u) =

∫

V
ψE (u x1ξ1)ψ(−ucq(ξ ))φr (ξ ,$ r ′u)d ξ

On the support of the integrand we have v(u) = $−r ′ and v(q(ξ )) ≥ r , by the definition of φr . If
v(c)< r ′− r − v(d ), the integration in dξ2 gives 0; hence Q](c) = 0 in that case.

Suppose from now on that v(c)≥ r ′− r − v(d ). Then ψ(−ucq(ξ )) = 1 and

r (n−(c)w−1
r ′ )φ(x, u) = |d |3|D |L(1,η)−1|$|rψE ,r ($

−r ′ x1)δ1,UF ,r ($
r u).

where ψE ,r := vol(OE )
−1 ·δ1,UT ,r

∗ψE , and we have noted that φ̂2,r (0) = e−1|d | · vol(q−1(−1+$ rOF )∩
OV2
) = |$|r |d |3|D |1/2L(1,η)−1.

If r ′ is sufficiently large, the Whittaker function W is invariant under n−(c). Then

Q] (c) = |d |3/2|D |L(1,η)−1 · |$|r−r ′α($)−r ′ · |d |1/2ζF ,v (1)
−1

·
∫

F ×
W (

� y
1

�

)
∫

T (F )
χ (t )ψE ,r ($

−r ′ x1)δ1,UF ,r
($ r ′y−1q(t ))d t d×y,

where |$|−r ′ |d |1/2ζF ,v (1)
−1 appears as vol(P ($ r ′)\K1

1 ($
r ′)).

Integrating in d×y and summing the above over the q r+v(d )
F = |d |−1|$|−r contributing values of c , we

find

Q] = |d |3/2|D | · L(1,η)−1 ·
∫

E×
χ (t )α| | ◦ q(t )ψE (t )d t ,

as desired.
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Corollary A.2.3. — If χp is not exceptional (that is, ep (V(A,χ )) 6= 0), then the quaternion algebra B over A
satisfying H(πB,χ ) 6= 0 is indefinite at all primes v |p.

Proof. — By Propositions A.2.2 and A.1.2, if χp is not exceptional, then for all v |p the functional Qv ∈
H(πM2(Fv )

,χv )⊗H(π∨M2(Fv )
,χ−1

v ) is not identically zero.

Appendix B. Errata to [I]

The salient mistakes are the following: the statement of the main theorem is off by a factor of 2;
the proof given needs a further assumption, (no stronger than) that VpA is potentially crystalline at all
v |p (however the theorem still holds true without the assumption, cf. Remark 1.2.1); and the Schwartz
functionφ2, p given by the local Siegel–Weil formula at p needs to be different from the Schwartz function
used to construct the Eisenstein family.

References in italics are directed to [I], references in straight letters to the present paper.

– Theorem A. It should be Lp,α(σE ) ∈ O (Y ′)b (with the interpolation property being correct for the
choice of additive character ψp as in Theorem A). For a correct discussion of the ring of rationality
of Lp,α(σE ), within the context of a generalised construction, see [Dis/b, Corollary 4.5.4].

– Theorem B. The constant factor should be cE and not cE/2 (the latter is, according to (1.1.3), the con-
stant factor of the Gross–Zagier formula in archimedean coefficients).(11) The mistake is introduced
in the proof of Proposition 5.4.3, see below.

The proof works under the further assumption that VpA is potentially crystalline at all v |p, see
the correction to Proposition 9.2.1.

– Theorem C. Similarly, the constant factor should be cE/2 in part 3, and cE in part 4.
– §2.1. The space of p-adic modular forms is the closure of M2(K

p K1
1 (p

∞)p ), not M2(K
p K1(p∞)p ).

– Proposition 2.4.4.1. The multiplier in equation (2.4.3) should be α| · |($−r ) =
∏

v |p αv | · |v ($−r
v ),

and the statement holds for forms in M2(K
p K1

1 (p
r )p ). Similarly, the definition of R◦r,v in Proposition

3.5.1 should have an extra |$v |−r . The result of Proposition A.2.2, as modified below, holds true for
this definition of R◦r,v (in loc. cit., a complementary mistake appears between the third-last and
second-last displayed equations in the proof).

– Lemma 3.2.2. A factor η(y) is missing in the right-hand side of the formula.
– Proposition 3.2.3.2 should be corrected as follows: Let v |p and let φ2,v =φ

◦
2,v be as in (3.1.4) (of the

present paper). Then

W ◦
a,r,v (1, u,χF ) =







|dv |3/2|Dv |1/2χF ,v (−1) if v(a)≥ 0 and v(u) = 0

0 otherwise.

– Equation (3.7.1): the right-hand side should have an extra factor of
∏

v |p |d |2v |D |v owing to the cor-
rection to Proposition A.2.2.

– Lemma 5.3.1: the left-hand side of the last equation in the statement should be 〈 f ′1 (P1), f ′2 (P2)〉J ,∗.
– Proof of Proposition 5.4.3. The second-last displayed equation should have the factor of 2 on the right

hand side, not the left hand side:

2`ϕ p ,α(eZ(φ
∞,χ )) = |DF |

1/2|DE |
1/2L(1,η)〈Talg,ιp

(θιp(ϕ,α($)−r w−1
r φ))Pχ , P−1

χ 〉.

(11)The heuristic reason for the difference is that the direct analogue of s 7→ L(1/2+ s ,σE ,χ ) is χF 7→ Lp (σE )(χ ·χF ◦NE/F ), whose
derivative at χF = 1 is twice our dF Lp (σE )(χ ), as the tangent map to χF 7→ χ ′ = χ ·χF ◦NE/F 7→ω−1 ·χ ′|A× is multiplication by 2.
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Then the argument shows that, first,

〈Talg,ιp
( f1⊗ f2)Pχ , Pχ−1〉J =

ζ∞F (2)
(π2/2)[F :Q]|DE |1/2L(1,η)

∏

v |p
Z◦v (αv ,χv )

−1 · dF Lp,α(σA,E )(χ ) ·Q( f1, f2,χ )

(without an incorrect factor of 2 introduced in the denominator of the right-hand side of (5.4.1)
there); second, that the above equation is equivalent to Theorem B as corrected above.

An extra factor
∏

v |p |d |2v |D |v should be inserted in the right-hand sides of the last and fourth-last
displayed equation, cf. the corrections to (3.7.1), Proposition A.3.1.

– Proposition 7.1.1(b): should be replaced by Proposition 3.5.1(b-c).
– §7.2, third paragraph: the coefficient in the second displayed equation should have |DE |1/2, not
|DE/F |1/2, in the denominator.

– Lemma 9.1.1 is corrected by Lemma 4.1.1 (this does not significantly affect the rest).
– Lemma 9.1.5: the extension H∞ is contained in a relative Lubin–Tate extension. This is the only

property used.
– Proposition 9.2.1. The assumption that VpA is potentially crystalline at all v |p should be added. The

bounded dependence on s of the integer d2 = d2,s was not addressed; it holds true by the proofs of
Proposition 4.4.1 and Lemma 4.4.2, which work verbatim in the split case (under the comparison
given in footnote 8 of § 4.4). The definition of d1,s contains an extra ⊗OL

L/OL.

– Lemma 9.2.4: the statement should be that H 0( eH
′
∞,w ,Vp J ∗U (1)) vanishes, and it this group that

should appear in the left-hand side of the first displayed equation in the proof.
– Lemma A.2.1: the list of representatives is missing the element n−(∞) =

�

0 1
−1 0

�

, cf. Lemma A.2.1.
– Proposition A.2.2: the statement should be

R\r,v (Wv ,φv ,χ ′v
ι) = |d |2v |D |v ·Z

◦
v (χ

′
v ) := |d |

2
v |D |v ·

ζF ,v (2)L(1,ηv )
2

L(1/2,σ ιE ,v ,χ ′v )

∏

w|v
Zw (χ

′
w ).

The factor |d |2v |D |v missing from [I] should first appear in the right-hand side of the displayed
formula for r (w−1

r )φ(x, u) in the middle of the proof.
– Proposition A.3.1 should be replaced by Proposition A.2.2.

Appendix C. Correction

The approximation argument used to prove the decay of intersection multiplicities is flawed. In this
correction, we give an alternative argument in a similar spirit, based on an explicit form of the approxi-
mation that we deduce from [Dis/a]. This argument requires some bounds on the ramification, so that
the main theorem is weakened.

Referring to the paragraph The nonsplit case in § 1.1, our general approximation result involved local
arithmetic intersections, and so it does not imply the vanishing of global intersections with flat divisors in
a proper local integral model. Instead, we revisit an idea of Perrin-Riou and apply an operator “Up − 1”.
Since this acts as a difference operator on the Fourier coefficients of our generating series, we obtain the
vanishing (up to multiples of p s ) once we prove, by inspection, that the relevant sequences of approximat-
ing vertical components are constant in the index s .

I would like to thank Wei Zhang for pointing out the mistake.

C.1. Corrected statement. — We denote by Sp,ns the set of places of F above p that are nonsplit in E .
In Theorem B, the assumption that χp is sufficiently ramified should be replaced by the assumption:

for each v ∈ Sp,ns, v is inert and χv is unramified.
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Remark C.1.1. — It should be possible to prove the theorem also (at least) in the case where at some
nonsplit places v |p, the representation πv is unramified and χv is arbitrary. While in principle not more
difficult than the case treated here, this case would require introducing a larger number of changes in the
setup, making for a cumbersome text. We thus prefer to defer it to a future work under a different global
approach.

C.2. The mistake. — It occurs in Proposition 4.3.3, whose proof (with notation as in loc. cit.) correctly
shows that

(C.2.1) (z ·D) = c[κ(y) : κ]q s
F ,v +ρ(V ·D

′)y .

The term (V · D ′)y is a local intersection multiplicity at y, and it is not necessarily equal to the global
intersection (V • D) on X . Therefore, corresponding terms in the formula displayed in the proof of
Corollary 4.3.5 do not necessarily vanish, as the definition of flat extensions invoked in that proof only
applies to global intersection pairings.

C.3. Correction. — We explain the strategy to prove the statement under the hypotheses of § C.1.

Setup. — We discard Assumption 3.4.1 on χp ; as in the corrected statement, we assume instead that v is
inert and χv is unramified for all v ∈ Sp,ns. We suppose that (φ, U ) satisfy the assumptions of [I, § 6.1] as
well as Assumption 3.4.2, and the following extra assumption. Let Tιp(σ

∨) be a spherical σ∨-idempotent
as in [I, Proposition 2.4.4], which we may take to be of degree zero; by [Ram], we may and do assume
that Tιp(σ

∨) is supported at split places of F where all the data is unramified.

Assumption C.3.1. — We have

(C.3.1) φ= Tιp(σ
∨)φ[

for some φ[ satisfying the assumptions of [I, § 6.1].

This assumption will have the same effect as Assumption 3.4.1, namely it ensures that the geometric
kernel can be written in terms of height pairings of degree-zero divisors.

Denote by T(σ∨) the Hecke correspondence on XU attached to Tιp(σ
∨) via [I, Lemma 5.2.2]; it has

degree zero. Then by the definitions and [I, Lemma 5.2.2]

q
eZ(φ∞,χ )U = 〈

q
eZ∗(φ

[,∞)1,T(σ∨)tχ 〉,

and in S′ we have the decomposition

q
eZ(φ∞,χ ) =

∑

v

eZ(φ∞,χ )(v)

where

(C.3.2)
eZ(φ∞,χ )(v) =

∑

w|v
〈qeZ∗(φ

[,∞)1,T(σ∨)t tχ 〉`,w .

For w - p, we may move the correspondence T(σ∨)t back to the left entry by interpreting the resulting
pairing similarly to [YZZ12]. Namely, the local height pairing of two degree-zero divisors D1, D2 on X
is, up to a factor `($w ), the intersection multiplicity of flat extensions of D1, D2 to an integral model (see
[I, Proposition 4.2.2]). In turn, this arithmetic intersection pairing extends to divisors of arbitrary degree
with disjoint supports by considering bξ -admissible (rather than flat) extensions as in [YZZ12, § 7.1]. As
a result, the pairing

〈qeZ∗(φ
∞)1, tχ 〉`,w

is well-defined and it equals the w-term in (C.3.2). The fact that tχ may not have degree zero introduces

a term given by pairing with the Hodge class bξ , which however vanishes under our assumptions as in
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[YZZ12, Proposition 7.3.3]. Thus the expression of [I, (8.2.1)] for eZ(φ∞,χ )(v) is still valid and Theorem
3.6.1 continues to hold under our assumptions.

Theorem B is therefore still reduced to Proposition 3.6.2. For each nonsplit v |p, fix m = mv ≥ r
which is a multiple of the order of $v in the set (C.4.3) below. Define an operatorRv := Umv

v,∗ − 1. We
will prove the following.

Proposition C.3.2. — Let v |p. Under our running assumptions, the element

Rv
eZ(φ∞,χ )(v) ∈ S′

is v-critical in the sense of (3.1.7).

Since `ϕ p ,α ◦Rv = (α
m
v − 1)`ϕ p ,α, and αm

v − 1 6= 0 by our assumptions, the proposition still implies
Proposition 3.6.2.

C.4. Decay of intersection multiplicities. — We prove Proposition C.3.2. We fix an inert place v of
F , and denote by w its extension to E .

Given our assumption that χv is unramified, we consider the action of O ×E ,w on CM points; for the set
Ξ($ r

v )a of Lemma 4.1.3, we have

[Ξ($ r
v )a U ◦F ,v]U = recEw

(O ×E ,w/O
×
F ,v (1+$

r+s
v OE ,w ))[x(b a)]U ,

where the Galois action is faithful, and b a is any element of

(C.4.1) q−1
v (1− a(1+$ r

vOF ,v ))/(1+$
r+s
v OE ,w )

In fact, let p be the principal square root defined in a neighbourhood of 1 ∈ OF ,v . Then, if v(a) ≥ 1 (or

v(a)≥ 2 if v |2), we may and do fix b a to be the class of

ba := [
p

1− a].

Correspondingly, we define
H00

to be the finite abelian extension of E with norm group U ◦F U v
T O

×
E ,v . It is contained in the extension H0

defined before Proposition 4.1.4, and it is unramified at w. The study of intersection multiplicities of
§ 4.3 then needs to take place inX , the base change to H00,w of the integral modelX \/OFv

of XU defined
by Carayol (we are renewing the notation: the modelX considered in § 4 is no longer in use). Note that
under our assumption, H00,w/Fv

is unramified, so thatX is still regular.
Consider Proposition 4.3.3. As noted above, its statement need to be corrected by replacing (4.3.2) by

(C.4.2) (z ·D) = c[κ(y) : κ]q s
F ,v +ρ(V ·D

′)Xy
,

where V =V (z), ρ= ρ(z). (The proof goes through verbatim in our renewed setup.)
The following is the new ingredient needed.

Proposition C.4.1. — The sequence

(Vs ,ρs ) :=
�

(V ,ρ)([x(b a$ms
v
)]U )

�

s∈N

is eventually constant.

Proof. — We first consider Vs . By construction, it is the irreducible component of Xκ maximising the
intersection multiplicity with the closure of the image zs ∈ XH00,w

of [x(b a$ms
v
)]U . Here κ is the residue

field of H00,w . However, the irreducible components ofXκ are already defined over the residue field κ\ of
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Fv . Therefore Vs is the base-change of the component V \
s ⊂X

\

κ\
maximising the intersection multiplicity

with the closure of the image z\s ∈XFv
of zs .

We explicitly compute V \
s in terms of the (equivalent) notions of geometric and algebraic basins of

irreducible components introduced in [Dis/a]. In fact, V \
s is, essentially by definition, the component

through y to whose (geometric) basin the point z\s belongs. First, recall from [Car86, Dis/a] that:

– the supersingular points inXκ are parametrised by

(C.4.3) B(v)×\Bv∞,×× F ×v /(U
v × q(Uv ));

– the irreducible components ofXκ\ are parametrised by (OFv
/$ r

vOFv
)-lines L⊂ ($−r

v OFv
/OFv
)2;

– to a CM-by-E point z ∈ XFv
with sufficiently large conductor is attached an Fv -isomorphism

τ : Ew → F 2
v , normalised so that

(C.4.4) O 2
F ,v ⊂ τ(OE ,w ) 6⊃$

−1
v O

2
F ,v ,

and a corresponding line L(τ) = [τ(OEw
)]⊂ ($−r

v OFv
/OFv
)2.

Then in order to show the eventual constancy of V \
s we need to show that, for ys the reduction of zs and

τs the invariant attached to z\s , we have ys+1 = ys and L(τs+1) = L(τs ) (for any sufficiently large s ).
We have [x(b a$m(s+1)

v
)]U = [x(b a$ms

v
)h)]U where, setting bs := ba$ms

v
,

h = (1+jbs )
−1(1+jbs+1) =

1
a$ms

v

�

(1− bs )(1+ bs ) [bs+1(1− bs )− bs (1− bs+1)]T
(1+ bs )(1− bs+1)

�

∈ B×v =GL2(Fv ).

The group B×v acts on the supersingular points via the map to the group (C.4.3) induced by the reduced
norm q . By construction, q(h) =$m

v has trivial image there, thus ys+1 = ys .
We have bs = 1− 2−1a$ms

v +O($ms
v ), so that

h ≡
�

1 T/2
0

�

(mod$m
v ).

By the construction in [Dis/a, (1.2.1)], the group B×v acts on the invariant F ×v τ via left multiplication by
h t. Recalling the normalisation (C.4.4), we then have

L(τs+1) = L

��

c
cT/2 0

�

τs

�

,

where c ∈ F ×v is such that the matrix is integral and not divisible by $v . But this line is just the one
spanned by

�1
0

�

(note that τs , as a surjective map to F 2
v , cannot be annihilated by a nonzero matrix over

Fv ). Thus Vs is constant for s ≥ 2.
We now show the eventual constancy ofρs . In fact, for large enough s we haveρs = (z s ·∆)/(Vs ·∆) for

any divisor∆whose support does not contain Vs . We take∆= q∗∆0, whereX0 is as in the beginning of
§ 4.3, q:X →X0,OH00,w

is the projection, and∆0 is the Zariski closure of the canonical lift of y := ys = ys+1.

By the projection formula, and with the notation of the proof of Lemma 4.3.2, the intersection (z s ·∆) is
a constant multiple of

(C.4.5) (q(zs ) ·∆0)X0,O un
E ,w

,y = dimk O
un
E ,wJuK/(νs , u).

Here, by [Gro86], the local defining equation of the canonical lift∆0 is u = 0, and for the quasicanonical
lift q(zs ) it is νs (u) = 0 for an Eisenstein polynomial νs . Thus (C.4.5) equals 1 independently of s . This
completes the proof.

The following replaces Corollary 4.3.5.
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Corollary C.4.2. — If D ∈ Div0(XH0
)L is any degree-zero divisor, then for all sufficiently large s and all a,

(C.4.6) mw (eZa$m(s+1)(φ∞)[1]U , D)−mw (eZa$ms (φ∞)[1]U , D) =O(q ms
F ,v )

in L, where the implied constant can be fixed independently of a and s .

Proof. — Let ÒD be a flat extension of D to a divisor onX (with coefficients in L), and abbreviate Za,s :=
eZa$ms (φ∞)[1]U . Then by the corrected Proposition 4.3.3,

(C.4.7) mw (Za,s , D) = (Za,s ·ÒD) =As q ms
F ,v +

∑

i

λi ,s (Vi ,s ·D
′
s )

for some vertical components Vi ,s ⊂ X and some As , λi ,s ∈ L; here we have written ÒD = csXκ + D ′s
where D ′s is a divisor whose support does not contain Vs . By Proposition C.4.1 (transported by Hecke
correspondences away from v), all terms indexed by s are in fact eventually independent of s ; thus the sec-
ond term of (C.4.7) gives vanishing contribution to (C.4.6). As remarked in Corollary 4.3.5, the constant
A=As is independent of a as well.

Then the argument of the proof of Proposition 3.6.3 at the very end of the paper goes through to prove
Proposition C.3.2, with the following modifications: we apply the operator (R seq

v ?)s := ?m(s+1)− ?ms to
(4.4.2) and (4.4.4) (each viewed as a sequence ? in s ), and use Corollary C.4.2 instead of Corollary 4.3.5.
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