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GAN-GROSS-PRASAD CYCLES
AND DERIVATIVES OF p-ADIC L-FUNCTIONS

DANIEL DISEGNI AND WEI ZHANG

ABSTRACT. We study the p-adic analogue of the arithmetic Gan—Gross—Prasad (GGP) con-
jectures for unitary groups. Let II be a hermitian cuspidal automorphic representation of
GL,, X GLy4+1 over a CM field, which is algebraic of minimal regular weight at infinity. We
first show the rationality of twists of the ratio of L-values of II appearing in the GGP conjec-
tures. Then, when II is p-ordinary at a prime p, we construct a cyclotomic p-adic L-function
Z»(Mn) interpolating those twists. Finally, under some local assumptions, we prove a precise
formula relating the first derivative of .%,(Mm) to the p-adic heights of Selmer classes arising from
arithmetic diagonal cycles on unitary Shimura varieties. We deduce applications to the p-adic

Beilinson—Bloch—Kato conjecture for the motive attached to II. All proofs are based on some

relative-trace formulas in p-adic coefficients.
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1. INTRODUCTION

The pioneering formulas of Gross—Zagier and Perrin-Riou, [GZ86,PR87], revealed a remarkable
relation between Heegner points and derivatives of complex and p-adic L-functions. They had
immediate applications to the (classical and p-adic) Birch and Swinnerton-Dyer conjectures, soon
strengthened by the Selmer-group bounds proved by Kolyvagin [Kol88].

A “furtive caress”!

between those formulas and one by Waldspurger on central L-values,
[Wal85b], did not escape Gross; and in [Gro04], he blessed it into a representation-theoretic
marriage, which would blossom in [YZZ12] (and later p-adically in [Dis17]).

The seeds for a new generation were sown in a paper by Gan, Gross, and Prasad [GGP12].
Their influential work conjectured a pair of non-vanishing criteria in the context of embeddings of
unitary groups: one for automorphic periods, in terms of Rankin—Selberg L-values (generalizing
[Wal85b]); and one for algebraic cycles in Shimura varieties, in terms of (complex) L-derivatives
(the arithmetic GGP conjecture, generalizing [GZ86]).

The conjecture on automorphic periods was refined to an exact formula by Ichino—Tkeda and N.
Harris [I110,Har14], and recently proved in this form in [BPLZZ21,BPCZ22]. On the other hand,
despite considerable progress (see [Zha] for a review), the arithmetic GGP conjecture remains

open outside of cases where it can be reduced to Heegner points [YZZ12, Xuel9].2

The purpose of this work is to formulate and, under some local assumptions, prove a p-adic
variant of the arithmetic GGP conjecture. The result in fact takes the form of a precise formula,
in the spirit of [PR87,Dis17,1110,Har14]. It has immediate applications to the p-adic Beilinson—
Bloch—Kato conjecture for the relevant motives, which can be further strengthened by the Selmer
bounds recently established in [LTX 22, LaSk].

IWords borrowed from [Weid0].
2The analogous conjecture for orthogonal groups is also known for 1-cycles in threefolds [YZZ].
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(Indeed, one advantage of working in p-adic rather than archimedean coefficients is that we
obtain a nonvanishing criterion in Selmer groups, rather than Chow groups: while the p-adic
Abel-Jacobi map from the latter to the former should be injective, this is not known beyond

cycles of codimension one.)

In the rest of this introduction, we state our main results, discuss their history and context,
and give some ideas on the proofs.

In § 1.1, we describe our p-adic L-function (Theorem B), preceded by a rationality result for
twisted Rankin—Selberg L-values (Theorem A) that should be of independent interest.

In § 1.2 we state our applications to the p-adic Beilinson-Bloch-Kato conjecture (Theorem C;
the order of presentation is dictated by ease of exposition rather than logic). In § 1.3 we define
the Gan—Gross—Prasad cycles and state our formula for their p-adic heights (Theorem D).

In § 1.4, we give a sketch of our methods: inspired by the strategy proposed by Jacquet—
Rallis for the Ichino-Tkeda conjecture [JR11], and by one of us [Zhal2] for the arithmetic GGP
conjecture (in archimedean coefficients), we construct a p-adic relative-trace formula from which
we extract the p-adic L-function; then, we compare it to another relative-trace formula encoding
the p-adic heights of GGP cycles.

1.1. The p-adic L-function. Let Fjy be a number field, and denote by A the adeles of Fy, by
Dp, = HUJ(OO Dp,, the discriminant of Fy (here Dp, , is the norm of the different ideal of Fp,).
Let F' be a quadratic extension of Fy, let ¢ € Gal(F/Fp) be the nontrivial element, and let
n: Ff\A* — {£1} be the associated quadratic character. Define a reductive group over Fy by

G/ = (ReSF/FQ GLn X ReSF/FO GLn_l,_l)/(GLl X GLl),

where GL; x GLj is the split center of G'. Let II = II,, K II,, 11 be an (irreducible) automorphic
representation of G’(A). Define® a Rankin-Selberg and an Asai L-function® for IT and a character
x of Fy\A* by

L(s,lT® x) = L(s,1I, x (31 ® x o Nmp/p,))

L(s,II, As*) :== L(s,11,, As(*l)n)L(s,Hn+1,As(*1)n+1).

We say that a cuspidal automorphic representation II, is hermitian if Il o ¢ = IIV and

L(S,HV,AS(_l)V) is regular at s = 1. We say that II = II,, X II,,41 is hermitian if II,, 11,11
are. For such a representation II, we define

n+1

s, 11, ®
L(s,1Ly, x0) = D! HL i) “IA’S‘”)) (1.1.1)
V)

and
Z(s, 11, x) - HZSHU,XU)
vfoo
Here, the abelian factor may be interpreted in terms of L-values of motives of unitary groups
(§ 2.2.1).

3Throughout the introduction (but differently from the rest of the paper) L-functions do not include archimedean
factors.
4See [GGP12, § 7] for the definition of L(s,II,, As*).
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1.1.1. Rationality of £. Assume from now on that Fj is totally real and F' is CM. Let arg(z) :=
z/|z| (a character of C*), let II} g be the representation of GL,(C)/GL1(R) induced by the
character arg’ ! ® arg? 2 ® ... ® arg! ™ of the torus (C*)”, and define the representation
I3, = Qg = QI g @105, g
v]oo v]oo
of G/(Fo,0). Let us also denote by 1., the trivial representation of G/(Fp ) over Q.

Let II = II*° ® 14, be a representation of G'(A) on a characteristic-zero field L (admitting
embeddings into C). We say that II is a trivial-weight (algebraic) cuspidal automorphic repre-
sentation if for every v: L < C, the representation II* := (II>° ® II2_ is an (irreducible) cuspidal
automorphic representation of G'(A). (It is known that every cuspidal automorphic representa-
tion of G’(A) over C such that I, = IIZ arises in this manner for some number field L.) We
say that IT is hermitian if IT* is for some (equivalently, every) .

We first prove the following strong rationality property for the values of .£. For an ideal
m C O, let Y(m) q be the finite étale scheme of characters of F* \AX/FOfOO(ﬁ;O N1+mOn,).
Let Y := lim Y'(m), the ind-finite scheme over Q of locally constant characters of Fy*\A* /F__.

Theorem A. Let II be a trivial-weight hermitian cuspidal automorphic representation of G'(A)

defined over a characteristic-zero field L. Then there is an element

Z(Mp,-) € O(Yr). (1.1.2)
such that 2121 )
XM ? = : njr?
( I X) E(%,XQ)( 3 )

for all x € Yr.(C) with underlying embedding v: L — C.
For the notation ‘Mp’, see Remark 1.2.2.

Remark 1.1.1. For n = 1, Theorem A is a variant of a classical result of Shimura [Shi78]. A
conditional proof of the rationality of £ (1/2,1I,1) for a more general class of II was recently
obtained by Grobner and Lin [GL21, Theorem C]. (In fact, their rationality result is also a
consequence of the Ichino-Tkeda conjecture, but the method of [GL21] is different.) See also
[Ragl6] for a related result, and [GHL] for relations to Deligne’s conjecture.

1.1.2. p-adic interpolation. Fix from now on a rational prime p. For v|p a place of Fy, let Ny C
G, .= G'(Fp,) be the subgroup of integral unipotent upper-triangular matrices, and let 7, C G/,
be the monoid of diagonal matrices such that tN°t~! € NS. Let II be a trivial-weight cuspidal
automorphic representation of G’(A) over a finite extension L of Q,. We say that II is v-
ordinary if Hf,v ¥ contains a nonzero vector (necessarily unique up to scalar multiple) on which all
the operators Uy = 3, ¢ no jnop—1 [2t], for t € T.F, act by units in &f,. We say that II is ordinary
if it is v-ordinary for all v|p.

For any number field E, denote I'g :== E*\AY ™/ 11» Op > and let

wip ¥ Eaw?
% = Spec Zp[[rpo]] ®Zp Qp.

We have a natural map Y (p*>) := lim Y(p') = %.
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If L'/L is a field extension and S/L is an (ind-) scheme, we denote Sy := S Xgpec 1, Spec L.

Theorem B. Let II be an ordinary, hermitian, trivial-weight cuspidal automorphic representation
of G'(A) over a finite extension L of Q,. Assume that for each place v|p of Fy that does not split
in I, the representation 1L, is unramified.

There exists a unique function

2p(Mn) € 0(%1)

whose restriction to Y (p™°) 1, satisfies

Zp(Mnn)(x) = ep(Mngy) £ (M1, x) (1.1.3)

where £ (M) is as in (1.1.2), and ep(Mngy) = [[,}, eIy, xv) is the product of the explicit local
terms (5.3.5).

Remark 1.1.2. We conjecture that the theorem remains true without the non-ramification condi-

tion at nonsplit p-adic places.

Remark 1.1.3. We say that II is non-exceptional if e,(M) # 0. By a recent result of Liu and Sun
(Proposition 5.2.6), the factor e,(Mg,) is as conjectured by Coates and Perrin-Riou [Coa91];
this implies that if II, is an irreducible principal series for all v|p, then II is non-exceptional (see
Remark 5.3.3).

Remark 1.1.4. Januszewski [Jan16] has proven a variant of Theorem B in a more general context,
by the method of modular symbols (see also the substantial improvements in [LiSu]). Our method
is similar locally at p but very different globally (and at archimedean places), see § 1.4.2 below.

Remark 1.1.5. Other authors have studied the variation of the above L-values (and in fact their
‘square roots‘) in anticyclotomic or more general self-dual p-adic families, see [HY, Liu, Dim].
It is of course expected that these values can be interpolated into a function over the entire
ordinary deformation space, that specializes to the functions of these works in self-dual subspaces
and to our Z,(My) in the cyclotomic direction. (The case of ‘two’ abelian variables explicitly
conjectured in [Liu, Hypothesis 7.12] could be achieved by the method of this paper, but we chose

not to address it in order to bound the technical aspects.)

1.2. On the p-adic Beilinson—-Bloch—Kato conjectures for Rankin—Selberg motives.
Before moving to discuss our main result, we give its main arithmetic application, which can be
stated without much further background.
Let
IM=1I, X II,41

be a hermitian trivial-weight cuspidal automorphic representation of G’(A) over a finite extension
L of Q,. Denote by G the absolute Galois group of F, by Q, an algebraic closure of L and let
P,.Q," Gr — GLV(Qp) be the semisimple representation attached to II, by the global Langlands
correspondence (as described in [Carl2, Theorem 1.1]). Assuming that e(I) = (1/2,II x
IT!, ;) = —1 for any (equivalently, all) ¢: L < C, we construct a continuous representation

P11 - GF — GLn(n+1)(L) (1.2.1)
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whose base-change pr ®, Qp is isomorphic, up to semisimplication, to P,q, © pnnﬂﬁp(n)
(Remark 11.1.3). It satisfies p§; 2 pi(1), where p°(g) == p(c"'gc) for any lift ¢ € G of c.
The Beilinson-Bloch-Kato (BBK) conjecture relates the dimension of the Bloch-Kato Selmer
group
H}(F , pr1)
to the order of vanishing of .Z(s,I1*) at s = 1/2, for any ¢: L — C. Assuming that II is ordinary,

we can consider a variant in terms of
ordy=1.2,(Mn) = sup {r | £,(Mn) € my C (%)},
where my is the ideal of functions vanishing at y = 1. We prove the following.

Theorem C. Let Il be an ordinary, hermitian, trivial-weight cuspidal automorphic representation
of G'(A) over a finite extension L of Q. Assume that e(II) = —1, and that the following further

conditions are satisfied:

— F/Fy is unramified; in particular, Fy # Q;

— all places v|2 are split in F/Fy;

—p>2nifn>1;

— for every place v|p of Fy, we have that v splits in F and 11, is unramified;

— for every place v of Fy that splits in F', at least one of Il,,,, and Il,, 1, is unramified;

— for every place v of Fy that is inert in F, each of 11, , and Il, 11, is either unramified or
almost unramified (namely, the base change of an almost unramified representation of the
unitary group), and if I, ,, is almost unramified then 11,1, is also almost unramified;

— Hypothesis 12.2.1 on the nonvanishing of certain local spherical characters holds true.

Then
ordy=1.%,(Mn) =1 = dimg, H}(F, pr) > 1. (1.2.2)

If moreover p is an admissible prime for Il in the sense of [LTX 122, Definition 8.1.1], then
ordy—1.%,(Mn) =1 = dimy H(F, py) = 1. (1.2.3)

Here a representation of a unitary group U(v) over a non-archimedean local field is called
almost unramified if it has a non-zero vector fixed by the stabilizer of a vertex lattice of type 1
or v — 1; see [Liu22] for the case when v is even. For a comment on the reason for this condition,
see Remark 1.4.2 below.

This result is a consequence of a non-vanishing criterion for certain explicit elements of H } (F, pr1)
arising as classes of algebraic cycles, which we describe in the rest of this section. The stronger
(1.2.3) follows from combining that criterion with the Selmer bounds of [LTX"22] (whose admis-
sibility condition is expected to be mild, see ibid. Remark 1.1.5) or [LaSk] (under different and
often milder conditions on p). In particular, in this case we have that H}(F, prr) is generated
by the class of an algebraic cycle — a result analogous to the finiteness of the p>-torsion of the

Tate—Shafarevich group of an elliptic curve.
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Remark 1.2.1. The history of theorems of type (1.2.2) consists of several works for similar 2-
dimensional Galois representations over CM fields (starting with [PR87] and continuing with
[Nek95, Kob13, Shn16, Dis17, Dis23, Dis22]), together with a very recent result by Y. Liu ad one
of us for a family of higher-dimensional representations [DL24, Theorem 1.7]. The result (1.2.3)
appears to be the first one for higher-dimensional representations, ez aequo with the main result
of [Dis] building on [DL24]; previously, only 2-dimensional cases were known, based on general-
izations of [Kol88].

Remark 1.2.2. Our notation (and the definitions going back to (1.1.1)) suggest that one may
think of £ (M), -Z,(M) as attached to the virtual motive My over F{ whose p-adic realization
is (up to abelian factors)

My, = (Indg? pr1) © As™(pm).
Here, As*(p) = As*(pm1,,) © As*(pm,.,) with the factors defined by
As*(pn,): Gp, — GL(LY ® L")
Gr 39— pn,(9) © pi, (9),
c— (zQy+— Ty ®x)

and the sign x = (—1)" on the v-factor.
Then the p-adic BBK conjecture would rather relate ord,—1.%,(My) with

dimy, H}(Fy, Indg.™ prr) — dimy, H} (Fy, As*(II)).

The first term equals dimp, H} (F, pr1). Under our assumption that II is hermitian, As*(II,) co-
incides with the adjoint representation defined in the opening paragraphs of [NT] (cf. [GGP12,
Proposition 7.4]). By the results obtained there and in [Tho], under some irreducibility assump-
tions on pyy,, we have H}(F{), As*(p)) = 0.

Remark 1.2.3. Theorem C and Theorem D below rely on a decomposition of the tempered part of
the cohomology of unitary Shimura varieties (Hypothesis 11.1.2), which is expected to be proven
in a sequel to [KSZ]. (At a more basic level, we also freely use the results of [Mok15, KMSW] on
automorphic representations of unitary groups.)

Remark 1.2.4. Part of Hypothesis 12.2.1 has been proven in [Dan].

In the next subsection we describe, after some preliminaries, the construction of the Selmer

classes of interest and our formula relating those to the derivative of .%,(My) (Theorem D).

1.3. The p-adic arithmetic Gan—Gross—Prasad conjecture. The cycles of interest arise
from Shimura varieties attached to certain unitary group. We start by describing the representation-
theoretic background.

1.3.1. Incoherent unitary groups and their representations. For a place v of Fy, denote by ¥,
the set of isomorphism classes of pairs V,, = (V,, 4, Vi11,4) of (non-degenerate) F,/Fj ,-hermitian
spaces over F,, where V,,, has rank n and V,, 11, = V,,, ® Fye with e a vector of norm 1. Let
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7° be the set of collections V' = (V,), with V,, € ¥, such that V,,, is positive-definite for all
archimedean places, and for all but finitely many places v, the Hasse-Witt invariant

(Vo) = 0o ((=1)(2) det V..., (1.3.1)

equals +1.

We say that V € #° is coherent if there exists a (unique up to isomorphism) pair of F'/Fy-
hermitian spaces, still denoted V' = (V},, Vj,41), whose v-localization is V. This holds if and only
if (V) = [, e(Vy) equals +1. When €(V') equals —1, we refer to V' as an incoherent pair of
F/Fy-hermitian spaces. For V € #°, we denote by

vav =U(Vyw) C GL/U = U(Vaw) x UViy1,0), (1.3.2)

(where the embedding is diagonal), by HY* C G}* their Fy,-points. When V is coherent, these
are localizations of unitary groups H” = U(V},) — GY := U(V,,) x U(V,,41) over Fy. When V is
incoherent, we still use the notation

H cGY
for the collections (1.3.2), which we refer to as incoherent unitary groups over Fp, and we denote
GY(A%) =[T,¢s GI".

In § 2.2, for each V, € ¥, we fix measures dh, on H, = HY* such that (i) if v is finite, dh, is
Q-valued; (ii) if v is archimedean and V,, is positive definite, vol(H,, dh,) € Q*; (iii) if V € #° is
coherent, [, dh, is the Tamagawa measure on H” (A). We also have measures dg, on G, = G
with the analogous properties.

Suppose that V' € ¥° is incoherent. If v is a place of Fy non-split in F, we let V(v) € ¥ be
the coherent collection with V' (v),, = V,, if w # v, and V' (v), € ¥, is the unique element different
from V,, if v is non-archimedean, and the element such that V'(v), , has signature (n —1,1) if v
is archimedean. We let G(*) = GV(®),

Let % be the set of (isomorphism classes of ) tempered representations of the real group U (n —
1,1) x U(n, 1) whose base-change to GL,(C)/R* x GL,4+1(C)/R* is IIZ,. For a characteristic-
zero field L and an incoherent G = GY', a cuspidal automorphic representation of G(A) over L
trivial at infinity is a representation m = 7°° ® 1, of G(A) over L, such that for every ¢: L — C,
every v|oo, and some (equivalently, every) 73 € mg, the complex representation of G(*)(A)

™’ =’ @,

is irreducible, cuspidal and automorphic. If each n* is tempered and admits a cuspidal automor-
phic base-change to G/(A), we say that 7 is stable; the base-change of 7" is necessarily of the
form II* for a trivial-weight representation Il over L that we call the base-change of m and denote

BC(m).

1.3.2. Arithmetic diagonal cycles. When V is incoherent, we may attach to G = GV a tower of
Shimura varieties (Xx)gcq(as) over F' of dimension 2n — 1, and to H = HY a tower of Shimura
varieties (Y1) K'cH(A>) over I of dimension n — 1. They are proper provided that Fy # Q, a
condition that we henceforth assume.
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The embedding j: H(A) — G(A) induces a morphism of Shimura varieties still denoted
by 7. Consider the (well-defined) normalized fundamental class [Y]° := limg vol(K')[Yx/] €
Jim Ch%(Yx+)q and the arithmetic diagonal cycle 5.([Y]°) € Jim Ch™(Xf)q (where Ch'(Z)q
denotes the Chow group of codimension-i cycles on Z with rational coefficients). The p-adic
absolute cycle class of 7,([Y]°) can be projected to an element

Z € Hy(F, M*™)

where Mtemp — I‘&HK H,t"_l(XKf7 Q,(n))*™P  and the superscript ‘temp’ refers to the tempered

€

part of cohomology (see § 11.1.3).

1.3.3. Gan-Gross—Prasad cycles. Let m be a stable,’ cuspidal automorphic representation of
G(A) trivial at infinity, over some finite extension L of Q,; let II = BC(w). According to
Hypothesis 11.1.2, there is an injective map

7 — Homg,[¢,) (M, pn1),

well-defined uniquely up to scalar multiples. We identify 7 with the image of this map, and define

the Gan—Gross—Prasad functional
Zn:m — Hi(F, pu)
O — Zn(@) = duZ.

We call elements in its image Gan—Gross—Prasad cycles.

(1.3.3)

1.3.4. The p-adic arithmetic Gan—Gross—Prasad conjecture. By construction, we have
Zr € Homyv (a)(m, L) ®1 H}(F, pn1).-

The space Hompyv a)(7, L) is known to be of dimension 0 or 1; in the latter case, 7 is said to
be distinguished. By the local Gan—Gross—Prasad conjecture proved in [BP16,BP20], for a given
representation IT over L as in Theorem A, there exists a unique (up to isomorphism) pair (V)
where V' € 7° and 7 is a representation of GY(A) as above that is distinguished. Moreover,
can be defined over L, and V' is incoherent if and only if e(IT) = —1 (see § 2.5.4).

The following is a p-adic analogue of the arithmetic Gan—Gross—Prasad conjecture [GGP12,
Conjecture 27.1] for unitary groups.

Conjecture 1.3.1. Let IT be a representation as in Theorem B. Assume that ¢(II) = —1 and
that 11 is not exceptional. The following conditions are equivalent:

(1) Ol‘dle.ﬁ/ﬂp(MH) = 1,’
(2) for the unique distinguished © with BC(7) = 11, we have

Z #0.

Remark 1.3.2. According to the p-adic BBK conjecture, both conditions are also equivalent to
(3) dimy H(F, pn) = 1.

SIf 7 is only assumed to be tempered but not stable, we can still define Z, with values in the Selmer group of a
certain Galois representation (see § 11.2.3).
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The implication (2) = (3) is [LTX 22, Theorem 1.1.9] or [LaSk, Theorem 1.4] (each under
suitable conditions on p; see remark (1) following [LaSk, Theorem 1.4] for a comparison of the

two sets of conditions).

As a refinement of Conjecture 1.3.1, we prove (under some conditions) a formula that ‘measures’
the product Z, ® Z,v in terms of the derivative of .Z},(Mi); in order to state it, we need to define

some pairings.

1.3.5. Dualities. Continue with the setup of § 1.3.3. Fix a non-degenerate pairing

(,)m: pn @ pnv — L(1),
and for a compact open subgroup K C G(A®), let (, )x: M™ @ M™ — L(1) be the pairing
induced by Poincaré duality. Then we (well-)define a pairing
(a:m@m’ — L (1.3.4)

by (¢, ¢')r == vol(K)™' ¢ o ug(¢*(1)) for any K C G(A™) fixing ¢, ¢'. Here, ¢*(1): pipv (1) —
M™P*(1) is the transpose, the volume uses the measure [, dgy, and ug : Me™* (1) — M™P

is the isomorphism induced by (, )k

1.3.6. Invariant functionals. If 7w is distinguished, there is a canonical generator

« € HOHIHV(A)(’]T, L)®r HOHIHV(A)(WV, L)
defined as follows. Pick a factorization (, ) = [],(, )x,, where each factor is a pairing on 7, @) .
Then « is defined on factorizable elements ¢ = @y P, ¢ = ®v+oo¢; by the product of absolutely
convergent integrals

ta(o, gb/) = Vol(Ho‘g,dhoo) . H Z(1/2, LHU)_I/ v(m(h)o, qS'),r dhy, (1.3.5)

vfoo v

where ¢: L < C is any embedding, vol(HY, dhso) = []
factors are equal to 1.

vol(HY»,dh,) € Q*, and almost all

v]oo

1.3.7. p-adic heights and main result. Assume that II is ordinary. Then pr is Panchishkin-
ordinary in the sense of [Nek93] (recalled in § 10.2.1). By Nekovai’s theory (see [Nek93] or § 10),
the pairing (, )ir and the natural projection A\: I'r — I'p, induce a height pairing
hx: Hi(F,pn) ©1 Hf(F, pnv) — L ®L.
For & € O(¥)L, set
0L =% —2£(1)] €19, =my/mi ®q, L =T &L.

The following is a p-adic analogue of the refined arithmetic Gan—Gross—Prasad conjecture (cf.
[Xuel9, Conjecture 5.1]), in the spirit of the Ichino-Tkeda refinement of the usual Gan—Gross—
Prasad conjecture. The case n = 1 is essentially equivalent to the p-adic Gross—Zagier formula
as in [Dis17].
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Conjecture 1.3.3. Let V € ¥° be an incoherent pair, and let m be a distinguished, stable,
ordinary, cuspidal automorphic representation of GY (A), trivial at infinity, over a finite extension
L of Qp. LetII := BC(m) and assume that it is ordinary and non-exceptional. Then for all ¢ € m,

¢ €, we have
he(Z+(0), Z7(8) = (M) ™ - 202,(Mn) - (6, )
in Tp,&L.

Remark 1.3.4. This conjecture implies the direction (1) = (2) in Conjecture 1.3.1; the converse
implication is reduced to the conjectural non-degeneracy of h,.

We have the following theorem, confirming the above refined conjecture in certain cases.

Theorem D. Conjecture 1.3.3 holds if we further assume that:

— F/Fy is unramified; in particular, Fy # Q;

— all places v|2 are split in F/Fy;

—p>2nifn>1;

— for every place v|p of Fy, we have that v splits in F and 7, is unramified;

— for every finite place v of Fy that splits in F/Fy, at least one of ., and Tpy1, is unramified;

— for every finite place v of Fy that is inert in F/Fy, mp and Tyy1, are either unramified or

almost unramified, and if 7, , is almost unramified then m,11. s also almost unramified;

— Hypothesis 12.2.1 holds true.

Remark 1.3.5. Besides the p-adic Gross—Zagier results mentioned in Remark 1.2.1, the only other
p-adic height formula in the literature is the recent [DL24, Theorem 1.8]. While our setup and
global approach to the proof are different, a theorem on p-local heights in [DL24] is essential for

us.

1.4. p-adic relative trace formulas and the proofs. Our approach to Theorem D is based
on the comparison of a pair of relative-trace formulas with p-adic coefficients, analogously to the
approach proposed by one of us [Zhal2] over archimedean coefficients. In fact, Theorem A and
Theorem B are also proved by constructing rational and p-adic relative-trace formulas. We give

a brief overview; unexplained terminology will be defined in the main body of the paper.

1.4.1. Rationality. Let us first explain the proof of Theorem A. For each x € Y(C), we have a
Jacquet—Rallis relative-trace distribution

I(—,x): #(G'(A),C) — C

on the Hecke algebra for G'. For a ‘regular’ f' € #(G(A),C), it admits a spectral and a

geometric expansion

> 23(1/27 LX) [[ I, (F500) = I(F o0 = > L(f.x), (1.4.1)

I YEB'(Fo)
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where: II ranges over isomorphism classes of cuspidal representations of G'(A); the I, are local
spherical characters; the variety B’/ = H{\G’'/H,, for certain reductive subgroups H}, H, C G/;
and the I, are products of local orbital integrals.

The only possible sources of irrationality in the right-hand side of (1.4.1) are essentially the
archimedean orbital integrals. However, there is a particularly well-behaved class of f. €
(G (Fyo)) (and corresponding f' € (G'(A))), the so-called (rational) Gaussians, whose
orbital integrals are controlled. Building on [BPLZZ21], we are able to show that for II as in
Theorem A, there exist L-rational Gaussians f’ annihilating every automorphic representation of
G/(A) but II. Moreover, we need to show that one can pick f’ to be ‘regular’ (that is, supported
on suitably regular elements for the group action of H} x H}): this could be quickly done by
invoking the results of [Zhal4a, Appendix A], but we do it in a more explicit way as described in
§ 1.4.6. Then the rationality of £ (1/2,1I, x) can be deduced from (1.4.1).

1.4.2. p-adic analytic distribution. We have a p-adic variant of I(—, x), that we describe at first in
a slightly idealized form. For any ‘convenient’ subgroup K}’O C G/(Fp,p), we construct a distribution

I = Iy A (G (AP)); — O

K},rs,qc

on a certain space of regularly supported, Q,-rational Gaussian elements of the Hecke algebra
away from p. It admits a spectral and a geometric expansion

1

> %Mo) [ A (fl xe) = 7 (F7,x) = /B G AL (14.2)
II uip rsi0

where II ranges over representations as in Theorem B with nontrivial Kz’;—invariants; the 7,
S are O(% )-valued spherical characters and orbital integrals, respectively; and finally, dIﬁrf}%p
is a certain generalized Radon measure on the rational points of B/, C B’, the open subvariety
of regular semisimple orbits. In fact, we construct .# from its geometric expansion, and prove
Theorem B by extracting .Z,(My) from .#.

Remark 1.4.1. This appears to be a new method for constructing p-adic L-functions. Let us
linger on the archimedean input: while previous works relied on the nonvanishing of zeta inte-
grals for explicit cohomological test vectors (as proved by Sun in [Sunl7]), we use instead the
‘spectral matching’ property (proved by Beuzart-Plessis [BP21a]), which relates the value of Iy,
on Gaussians with spherical characters of constant Hecke measures on a definite unitary group,

whose computation is trivial.

Under some conditions on K:,',, we can relax the conditions of regularity on f? by using the
recent work of Lu [Lu]; then the orbital integrals corresponding to non-semisimple orbits need an
interesting regularization featuring Deligne-Ribet p-adic L-functions.

We note that Urban [Urbl1, § 6] has constructed a p-adic Arthur—Selberg trace formula; it
would be interesting to compare or combine our two approaches.

1.4.3. The derivative. For suitable fP, we then have a similar expansion for the derivative of .#.
We will be especially interested in those f” that ‘purely match’ an fP € 2 (GY (AP)) for some
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incoherent V', in the following sense. We have a ‘matching of orbits’ map for all places v

0: Brs(Fpp) — |_| HV”/(FO,v)\GV“,(FO,U)/HVUI<FO,U)
Ve,
with image the set of regular semisimple orbits on the right hand side. The matching condition
on fP, f'P is that, defining unitary-group orbital integrals by

Js(fo) = / fo(RYyh") dhdh!,
HVU (FO,v)2

we should have I,(f},1) = Js)(f) if () belongs to HY*(Fy,)\G"* (Fo.)/H" (Fo,), and
L,(f),1) = 0 otherwise.
For such fP, we have .#(f’?,1) = 0 and the I'r,®Q,-valued expansions

1
D 0% M) [ [/, (£ xw) = 07(£7) = / 0.5,(f') A1y (1.4.3)
11

olp B, (F))

for the derivative. Moreover

05" = D, LA
vfpoo nonsplit in F
with I,(f""?) = #,(fP,1). The v-component of the sum can be nonzero only if v matches
an orbit & of HV (™) (AP)\GY () (AP)/HY () (AP) for the coherent pair V(v) € ¥° that is locally
isomorphic to V' at all places except v.

In practice, unless Kz/’ is suitably symmetric, we are only able to prove the geometric expansion
in (1.4.2) after specialization at a y € Y (p>°), and with a generalized Radon measure I S‘:‘}(Z,”p(xp)
depending on xp; nevertheless we can show that (1.4.3) still holds with I Er?‘}%p = Iﬂrf}%p(l).
1.4.4. Arithmetic distribution. Let V € #° be incoherent, G = G". For a convenient subgroup
K, C G(Fy,), we define another ', ®Q,-valued distribution on a suitable subset of (G (AP))
by

Sk, (17) = MZg T(f7), Z,)),
where ngj is an ordinary modification of the arithmetic diagonal cycle in level K, and h is a limit
of height pairings on the Selmer group of the tempered, ordinary part of H*"~ (X, K, Fo’ Qp(n)).

When the cycles have disjoint support on the generic fiber, the p-adic height pairing admits an

expansion h = >, h, into local height pairings. The disjointness is guaranteed if f has regular

vfoo
support at some place vg.

By results in [DL24,L121], the local height pairing at a place v away from p is related to the
arithmetic intersection pairing on a regular v-integral model, at least after applying suitable Hecke
correspondences to the cycles, and under some vanishing condition for the absolute cohomology
of the model (upon localizing at a non-Eisenstein ideal). After a base change, for suitable levels
we may use the models constructed in the previous work of Rapoport, Smithling and the second
author [RSZ20, RSZ21]; here, a technical difficulty is to verify the vanishing of cohomology in
the case of non-trivial level structure, as required both in order to treat the ramification of II in

Theorem D, and for the place vg of regular support. Once this is settled:
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— for split places away from p, we can show that the local arithmetic intersection numbers vanish,
by refining an argument of [Zhal2, RSZ20];

— for inert places v (thus away from p), by results in [Zhal2] and [RSZ20], the local arithmetic
intersection numbers admit geometric expansions over the orbits ¢ for V' (v), whose terms are
products of local orbital integrals Js(f,/) (v' # v) and arithmetic intersection numbers _Zs( f,)
in a certain v-adic Rapoport—Zink space.

On the other hand, the contribution of p-adic places vanishes: this is proved by a variant of an
argument of Perrin-Riou, which in our higher-dimensional case relies on a recent foundational
result of Y. Liu and the first author in [DL24].

We then obtain a spectral and a geometric expansion

> I = Fe, () = / Yo LI () s o(fo) ALk
™ Bis(Fo) vipoo nonsplit

where: 7 ranges over equivalence classes of automorphic representations as in Theorem D; the

geometric expansion is pulled back to By via the ‘matching of orbits’ map J, and 1y, is the

indicator function of those orbits matching one on GY(): and finally, dI ,‘fg K, is as in (1.4.3).

1.4.5. Comparison. Theorem D is eventually deduced from the spectral sides of an equality
Ix, (7)) = 05k (f7) (1.4.4)

for suitable matching f?, fP.

We prove (1.4.4) by comparing the geometric expansions. By the definitions of local matching
of Hecke elements (which can be globally assembled thanks to the Fundamental Lemma [Yunll,
BP21b]), orbital integrals on either side are the same, thus we are reduced to identities

Hsnw(fo) = 075(f7) (1.4.5)

for inert places v. For the spherical f], f,, the identity (1.4.5) is the Arithmetic Fundamental
Lemma proposed by one of us [Zhal2] and then proved in [Zha2l, MZ]; for certain f, f, of
maximal parahoric level, (1.4.5) is the arithmetic transfer conjecture recently proved by Z. Zhang
[ZZh)].

Remark 1.4.2. We point out the main obstacle to removing the condition of our representations
being almost unramified at inert places from our main theorems. The condition comes from work-
ing with Shimura varieties at “almost self-dual” levels (namely, for vertex-parahoric subgroups
of type 1 or v — 1). Although Z. Zhang’s result on the arithmetic transfer conjecture [ZZh] holds
in greater generality (at maximal parahoric levels), we can only show the vanishing result for
absolute cohomology of integral models alluded to in § 1.4.4 in almost self-dual levels, see Propo-
sition 9.4.2. The proof of that proposition relies on a refined understanding of the cohomology
of the irreducible components of the special fiber, which currently seems only available at almost
self-dual levels. The generalization to other maximal parahoric levels seems a very interesting yet
challenging question.
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1.4.6. Construction of test Gaussians. In order to deduce Theorem D from the comparison, we
need to pick suitable matching fP, f’ that annihilate all terms in the spectral expansions but
those corresponding to m, IT; then we may use the comparison in [BP21a,BP21] of the functionals
I, with corresponding ones, Jr,, that are related to the local components of o = (1.3.5).

The most challenging requirement for the Gaussian f'? is that the spherical character Rutpoo L, (f 'p )
should not vanish, its non-regular-semisimple orbital integrals should vanish, while at the same
time its level should be controlled in order to allow working with nice integral models on the
arithmetic side. This turns out to be a rather hard semi-local problem, which is solved by an
explicit construction of a pair of elements f{)i of Iwahori level (to be used at a pair of split non-
p-adic places), and two explicit local computations: one on the spectral side, which is Proposition
5.2.6 (a result of Liu—Sun); and one on the geometric side, which is part of Proposition 6.1.2,
whose proof occupies the entire § 6. It is curious to note that f{,’ . also occurs in the construction
of the p-adic relative-trace formula (and in fact, this is how we discovered it).

1.4.7. Organization of the paper. After some preliminaries in § 2, this paper is divided into two
parts and en epilogue. In Part 1, we construct the analytic distribution .# and prove the associated
RTF, as well as Theorems A and B. In Part 2, we construct the distribution ¢ and prove the
associated RTF. In the epilogue, we compare the two RTF's to prove Theorems D and C. More
details on the contents of the two parts are provided at the beginning of each.

Acknowledgements. We would like to thank Yifeng Liu for many helpful discussions, and
especially for providing us with the material of § 4.4. We are also grateful to Dongwen Liu
and Binyong Sun and to Weixiao Lu for sharing and discussing with us their respective works
[LiSu, Lu]; to Ryan Chen, Michael Harris, Chao Li, and Eric Urban for their comments on a draft
of the paper; and to SLMath for its hospitality to both of us during the Spring 2023 semester on
“Algebraic cycles, L-values, and Euler systems”, when part of this work was done.

2. NOTATION AND PRELIMINARIES

2.1. Basic notation. We set up some notation to be used throughout the paper unless otherwise
noted.

2.1.1. Fields. We denote by F' D Fy a quadratic extension of number fields, as in the introduction,
and by ¢ € Gal(F/Fp) the conjugation. We denote by A the adeles of Fy. From § 4 on, we will
assume that Fy is totally real and F' is CM.

We denote by ¢ the nontrivial automorphism of F/Fj, and by

n: FE\AX — {£1}

the quadratic character associated with F/Fy. We fix an auxiliary element 7 € F such that
7¢ = —7, and an extension n’: F*\Aj — C* of n.

If F' is a number field and S is a finite set of places of F', we denote by Fg = [],.q Fy,, and
by A%, = H;g g F). If F" C F' is a subfield and ¢ is a place of of F, for notational purposes we
identify ¢ with the set of places of F’ above /.
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2.1.2. L-functions. In the rest of the paper (unlike in the introduction), all global (- and L-
functions valued in the complex numbers are complete including the archimedean factors (this
also includes the ratio of L-functions .Z(1/2,11,x)). If L°(s) is a global L-function, we denote
by

LS’*(S())

its leading term at s = sg.

2.1.3. Groups. We now recall the groups under consideration in this paper, then discuss local
and global base-change from unitary groups to general linear groups. We denote by G, =
Spec Q[Til] the multiplicative group over Q. If G is a (usually, group-) scheme over a global
field Fyy and v is a place of Fy, we denote Gy, := G(Fp,,) with its v-adic topology. We also denote

[G] = G(Fo)\G(A).

For x = (),0 (where in this type of context, ‘(" will always mean ‘no subscript’) and v € N, let
G, . = Resp, /p, GL,. We consider

/

7, and its subgroups

where G  is the Fp-split center of G
jieHy =Gl = G
where j;(h) := [(diag(h, 1),h)], and
Jo: Hy = GJ,0/G] g X Glpq0/Glp = G,

where js is induced by Fy — F.

For unitary groups, we use the notation H", GV introduced in § 1.3.1. We denote by # the
set of isomorphism classes of pairs V = (V,,,V,41 = V,, @ Fe) of F/Fy-hermitian spaces with
(e,e) = 1. When Fj is totally real and F' is CM, we denote by V2 = (V)| the pair such that

Vh,v is positive-definite, and by #° C ¥ the set of (coherent or incoherent) pairs (V,,) such that
Vy = Vy for all v|oo. We partition

Yo =yotuye,
where V' € 7€ if and only if (V) = e.

2.2. Measures. Let Fj be a number field, and let D = |Dp,| be the absolute value of its dis-
criminant. Fixing a nontrivial character ¢: Fop\ A — C*, we denote by dz = [[, dz, the self-dual
measure on A with respect to 1; it satisfies vol(Fp\A,dz) = 1. For a finite place v, let d,
be a generator of the different ideal of Fp, and let D, = |d,|~!. Assume for definiteness that
Ker(ty) = dy'OR,, for all finite places v; then we have vol(Op,,,dx,) = Dy We have
D = Hv)(oo D,, and for a finite set of places S of Fy we define D :== vasoo D,.

2.2.1. Tamagawa measures. If G is a reductive group over a local or global field F, we denote by
Mg the Artin-Tate motive attached to (the quasi-split inner form of) G by Gross [Gro97|. If E
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is a local field, let
Ag = DImG2L(AK(1)).
Then the abelian term in (1.1.1) (including the factor D}‘,:vl) equals Ay, /A

are is in (1.3.2) (for any V, € %,.)
Assume from now on that E is the global field Fy. For a finite set S of places of Fy, let

A% = (D¥)m G/ L5*(0g(1), 0).

ve Where HY G"

Let w be any non-zero top-degree invariant differential form on G. We denote by
dwgy = |wly
its modulus with respect to dz, ([Oes84, §4]), a Haar measure on G(Fp,). We define
d'gu = Ac duge

Then for all finite places v and any open compact subgroup K, C G, we have vol(K,, d%g,) € Q*.
Moreover if G, is unramified and K, is hyperspecial, we have vol( K, d gy) = 1. The Tamagawa

measure on G is

dg = Ag' [] dge. (2.2.1)
v
2.2.2. Variants. We define a variant
dg,, if v 100
dg, = (2.2.2)
! Aaldhgv = AOGO’_ldwgv if v =00
so that dg =[], dg,. The ‘rationale’ for this choice is the following.

Lemma 2.2.1. Suppose G, is compact. Then vol(Go, dgeo) is rational.

Proof. We say that two measures p, p/ are commensurable if p = cu’ for some ¢ € Q*. Let
p =T, tto be the measure on G(A) considered in § 9 of [Gro97], to which all citations in this
proof will refer. The measure p is nonzero by Propositions 9.4, 9.5. For almost all finite v,
Wy = dgy; for all finite v, p, gives rational volume to compact open subgroups (equation (5.2)),
hence it is commensurable with dg,; and p is commensurable with dg (Theorem 9.9). It follows
that dgo is commensurable with p.o, which (again by equation (5.2)), gives rational volume to
Goo- O

We also consider a different measure, for comparison with some of the literature (notably
[Zhal4a, § 2]). Let Z be the center of G, let G* := G/Z; put

Caw(1) = Dy 20z, (GT(1) = DT ImPRAG,

sot that Dy™ Z/QCGm(l)AGadm = Ag,. Then we set

d*gv = CG,U(I)l dTgm d*g = H d*gy

so that
dg = ¢&, () [ dg
v
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and for finite v, dg, = pim Z/QAGadﬂ)d*gv.

2.2.3. Local and incoherent measures. The global measures do not depend on w, but the local
ones do. We fix the following explicit choices:

— if G = GL,, we take
w =det(g)™" /\i,jdgij.
— if G is a (product of) unitary groups over a local or a global field, we fix w as in [Zhal4b, § 2].

If G is a (product of) incoherent unitary groups, we then get a measure on G(A) by (2.2.1), with
a factorization dg =[], dg as in (2.2.2).

2.3. Hecke algebras. Let G be a reductive group over a number field Fp, let v be a place of Fyp,
and let L be a characteristic-zero field, with L = C if v is archimedean or G, is not compact.
We denote by S(G,, L) the space of Schwartz functions on G, valued in L: when Fp, is non-
archimedean, this is the same as the smooth compactly supported L-valued functions, whereas
when Fp, is archimedean this is defined in [Cas89, AG08]. We denote by (G, L) the space
of Schwartz measures on G,: those are measures of the form f dg where f € S(Gy, L) and dg is
the Haar measure fixed above. The field L will be omitted when it is unimportant or understood
from context. For an open compact K, C G,, we denote
1
Ko = Ol dgg) T T

for any Haar measure dg,; it is an idempotent in 7 (G,).

When G, is the group (2.1.1), we define the standard hyperspecial subgroup K C G, to be the
image of GL,(Or,) X GLy41(0F,); when GY» is the product of unramified unitary groups from
(1.3.2), a relative hyperspecial subgroup K¢ C GV is one of the form U(A,) x U(A, @ O e) for
some self-dual lattice A, C V,,,. For S a finite set of places of Fy, and G denoting either G’ or
GY for some V € #°Uyo+ ¥, we consider the Hecke algebra

H(G(A%)) = Q) #(Gy),
v¢S

where the restricted tensor product is with respect to
fo = exks (2.3.1)

for some relative hyperspecial K, C G,. If K =[], K, C G(A®) is an open compact subgroup,
we denote ex = [[, ex,.We say that an element f € J#(G(A>)) is supported in the set S if we
can write f = fs ® [ ¢g0 fy for some fs € #(Gs).

For f € J7(G,), we denote fY(z) = f(z~!). We denote by x the convolution operation
fi* fa(z) = va fi(zg) f2(g~ 1), and sometimes omit this symbol is omitted.

2.3.1. Convention. We stipulate that groups and Hecke algebras act on locally symmetric spaces,
Shimura varieties, and their homology and algebraic cycles on the right; on automorphic forms
on the left.
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2.4. Local base-change and distinction. Let v be a place of Fy. If v is nonarchimedean, G’
is a reductive group over Fp,, and L is a field admitting embeddings into C, we say that an
absolutely irreducible (that is, 7 ®, L is irreducible) smooth admissible representation 7 of GZ
over L is tempered if m ®,, C is tempered for every ¢: L — C.

Let 7, be the set of isomorphism classes of pairs V,, = (Vy,0, V1,0 = Vi o @ Fove) of hermitian
spaces over F,/Fy,. Let Temp(G?)(L) be the set of Gal(L/L)-orbits of isomorphism classes of

irreducible tempered representations of GZ over L.

2.4.1. Local base-change. Let v be a place of Fy. Thanks to [Mok15, KMSW], we have a local
base-change map BC from complex irreducible admissible representations of GY* to complex
irreducible admissible representations of G, whose definition is recalled in [BP21a, § 2.10]. It
has the following properties:

(1) it restricts to a map

BC: Temp(GY*)(C) — Temp(G’)(C); (2.4.1)
(2) being defined by a map of L-groups, it is rational in the sense that it yields a map

BC: Temp(GL)(L) —> Temp(G)(L)

for any characteristic-zero field L;

~ /

(3) when v splits in F, we simply have BC(r) :== 7 K 7V if we identify G}» = mow X Gritow
for the unique V, € ¥,;

(4) when GY» = U(n) x U(n+1) over R, the preimage of II% under (2.4.1) consists of the trivial

representation only;
(5) when GY» = U(n —1,1) x U(n, 1) over R, the preimage
5 = BCTH(IIR) (2.4.2)

consists of the n(n + 1) discrete series representations having the Harish-Chandra parameter

{152,352, ..., %52} on the U(v — 1,1)-component. (See [LTX 22, Proposition C.3.1].)

If v is non-archimedean and 7, respectively II,, is a representation of GX“, respectively G7, over
a field L admitting embeddings into C, we will write BC(m,) = II, if BC(vm,) = «II, for every
embedding ¢: L — C.

2.4.2. Hermitian representations. We will say that a tempered representation II, of G is her-

n—1

7 ~*) is nonzero. By the local Flicker-Rallis conjecture

mitian if the space Homp, (IL,,ny K7
proved by Matringe, Mok, and others (see [Ana, §3.1] and references therein), a representation

I, over C is hermitian if and only if it is in the image of base-change for some V,, € 7;,.

2.4.3. Distinction and the local Gan—Gross—Prasad conjecture. Let v be a place of Fy and let L be
a field of characteristic zero; we restrict to L = C if v is archimedean and V}, is not definite. We
say that a tempered representation 7 of GX” over L is distinguished if the space Hom v, (my, L) is
nonzero, and by the multiplicity-one result of [AGRS10], this space is one—dimensionalvif NONZero.
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It is clear that distinction is a Gal(L/L)-invariant property. We denote by
Temp(H,"\G)(L) C Temp(Gy))(L)

the subset of orbits of distinguished tempered representations.

The following fundamental result is the local Gan—Gross—Prasad conjecture for unitary groups.

Proposition 2.4.1. Let 11, be a hermitian tempered representation of G\, over a characteristic

zero field L; we restrict to L = C if v is archimedean. There exists a unique pair (Vy,,m,) with
Vi, € ¥, and 7, € Temp(H)*"\GY*)(L) such that 11, = BC(m,).

Proof. If L = C, this is proved in [BP16,BP20]. In general, we may assume that there is an
embedding ¢: L < C and apply the result to ¢II, to obtain a pair (V,,7C). By uniqueness, 7$
is isomorphic to its Aut(C/.L)-conjugates. O

2.5. Automorphic base-change.

2.5.1. Rational spaces of automorphic representations. The following discussion is based on [Clo90,
Théoréme 3.1.3]. Let L be a field admitting embeddings into C, and let II = II*° ® 1, be an
absolutely irreducible representation of G'(A) over an L-vector space. We say that II is cusp-
idal automorphic of trivial weight if for every (equivalently, some) embedding ¢: L — C, the
representation II* := (II°° ® IIZ is cuspidal and automorphic. Every cuspidal automorphic rep-
resentation IIc of G/(A) such that II¢ o = IIZ, arises as II* for some II defined over a number
field; the smallest such number field Q(II*) =: tQ(II*°) depends only on Ilc, and II is unique up
to Q(II)-isomorphism.

Denote by €(G')(L) the set of isomorphism classes of trivial-weight cuspidal automorphic
representations defined over L, and by €(G')(L) == €(G/)(L)/Gr, where we recall that Gy, =

Gal(L/L). By [Car12], for every Il € ¢ (G’) and every finite place v, the representation II, of G/,
is tempered.

Lemma 2.5.1. The natural map
€ (G — € (G)

18 an isomorphism.

Proof. This follows from the above discussion and [Clo90, Proposition 3.1, Théoreme 3.1.3]. O

2.5.2. Ramakrishnan’s automorphic Tchebotarev theorem. We will use the following special case
of [Ram, Theorem A].

Proposition 2.5.2. Let IT, II' be two cuspidal automorphic representations of GL,(Afp). Assume
that IL, = I1), for all but finitely many primes w of F split over Fy. Then I1 = 1I'.

2.5.3. Base change. Let V € ¥ or, if Fj is totally real and F'is CM, let V € ¥ Uyo.+ ¥°. Let
G =GY,H=H". For a field L admitting embeddings into C, denote by

¢Q)L) > FH\G)(L)
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the set of isomorphism classes of tempered® cuspidal automorphic representations of G(A) that
are trivial at infinity, and its subset of representations that are H(A)-distinguished. We also put

¢(G)(L) =F(G)L)/Gr >  CH\G)L):= F(H\G)(L)/GL.
We will view € (G'), €(G) and ¢ (H\G) as ind-finite schemes over Q.

Definition 2.5.3. Let V € #, and let G = G". Let 7 be a (complex) automorphic representation
of G(A) which is tempered everywhere, and let IT be an automoprhic representation of G'(A).
We say that II is a weak automorphic base-change of w, and write IT = BC(w), if for all but
finitely many places v of Fy split in F', we have II, =2 BC(w,) for the local base-change of (2.4.1).
We say that II is a strong automorphic base-change of 7 if I1,, =2 BC(m,) for all places v.

Remark 2.5.4. By Proposition 2.5.2, a weak automorphic base-change of 7 is unique up to iso-
morphism if it exists, which justifies the notation. Moreover by [Mok15, KMSW], if II is a weak
automorphic base-change of 7, then II is a strong base-change of 7. From now we will simply
write the (automorphic) base-change without adjectives.

Suppose now that Fy is totally real and F is CM. Let V € #°, let G = GV, and let L be a
characteristic-zero field. Let 7 be a cuspidal automorphic representation of G(A) over L which
is trivial at infinity, and let IT be a trivial-weight cuspidal automorphic representation of G'(A)

over L. We say that II is the cuspidal automorphic base-change of w, and write
IT = BC(m),

if for every ¢: L — C and every finite place v, we have (II, = BC(tm,). We say that = is stable
if it admits a cuspidal automorphic base-change over L; we denote by

C(G) (L) C€(G)(L), E(G)L)* C¢(G)(L)

the subsets consisting of (orbits of) isomorphism classes of representations that are stable.
Note that by the definitions and the rationality of local base-change maps observed in § 2.4.1,
the stability condition is Galois-invariant, so that the above definition makes sense.

2.5.4. Hermitian automorphic representations as the image of base-change.

Proposition 2.5.5. Let I be a cuspidal automorphic representation of G'(A) with s = TI2,.

The following are equivalent:

(1) 11 is hermitian;

(2) for every V. € ¥ such that GV is quasi-split at all places, there exists a cuspidal automorphic
representation 7' of GV (A) such that T1 = BC(7');

(3) for some V € ¥°, there exists a cuspidal automorphic representation m of GV (A) over C,
trivial at infinity and tempered everywhere, such that II*° ® 1o, = BC(w).

(4) there exists a unique pair (V,7) with V€ #° and = an HY (A)-distinguished cuspidal auto-
morphic representation © of GV (A) over C, trivial at infinity and tempered everywhere, such

that TI® © 1., = BC®(r).

6That is, tempered at all finite places.
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Proof. That (1) implies (2) is the automorphic descent of [GRS11]. Assume (2) holds for the
representation 7' of GV’ (A), and let V € ¥° agree with V’ at all finite places. If V € #°F, let
V"=V and let 7" = «'; if V€ ¥, let v be an archimedean place of Fy, let V" = V (v), and
let 7" = 7'" @ w5 for any 73 € 1% = (2.4.2), a representation of GV"(A). Then II, = BC(x”) for
all v, so that by [LTX 22, Proposition C.3.1.1 (1)], 7" is automorphic with base-change II. Let
7 = 1" ® 14, which is a representation of GV (A) over C trivial at infinity. Then by definition,
BC(m) = II*® ® 14, so that (3) holds. The implication (3) = (1) follows from [Mok15, KMSW]
together with the special cases of base-change for real groups stated in § 2.4.1 (4)-(5); a simpler
alternative proof, when II is supercuspidal at some split place, is given in [BPLZZ21, Theorem
412 (2)].

Suppose now that (1) and (3) hold. By Proposition 2.4.1 and [LTX"22, Proposition C.3.1.1
(1)], we can modify the pair (V,m) of part (3) locally at finitely many places so that the resulting
representation satisfies the properties of (4). O

Corollary 2.5.6. There is a sub-ind-scheme
%(G/)her C (K(G/)

parametrising those trivial-weight cuspidal automorphic representation of 11 of G'(A) that are
hermitian. Moreover, the base-change map gives an isomorphism of Q-ind-schemes

BC: |_| HV\GV st %(G/)her (251)
Veye
Proof. This follows from the equivalence (1) < (4) in Proposition 2.5.5. O

Remark 2.5.7. For e € {£}, let € (G')P"¢ C € (G')her be the subset of those representations with
e(Il) == e(II,, x II,,41,1/2) = €. By [GGP12, § 26, discussion of Question (1)], we have

%(G/)her,e — BC < |_| CK(HV\GV)St> )

Veyoe

Remark 2.5.8. Similarly to the above, for a characteristic-zero field L we may define the no-
tions of discrete (rather than tempered cuspidal), trivial-at-infinity automorphic representation
of GV(A) over L, and of isobaric (rather than cuspidal) trivial-weight automoprhic representation
of G’(A) over L; Proposition 2.5.2 remains true with ‘cuspidal’ replaced by ‘isobaric’. Denote the
corresponding sets of isomorphism classes by €*(G")(L), €*(G')(L). By the variant of Shin’s
result in [Gol14, Theorem A.1] stated in [LTX 22, Proposition 3.2.8], we have a base-change map
BC: €4(GY)(L) — €4(G")(L).

2.6. Relative traces.

Definition 2.6.1. Let L be a normed field. Suppose given data D = (IIy,II3; 9, 8,T) consisting
of:

— L-vector spaces 11y, 1Is;

— a bilinear form ¥: II; ® IIs — L;

— a bilinear form S5: Iy ® IIy — I', where I is a finite-dimensional L-vector space;
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— amap T': II; — IIy,

satisfying:

— fori = 1,2 we can write II; = hg AeA IT; » as a filtered direct limit of finite-dimensional L-vector
spaces and injective maps, in such a way that:

— for every \ € A, i, o1, 18 a perfect pairing.

Let us say that a basis {¢} of II; is admissible if there is a presentation I} = lig/\GA IT; ) with
the above properties, such that {¢} N1II; 5 is a basis of II; » for all A € A; if this is the case we
denote by {¢"} the basis of IIs whose restriction to Il ) is the ¥-dual basis of {¢} N1 ).

We define the trace of T relative to B, ¥ to be

TH(T) =" B(Te,¢"), (2.6.1)
o

provided the sum is absolutely convergent and is independent of the choice of an admissible basis

{(;5} of I1;.

Remark 2.6.2. If I' = L and 8 = 1, we recover the usual notion of trace. In the examples of
interest to us:

— when L is not C, the sum (2.6.1) will have only finitely many nonzero terms;

— we will have 8 = h o (P} K P;) for some linear functionals P;: II; — S; valued in an L-vector
space S;, and some bilinear form h: S; ® So — I'. (In fact, in the first part of the paper we
will only consider S; = Sy =T = L, and h equal to the multiplication map.)

2.6.1. Relations between different relative traces. We give a preliminary definition. In the situa-
tion of Definition 2.6.1, let ay € Endy (Ilg). Let p: A — A be a strictly increasing function with
cofinal image such that ag(Ilzx) C Iy ,n). We define the 9J-transpose of az to be the unique
ozg € Endy (IT) whose restriction to Iy () is the transpose of Q9|1 for the restriction of .

Lemma 2.6.3. Let D = (II,11;9, 5, T) and D' = (I1},115;¢, 5, T") be data as in Definition
2.6.1. In each of the following, suppose that all the data in D, D' are equal except for the indicated
differences.

(1) Suppose that ' = B o (1K ag) for some ay € Endy(Il3). Then
T(T) = o5 (T'ad),
where ag € Endy (I1y) is the ¥-transpose of as.
(2) Suppose that 9" =9 o (an Kid) and T' = Tay for some L-isomorphism aq: 11} — I1Iy. Then
(1) = T, (1),

3) Suppose that 11 C II; are all direct summands, that ¥ = O\ o1 s a perfect pairing (in the
(3 | 1® 2
sense that it satisfies the condition of Definition 2.6.1), and that T(Ily) C ITy. If B’ = By e,
and T = Ty, , then
T(T) = Tl (T").

The proof is elementary linear algebra.
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Part 1. p-adic L-functions and the analytic relative-trace formula

We study Rankin—Selberg L-functions and the related Jacquet—Rallis relative-trace formulas
in a sequence of contexts. In § 3, we review the theory in complex coefficients. In § 4, we
construct a Jacquet—Rallis RTF in rational coefficients and at the same time prove Theorem A
on the rationality of twisted Rankin—Selberg L-values. The construction relies in particular on
the existence of suitable Gaussians, obtained from a refinement of the results of [BPLZZ21]. In
§ 7, we construct an RTF in p-adic coefficients and at the same time prove Theorem B on the
existence of p-adic L-functions. The construction relies on some local theory and in particular
on a suitable family of explicit test Hecke measures at p-adic places: the theory is developed
on the spectral side in § 5 (whose centerpiece is an explicit calculation of Liu-Sun) and on the
geometric side in § 6 (whose centerpiece is a new explicit calculation of orbital integrals for the

aforementioned test Hecke measures).

3. JACQUET-RALLIS RELATIVE-TRACE FORMULAS

We consider the traces of Hecke operators relative to two period functionals and the Petersson
inner product on automorphic forms for G, and compare (the resulting local terms) with a parallel
relative-trace distribution for G. The substance of this section is not new, rather it recalls some
related work done by previous authors, particularly [JR11,Zhal4b, BPLZZ21]. We omit detailed
discussions of convergence issues, for which we refer to [Zhal4b] or [BP21, Appendix A].

3.1. Period functionals and the distribution. Let <7 (G’) be the space of automorphic forms
on G'(A), and let o,sp(G’) be its cuspidal subspace. We endow ousp(G’) with the bilinear
Petersson product

I (p1, ¢2) = o #1(9)p2(9) dg.

3.1.1. Period functionals. We define two functionals on oZ,sp(G'(Fp)\G'(A)).
For x € Y(C), the (x-twisted) Rankin-Selberg period is the functional

Py, (9) = ¢(h1)x(h1) dhy.
[H]
where x(h1) == x(Np/p, det h1),
The Flicker—Rallis period is the functional
Py(¢) = ¢(h2)n(ha) dha,
[H5]
where n(ha) = n(det(hy,)" " det(hyo1)") if ha = ([hn], [hnt1])-

3.1.2. Relative-trace distribution. We say that f' € #(G'(A)) is quasicuspidal if R(f’) sends
o (G') to @eusp(G') (cf. [BPLZZ21, Definition 3.2]), and we denote by J#(G’'(A))qc the space of
quasicuspidal Hecke measures.
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Definition 3.1.1. We define a relative-trace distribution on J(G(A))q x Y (C) by
P ®P:
I(f',x) = C Ty 2 (R(S),

where the constant
o Ao Bt (3.1.1)
TA2 A o
H G’

is motivated by rationality considerations.

We note that the above definition does fit within the setup of Definition 2.6.1: we may write
Fonsp(G) = 1 e (G)F0=0
(Ka)
as K varies among compact open subgroups of G'(A*°) and a among finite-codimension ideals
in the center of the universal enveloping algebra of Lie G_. The relative trace is well-defined by
(the proof of) [Zhalda, Theorem 2.3]. (See also [BPCZ22, Proposition 2.8.4.1] for a more general

result in a framework similar to ours.)

In the next two subsections we discuss the two expansions of I: a spectral expansion, in terms
of automorphic representations, and a geometric expansion, in terms of orbits (double-cosets).

3.2. Spectral expansion. Let II be a cuspidal automorphic representation of G’(A), which by
multiplicity one we may and do identify with a subspace of @usp(G’). We define a distribution
on S (G'(A)) by

P P, v
In(f',x) =C- Trﬁll]’n’x 2UETI(),

where we use subscripts to indicate the restriction of period functionals and Petersson product
to II, IIV, TI @ I1V.

We define some local periods, in order to factorize I.

3.2.1. Whittaker models and rational structures. Let ¢: Fo\ A — C* be a nontrivial character,
and let

Ur = (5 Teyn(): F\AF — C*.

We inflate ¢)r to a character of Ny, (Ag,) by ¥p,(u) = wF(Z?:_f uii+1). Let II, be an automor-
phic representation of G, (A). Its ¥-Whittaker model #;,(II,) is the image of the map

W 11— C®°(N,(A)\GL,(A),¥F,)

6— Wal) = [ 0P, () (3:2.1)

The 1)-Whittaker model of II = II,, K II,41 is #(11) = #i5(I1,) B #4(IL,11); it has a G'(A)-
factorization %y (II) = @, #y, (I1,).

We now consider rational structures, along the lines of [RS08, § 3.2]. Let v be a finite place
of Fy with underlying rational prime ¢, and suppose that II, is a smooth irreducible admissible
representation of G, over a subfield L C C. For 0 € Aut(C/L), let a; € Z; be its image under
the composition

Aut(C/L) — Gal(L(pe=)/L) — Z}
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of the restriction and the cyclotomic character. Let t,, = diag(ay~!,...,1) and let ¢, =
(tons tont1) € Gi,. Then we may define an action of Aut(C/L) on #4, (II, ®, C) by
W (g) = a(W(t;'9)); (3.2.2)

we will denote by #4,, (II,) the space of Aut(C/L)-invariants; it is an L[G)]-module satisfying
Wy, () @, C = Wy, (11, @1 C) (see [RSO8, Lemma 3.2]).

3.2.2. Factorizations of the periods and Petersson product. For the following factorization results,
see [Zhal4b, § 3] and references therein. Let €, (7) := diag(7vT¢~ 1, 7v+=2 ... r71) € GL,(F,),
where € € {0,1} has the same parity as v.

For W = W,, ® W41 € #y,,(11,), define’

n+1
(27Xm¢v)( ) / .
Pi1, (W) = W (51 (h1))xo(h1) d*hy,
1,10, (W) L2005 © X0) acmnan (i (J1(h1))xw (1) d'hy
., ; (n+1)
Py (W) o= SIS D e gk,

. ©L(1,10,,As7) Bl

/ By
Pin (W)= / w, ([ o1 (Th2 no(det hay_1)” L diha 1.
” Ny —1(Fo,0)\GLy—1(Fo,0) 1
(3.2.3)

where L(1,1I,,As™) = HZI:L L(17HV,’U7AS(_1)V71)-
For W € #y,(IL,), WY € #5; (Hq\}/), define

n+1
O, (W, W) = L(1, T, xI1Y) ! H/ w, [ wy (| 9 dig,_1.
Nu 1 \GLV 1 ) 1 1

Remark 3.2.1. With our normalizations, when all the data are unramified and W (1) = WY(1) =

1, we have
Pit,x, W) = Pom, (W) = O, (W, W) =

Moreover, the three functionals are rational in the following sense. If 11, is defined over a subfield
L C C, by (3.2.2) and a change of variable we see that for every o € Aut(C/L) we have

P, xg(W?) = oPi, ., (W), Pon,(W?) =oPyn, (W), O, (W, W) = odm, (W, WY).

We may now state the factorization (see [Zhal4b, §3] and § 3.2.4 below): for any ¢ € II
with factorizable 1-Whittaker function W = ®,W, € #,(II), and ¢V € IIV with factorizable

7Our definition of Py, differs form the one of [Zhal4b] by the factor £(%,7, ) (n;rl), cf. § 3.5.1 below.
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¢-Whittaker function WY = @,W,’ € #4(I1"), we have
L(1/2,T1® x)

Py (¢) = Ay (b o) )HPLHU,XU(WU)

Pyn(¢Y) = nin + DLA*HI/ 1L, A5 HP2 m, (W, (3.2.4)
* v

19H(¢a d)\/) = (n i 1)25,1 11 % H Hﬂl‘[v anWfL}/%

where 4 is the Tamagawa number of G’. In the factorization of P, we have used that 5(%, n,) =
1.

3.2.3. Local spherical character. We define a character

P1 My, X’U®P2Hv

IHU (fv?Xv) - IHv(fv?X'U7¢'U) = 191-[ (R(f{)))

on .»#(G)). This is the same as in [Zhal4b], except for Petersson inner product on G rather than
on G*, and our normalization of measures (so we have the same factors Agyad).

3.2.4. Comparison with the normalization of [Zhal4b]. Let
G'=G! x Gy,

and let us identify representations of G/ with representations of é; whose central character is
trivial on (Fy,)?. In [Zhal4b], one considers a distribution THU on S(G) (denoted there by Iluiv),
and a global distribution Ir; on S(G’(A)) (denoted there by I).8 If f = ®,f, € #(G)) and
f=®uf, € S(G)) are related by (3.3.14), then

A A

H/ad7 H/ad7 n+1
I, (for o) = — o0 o )23 w) ) T (o),
ad
G (3.2.5)
1 & (1) 1 1

In(f,x) = In(f,x) = In(f,%);

vol([ZarT. 4°2) Gy, (D, (D 4Gy, (G, (1)

where the factor vol([Za/],d*z) = 4L(1,n)? = 4¢¢,(1) accounts for the fact that the Petersson
product in [Zhal4b] is defined via integration on [Gd] = [G'*] and not [G/].

3.2.5. Factorization of the spherical character. Define

L(1/2,11® x)
A L(1,11, As*) ’

which agrees with the definition made in the introduction as noted in § 2.2.1. We use the analogous

Z(1/2,11, ) =
notation relative to the constituents I, x, for v a finite place of Fy or v = co.

8Strictly speaking only x, = 1, is considered in [Zhal4b], but the definition remains valid in our more general
case too. When this is again the case in the rest of the paper, we will simply cite [Zhal4b] without repeating this
remark.
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Proposition 3.2.2. For all f' = ®,f, € #(G'(A)), there is a factorization

1 Z£(1/2,11
( / : ’é)ﬂ) IZIIH,v(f{ﬂXU)

In(f',x) = ZAH'E(%,X2)( i

Proof. Using (3.2.5), the factorization in [Zhal4b, Proposition 3.6] is equivalent to

1 Ag —(") L(1/2,1T® x

Iy — ol Bo LO/2108x) /
In(f) =R Ay ¢ L(1,11, As") [, (7 x0)
1 2 v

By the definition of C'in (3.1.1) and of .Z, this is equivalent to the asserted formula. (Equivalently,
the factorization follows from (3.2.4).) O

We will state the spectral expansion I = ) [y I as part of Proposition 3.3.6 below.

3.3. Geometric expansion. The distribution I also admits an expansion as a sum of orbital

integrals, which we review.

3.3.1. Orbit varieties. Let
B’ = H|\G'/H]
be the categorical quotient, which is an affine variety over Fy, cf. [Zhal4a]. Let
S={veG1 [77=1n}.
The maps

- —1
9= (Gn,In+1) — Gx =Gy, "Gnt1,  Gntl — Gni19pis (3.3.1)

induce maps and isomorphisms

5: G — Gl /Gl =S, B' = G, 0\G11/Gri10 = Grp\S.
The second map in (3.3.1) also yields a bijection on F'-points Gj, 1 (F')/Gj, ;1 o(F") = S(F") for
any field F' D Fy.
Representing a point of B’ by a matrix in S given in (n,1) x (n,1) block decomposition, the

invariant map
inv: B' — Resp/g, Al

(3.3.2)
c d

gives an embedding into affine space.

( A ) s ((Tr(ATA))y, (AT 1), d)

3.3.2. Regular, plus-regular, and semisimple orbits. We define three (quasi-)invariant functions
on S (hence on G’) by

D+(S) = det(esﬂrl, €£L+187 cee 7€£L+18n)
D™ (s) :==det(ent1, S€ni1s---, 8 €nt1) (3.3.3)
D(s) = det((e}, 15 ens1)o<ij<n) = DD (s),

n+1
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where epp1 = (0,...,0,1)' € F". We denote by G/, C éi‘egi C G’ the open subschemes
defined, respectively, by D # 0 and D* # 0, and by

G,CGl +cd

reg

the respective images in G'; thus Gi, = G/, egt [ G! eg—- The function D descends to B’ and we

denote by Bl its non-vanishing locus, whose preimage in G’ is Gi.

Remark 3.3.1. The involution ¢° := ¢~ 5t on G/ satisfies D*(s(g°)) = DT (s(g)), and it descends

/

to G'; in particular, it swaps G/ gt and GJ .

Let F' D Fy be a field. An H}(F') x H;(F’)-orbit in G'(F") is said to be regular if its stabilizer
is trivial; semisimple if the orbit is Zariski-closed.

The regular semisimple orbits in G/(F”’) are in bijection with B/ (F”’), and the preimage in
G/(F') of any v € Bl,(F’) consists of a single orbit. The preimage of a general v € B'(F’)
contains finitely many regular orbits (but possibly infinitely many orbits), of which exactly one
belongs to G egt (F ') and exactly one belongs to G/ eg— (F ') (these two coincide precisely when
v € Bis(F")). We will call the elements in G| . (respectively G

‘o g_) plus-regular (respectively

minus-regular). We refer to [Lu, § 2.4] for more details.

3.3.3. Local orbital integrals. Let v a place of Fy, and let v € G’ . Then for all x, : Fy, — C*,

regt v
we define the orbital integral

dh hl,v du h2,v

dign (3.3.4)

I (fl ) = / / P R xo (ha ) ()
Hi, JHy,
where we recall that f//d’g, is a function. If v/ € Gﬁsm or fI is supported in the regular locus of
G, the integral is absolutely convergent. In general, Lu proved that the integral is convergent
when y is the product of a unitary character and |- |* for +Re(s) < —1 [Lu, Lemma 5.14], and
gave the following regularization.

Proposition 3.3.2 ([Lu, Prop. 5.12]). Let %)3:70 be the set of functions, on the space of smooth
characters of FOX,U, of the form

m
Xo — [[ (£ F 4. Oeomo) ™ © Niysmy), (3.3.5)
j=1
for varying integers m > 1 and finite field extensions F}/Fy; and let ZF be the set of finite
0 v
products of functions in %io.

Let ' € G;egi,v' Then one can define an element

LV’ S %vi,
such that the following hold.
(1) Ly only depends on the Hy, x Hy -orbit of o', and it equals 1 if and only if 7' € G

!
rs,v’

(2) For unramified data (the precise meaning is given in [Lu, Prop. 5.12 (4)]), we have

I (£ x0) = Lar(xo)- (3.3.6)
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(3) Define a normalized orbital integral by

IP/( 1/;7 X'U)

3.3.7
LW’ (Xv) ( )

I’y’(fi’}? XU) =
Then for every fized character x; of FOX,I,-'

(a) if v is archimedean, the function s — L,(f}, Xx3|-|°) eztends to an entire function on C;

(b) if v is non-archimedean, the function

X — L/(f3: Xox)

on the space of unramified characters of Fy, is a polynomial in x(w,), whose coefficients

are rational over the field of rationality of f' and xo.

Remark 3.3.3. The work of Lu, [Lu], treats all regular orbits, and all the results of the present
paper involving plus-regular orbital integrals could in principle be extended to general regular
orbits as well. Nevertheless, for our purposes in the general construction of the p-adic relative-
trace formula, we will only need to consider plus-regular orbital integrals. For this reason, we will
restrict our attention to plus-regular orbits, which introduces some simplifications. (In fact, for
the applications in the proofs of our main theorems, we will not need to consider any regularized
divergent orbital integrals; however we consider the more general p-adic relative-trace formula to
be of independent interest.)

Let v be a place of Fy, and let o € G;eg+ o For hy € Hi,, hy € Hy ,, we have I yp, (=, Xv) =
Xo(h1)nu(h2)Ly (=, Xv). We then add a renormalization factor to the orbital integral so that,
when x, = 1, it only depends on the orbit of 4. Let n/: F*\ A5 — C* be a character such that
n"AX = 7. With the notation v} and s = s(v/) as in (3.3.1), we define a multiple of the invariant
Dy (s) by

ko() =1 (det('y,’k)6 det s+ 2 det(el, 1, el s, ., eflﬂs”)) (3.3.8)
where € :== 0 if n is even, € := 1 if n is odd. This equals the transfer factor denoted by €2, in
[Zhaldb, (4.12)-(4.13)] (cf. § 3.5.3 below), and it satisfies

Km(hl'?/h% Xv) = ﬁv(hz)f%(V', Xv)a

and

[ =1 (3.3.9)

for all ' € G/ ogt (Fp). We also record the following rationality property.

Lemma 3.3.4. Let v € G Then k(') is a square root of 77@(—1)7(";1).

v,regt”
Proof. With notation as above (but dropping the apex from «, for lightness), write n = 2m + ¢
and let

a:=det(el1,... €, 1s") det s~ det(7,)€ = det(ef 157 el 1s™) det AL,

which satisfies #, (7', 1) = 1,(a). Using s¢ = s~ and 7¢ = s~ 1v,, we find

n+1

a® = (—1)( 2 )det(e;Hs_m_e, ceb ™) dety, = (—1)(n;1)a
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where (—1)(nJ2r1) is the sign of the longest permutation on n + 1 elements. The assertion of the
lemma follows. U

We now define, for v € B,
Ly (xw) = Ly (xo)
T (f3xw) 1= mn(y') L (£, x0) (3.3.10)
L(fhxw) = ko(V) Ly (f1 Xo)-

for any +' in the unique plus-regular orbit above v. When x, = 1, it is straightforward to
check the right hand side is independent of the choice of 7/; in general, our notation is somewhat
abusive, but the ambiguity can be cancelled out in the global context as discussed next.

3.3.4. Global orbital integrals. Let %(T be the set of functions on Hecke characters of Fy of the
form .
x+— [J L =4, 0en) 7 o Neyymy),s (3.3.11)
j=1
for varying integers m > 1 and finite field extensions Fjj/Fp, and let Z1 be the set of finite
product of functions in % .
For any v € B/(Fp), by [Lu, §6] we can define an element L, = [[, L, in #Z. For any
= f € %”(G’(A)) and any character y € Y (C), we put

A
L(f,\x)=C AH AH’ HI (forxv) = Fsz(X)HI'y(lean)v (3.3.12)

where all but finitely many factors equal 1 (the finite set of exceptions depends on v); we take the
orbital integrals in the product to be defined as in (3.3.10) by means of a common rational plus-
regular lift v/ € G/(Fp) of , which ensures that the product is well-defined. When v € Bl (Fp),
it is clear that we have

_ dhidh
L0 =C [ [ P ) T,
1(A) JHy(A) 9

In fact, this last formula makes sense for any locally constant function y: F;\A* — C.

3.3.5. Comparison with the normalization of [Zha14b] In [Zhal4b, §4], one considers the distri-

bution on Hecke functions (and not measures) on G, ,, defined by

rs,v)

T g — d*hy d* oy

I'Yl(flli’xv) ::/ f{;(hl,zl)'V/hZ,v)X(hl,v)n(hlv) #
Hl,'u H2,'u d g

(and denoted there by O(v, f’)), and the global analogue

)= [T (fixo)-



GAN-GROSS-PRASAD CYCLES AND DERIVATIVES OF p-ADIC L-FUNCTIONS 33

Let p: G, — G, be the projection, and let
pe: S(GY) — S(Gy)

. . 3.3.13
j <g ~@— [ fC d*z) . 1)

Suppose that f/ = ®,f, € #(G'(A)) and f' = ®,f € S(G'(A)) are related by

fo=pe(f)) & go. (3.3.14)
Then A A
H/adﬂ} H/adﬂ) ~ .
Iw(flln Xv) = o (7') # Ly (fo xv),
o ¢ (3.3.15)
I’Y(f,7X)_C G/ HI fm
Gy (1 cH, :
We will also denote by

ps: H(Gy) — H(Gy) (3.3.16)

the pushforward map of Hecke measures.

3.3.6. Relative-trace formula for I. We describe the spectral and geometric expansions of I. For
S a finite set of places of Fy and ? € {rs,reg®}, an f° € 7 (G'(A”)) is said to have ?-support
if it is in the span of those ®,¢gf, such that for some place v, f; is supported on G5 ,. We

introduce a weaker notion.

Definition 3.3.5. We say that " € #(G/(A®)) has weakly ?-support if it belongs to the
subspace spanned by those pure tensors ®,¢g 1, such that for every v' € G/'(Fy) — G,(Fp), there
is some v ¢ S such that f] vanishes on the Hj, x Ha,-orbit of /.

Proposition 3.3.6. Let f' € 7 (G'(A)) be quasicuspidal with weakly plus-regular support. Then
for every character x € Y(C), we have
ZIH(f/7X) :I(f/7X) = Z I’Y(f,7X)' (3317)
1 ~EB/(Fo)
where both sums are absolutely convergent, the first one running over the cuspidal hermitian

automorphic representations of G'(A).

Proof. For the spectral expansion, see [BPLZZ21, Prop. 4.1] (where it is assumed that x = 1,
but the proof extends to the general case). The geometric expansion is [Lu, Theorems 3.1, 6.1];
the definition of the summands in loc. cit. contains extra terms corresponding to regular but

non-plus-regular orbits, but those vanish by our assumption on f. O

3.4. Relative traces for unitary groups. We review the Jacquet—Rallis RTF for unitary

groups.

3.4.1. Orbit spaces. Let v be a finite place of Fy or v = 0o, and recall from § 2.1.3 the set ¥, of

pairs of hermitian spaces. For V € ¥, let

B,y = H/\Gy /H}, (3.4.1)
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which is isomorphic to the quotient of U(V,41) by the adjoint action of U(V,,) via the map
[(Gn, gn+1)] — [gnggj_l]. Differently from the linear case, B,y is a subset (open for the v-adic
topology if v is non-archimedean) of the set of Fy, ,-points of BY := HY\GY /HY . Similar to § 3.3.2,
we say that g € GY is regular (for the HY x HY-action) if its stabilizer is trivial; semisimple
if its orbit is closed. We denote by G, C GY the (Zariski-open) subset of regular semisimple

s,V
4

. . . 14 _ . . _ . .
rs,v 168 image in B . When v = oo is archimedean and Vo = V3, is the positive

elements and by B
definite pair, every orbit is regular semisimple, and we denote B3, := Boo v -

Consider now the global case, and let V € #. We similarly define GY, ¢ GY to be the sub-
group-scheme of those ¢ with closed orbit and trivial stabilizers for the HY x H"-action. For

uniformity of notation, we denote by
Bis(Fo)v C BYL(Fp) (3.4.2)

the image of GY.(Fp).

3.4.2. Local distributions. Let § € Bys, v and let &' € G,

S,V

orbital-integral distribution Js5, = J. (}/ , on the Hecke algebra of G, = GV by

be a preimage of §. We define a local

dizd’
I50(f0) ::/U/Hy folz™'d'y) :;gy- (3.4.3)

For m, a representation of G\, = GY, we define a spherical character Jp, = . ‘2 on J(Gy) by

Te (£ = Z/2BCm) T [ T (rbml 1) b (3.4.4)

By our choices of measures, for all finite v, if f, is L-valued (for some subfield L C C) then so
are Jé,v(fv)a Jﬂ'u(fv)-

3.4.3. Comparison with the normalization of [Zhaldb]. Let f, € #(G,) and f, € S(G,) be
related by
fo = fod*g. (3.4.5)
(1) Let jﬁv be the spherical character on S(G,) defined in [Zhal4db, (1.8)] (using the measure
d*h, on Hy, as in § 4 ibid.), and denoted there by JETU. Then

Te, (fo) = Dy*Apgaa T (o), (3.4.6)

(2) Let Jj be the orbital integral distribution on S(G,) defined in [Zhaldb, (4.2)], and denoted
there by O(9,-). Then
(AHad,v)

2 ~ .
Js(fo) = AGTJ‘S(f”)' (3.4.7)

3.4.4. Global relative-trace formula. Let now V € ¥ be coherent, and let G = GY. Let ¢: Deusp(G)®
Yeusp(G) — C be the Petersson inner product (with respect to the Tamagawa measure on [G]),
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and consider the H-period
P=PV: «Q{cusp(G) —C
(3.4.8)
¢ — oé(h) dh
(H]
We define the following distributions on (subspaces of) 7 (G(A)):

— let A (G(A))ge C H#(G(A)) be the quasicuspidal subspace (defined as in §3.1.2). For f €
H(G(A))qc, we define

I(f) = Try " (R(f));
— let 7 be a cuspidal automorphic representation of G(A). For f € 7 (G(A)), we define
Tn(f) = Tryr " (v (£));
— let 6 € Bys(Fp). For f = ®,f, € H(G(A)), we define
A
Ts(f) = @ rv[Ja,Um) = 1;[ Tsw(fo) - T3 oo (Foo)- (3.4.9)

Analogously to Proposition 3.3.6, we have the spectral and geometric expansions ([BP21,

Proposition A.2.1])
Mo I(H=Jd= D Il

5€Bys(Fo)
valid whenever f € #(G(A)) is quasicuspidal with weakly regular semisimple support (in the
analogous sense as to Definition 3.3.5), where the second sum runs over cuspidal representations
of G(A).
However, unlike the factorization

1 1 2,11 X
IH(f/7X) 4 / n+1 H v fv’Xv
Ay - 8(2,

of Proposition 3.2.2, the analogous factorization

1
J7r - Eg(l/zna 1) 1:[J7ru

for a stable cuspidal tempered representation 7 of G(A) is highly nontrivial, and equivalent to the
Ichino-Tkeda conjecture for unitary groups [Zhal4b, Conjecture 1.1], whose proof is completed
in [BPLZZ21]. The proof, which we briefly review in § 4.6 below (for expository purposes), goes
through a comparison of local orbital integrals I, , and Js, and of local spherical characters Iy,
and I;. We first review the main results on the local comparison, which are equally important
in the arithmetic setting.

3.5. Comparison of the local distributions.

3.5.1. Spectral matching. Let v be a place of Fy. For V € ¥, and 7}/ € Temp(GY), define a
spectral transfer factor

k(rY) = k(xY o, 7) = (1)) 2 L (dise(Vi))™ - wpy (—1); (3.5.1)

v
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this is the same as in [Zhal4b, Conjecture 4.4] with the correction of [BP21a, Remark 5.52], up
to a factor E(%, Mo, w)(n;l) 9

Let S be a finite set of places of Fy. Denote ¥s = [[,cq % for V = (V,)ves € 75, denote
Temp((H}q/)\Gg) =Ilves Temp((HXv)\GX”); for 77}5{ € Temp(Gg), set /{(77}5{) = [[,cgq x(m) and

Jrg = @uesJn,. For IIg € Temp(GY) = [[,cg Temp(Gy), let Iy = @yesim,-

Definition 3.5.1. We say that Hecke measures f§ € #(G%) and (f¥)vey, € [veys H(GY)
match spectrally if for all V € ¥5 and all 7% € Temp(HY\GY ), we have

Iy (F5:1) = 6(m§) Jrs (f5). (3.5.2)

3.5.2. Geometric matching. Let us first recall the matching of orbits for G’ and G; for the details,
see [Zhal2, § 2.1]. Let V € ¥#,. Orbits v € By, and 0 € By, v are said to match if a lift
v €Sy C GLy41(Fy) of v and a lift o' € U(Vy,41) C GLy41(F,) of § are conjugate for the adjoint
action of GL,(F,). (This notion is independent of the choices of the lifts and of the basis of
Vo+1 giving the embedding U(V,,+1) C GLyp4+1(F').) The matching relation defines a bijection (an

isomorphism of Fj,-manifolds if v is non-archimedean)
8: Bl = || Buswv (3.5.3)
Vety
If S is a finite set of places of Fp, by taking products we obtain a matching bijection
g: Bllrs,s = |_| Brs,S,V-
Vevs
where Bés,s = [lves Bisw> Brs,sv = [lyes Brs,w,ve-
For the number field Fy and for V € ¥, with the notation of (3.4.2) we have an analogous
bijection
Vey
compatible with (3.5.3)

Definition 3.5.2. Let S be a finite set of places of Fy. We say that Hecke measures fg € J(G',)
and (f¥)v € [Tvers H(GY) match geometrically if

Ly.s(f$ 1s) = J55(f3) (3.5.5)

whenever v € Bl ¢ and § € By g,y match.

3.5.3. Comparison with the normalization of [Zhal4b]. Let v be a place of Fy. Suppose that f]

is related to f’ as in (3.3.14) and f, is related to f, as in (3.4.5). Let

AHllad,'vAHgdd,”U ) AGad,U
AG/ad,U AQ

Hadﬂ)

Cy =

(3.5.6)

9To compare the last factor in (3.5.1) with [Zhal4b], recall that wi, (z) = wx, (2/2°), so that wx, (—1) = w, (7).

The absence of the factor E(%, Mo, wv)(n;1)7 which cancels out its presence in our local Flicker—Rallis period P> 11,
is helpful in Lemma 4.1.1.
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(1) By (3.2.5), (3.4.6), the Hecke measures f/ and (fY) match spectrally if and only if ¢, f/ and
(fY) match spectrally in the sense ([Zhal4b, Conjecture 4.4 and last equation on p. 566))

that dimG/2
~ . D; 1m AG v _ -
I, (cofy) = w(my) ) —5 — I, ()
o ! D; dlmH/QCH,v(l)AH,v " b
(2) By (3.3.15) and (3.4.7), the Hecke measures f and (f)) match geometrically if and only if

cof and (fY) match geometrically in the sense of [Zhal4b, (4.14)], namely
ro(V) 7 Loleof's 1) = Js(f)

for all matching pairs of orbits (v, d).

3.5.4. Main results on the local comparisons. Each of the following is a deep result.

Proposition 3.5.3 (Equivalence of spectral and geometric matching). Let S be a finite set of
places of Fy. The pairs f§ € #(G) and (f¥) € [Tveys H(GY) match spectrally if and only if
they match geometrically.

Proof. The proof of [BPLZZ21, Lemma 4.9], based on [BP2la, BP21], applies. (As noted in
[BPLZZ21, Remark 4.10], in general this relies on [Mok15, KMSW].) Note that by § 3.5.3, the
comparisons of matchings in loc. cit., whose conventions are inherited from [Zhal4b], are com-

patible with ours. O

From now on we will simply say that fg and ( fg ) match when they match spectrally and
geometrically. For a fixed V' € ¥5, we say that fg purely matches fg if it matches (fg, (OV/)V/¢V).

Proposition 3.5.4 (Fundamental Lemma [Yunll,BP21b]). Let v be a finite place of Fy that is
unramified in F, let V € ¥, be the unramified pair of hermitian spaces, and recall the unit Hecke
measures from (2.3.1).

The unit Hecke measure fi° on G’ purely matches the unit measure fS on GY .

Proposition 3.5.5 (Existence of matching [Zhal4a, Theorem 2.6]). Let v be a finite place of Fy.
For every f' € 2(G), a matching (fV) € [Ty ey, exists; conversely, for every (fV) e [lvey,, a
matching ' € (G, exists.

A matching result for archimedean places will be proved in § 4.3.2. We will also need to note

the following (relatively easy) fact.

Lemma 3.5.6 ([Zhal4a, Proposition 2.5]). Let v = ww be a split place of F,, and identify
Gy =Gl 0% Gy Then f, = pu(fy, ® fi) € H(G,) matches f, == fux fo € H(G).

4. RATIONALITY

This section is dedicated to establishing the rationality of our L-values, Theorem A from the
introduction (Theorem 4.2.1 below), and a rational relative-trace formula (Proposition 4.2.2).
From now on, we assume that Fjy is totally real and F' is CM. In §4.1 we deal with the archimedean
computations using the Gaussian test function. In §4.2 we state the rationality theorem and the
rational relative-trace formula, and prove some easy parts. In §4.3 we study the existence of
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suitable Hecke measures: the non-archimedean components rely on later results from §§ 5-6; the
archimedean component is proved in §4.4 using an argument provided by Yifeng Liu, refining
the technique of isolating cuspidal representations in [BPLZZ21]. In §4.5, we finish the proof of
Proposition 4.2.2 and Theorem 4.2.1. In §4.6 we recall an outline of the proof of (a special case
of) the Ichino—Tkeda—Harris conjecture. Logically this is not needed for this paper, but it will
make the proof of our main Theorem D in § 12 easier to understand.

4.0.1. Notation. For a locally compact and totally disconnected group G with a fixed Haar mea-
sure dg, from now on we denote by .7 (G) the sheaf of smooth compactly supported Ospecq-
multiples of dg; we will write (G, R) := 5 (G)(R). (Thus the object denoted by J(G) in the
previous section will henceforth be denoted by (G, C)).

4.1. Archimedean theory. We define some rational variant of the archimedean distributions
of the previous section. Denote G3 = GXO“, HS = Ho‘éoo, BS, = Bsove -

4.1.1. A product of transfer factors. Let

= H K (1y)

v]oo

be the product of (3.5.1) for the trivial representation of the positive-definite group G2, .

Lemma 4.1.1. For each~' € Grngr(Fo,oo), we have keo(7 )k (1) € {£1}.

Proof. By Lemma 3.3.4, the first factor is a square root of (—1)_(71;1)%@]; so are 772,0(7)(”;1)

and, hence, the second factor.
O

4.1.2. Distributions on (G, C). For any tempered representation Il of G and any v € B/

we define 1
It (foos Xoo) = ————ZL(1/2,11, Xco) L. 505 X0o))s
o (s Xo0) 1= g2 (1/2 Tt o) T (o o)
A (4.1.1)
IO(fooaXOO) i FSL’Y(XOO)IV(f(,)ovx(X))
H
Then the factorizations of Proposition 3.2.2 and of (3.3.12) are equivalent to
_ 1.£°°(1/2,1 .
/f(loo) IIH(f,a ) 1 (1 / n+1X HI fanv IH(X,(fOCMXOO)7
E =
2 vfeo (4.1.2)
I’Y(f,7X) = L'C;/O(X) H Iv(f{an) : I’j(fémXoo)

vfoo
4.1.3. Dustributions and special elements in J(GZ,, C). For any V' € Yoo = [[, o0 %, every

representation 77 of G, and every § € By v (note that GV is compact and hence every orbit
is semisimple), we define variants of Jv and Js . by
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o 1
T (o) i= [ Tone (ool fc)) dh = 32 (1/2,BC(m) - T (f)
~ dody A " (4.1.3)
IS (foo) = (Lo ==y 00)-
il) = [ L R T = 18 i)
Then the matching relations (3.5.2) and, respectively, (3.5.5) for S = {v|oco} are equivalent to
\%4
IO / — "i(ﬂ-oo)(]o -
IS oo (Fhos Too) = J5 s (f20)-
Lemma 4.1.2. Let
o =vol(GS,dg) " tdg € #(G2, Q). (4.1.5)
Then:
(1) for all moo € Temp(GS,), we have
vol(HY,) == vol(Hy,,dhso) if Too =1
J? °) = 4.1.6
oo (fo0) {0 otherwise; ( )
(2) for all 6 € G5, we have
_ 1(H2,, dhoo )?
Jo(£°) = vol(B° 1::‘/“#.
6(foo) Vo ( oo) VO](Ggoadgoo)
Moreover, both of the above values are rational.
Proof. The calculation is immediate. The rationality follows from Lemma 2.2.1. (Il

4.1.4. Gaussians. Let fo = (4.1.5) be the standard Hecke measure on G, = GYs. For each
characteristic-zero field L, we put 5 (GS,, L)° == L.
For L a subfield of C, we denote by

H (Gl L)* © H(Gl, C)
the preimage of Lfs, C (G, L)° under pure matching. By Proposition 4.1.3 below, the pure
matching map
tr: (G, L)* — H (G2, L)°
is surjective (here tr stands for “(smooth) transfer”). We put

H (G, L) = (G, L)%/ Ker(tr),

we extend the definition to any characteristic-zero field L by (G, L)° = (G, Q)° ®q L,
and we extend the notion of matching by linearity. Elements of 52 (G, L)° are called L-rational
Gaussians. If L can be embedded into C, we also refer to an f. € #(G.,,L)* as a Gaussian;
we say that f._ is nontrivial if its image in (G, L)° is nonzero.

If S is a finite set of non-archimedean places of F, we put

H (G, L)° = H# (G, LY@ (G, L)°, H(G/(AS),L)° = #(G'(A®), L) #(G, L)°,
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and refer to the elements of those spaces as Gaussians too.

U
o

Proposition 4.1.3 (Existence of Gaussians). The space S (G )¢ is monzero.

Proof. This follows from [BPLZZ21, Proposition 4.11]. O

Lemma 4.1.4. Let f’ be a Gaussian matching of fS, = (4.1.5). Then for any v € B’ matching
an element from BS,, we have I3(f',1) € Q.

o7
Proof. We recall from (4.1.1)

I(f,1) = ing(l)Iv(f,v 1), where
H
from (3.3.10), ﬁ
! / / / Iyl(f /7 X)
L(f, 1) = w(y) Ly (f,1) = k() 00
Here 4/ is any plus-regular element above v € B’, and x(7’) is the local transfer factor.

Recall also the orbital integral Jg in the unitary side (4.1.3). It follows immediately that the
lemma holds If v is regular semisimple, the lemma follows immediately from the rationality of
J5(fS,) (Lemma 4.1.2 (2)) and the matching relation (4.1.4). Though the matching relation is
defined only using regular semisimple orbits, the definition implies non-trivial relations for non-
regular-semisimple orbital integrals. We record the result of Lu [Lu, Thm. 7.9, Remark 7.10]
comparing the local orbital integrals. Let f' € J##(G.,, C) purely match an f € (G, C). If
~v € B, then

Ly (1), 1) = Y esJ3(f), (4.1.7)
6
where the sum runs over all semisimple orbits in the compact group G2, with image v € B’, and

Cs = H w,

wev (v)

where the set #/(y) and the constants ¢y will be recalled next. The set #'(v) is a finite set of
positive definite C/R-Hermitian spaces W defined in loc. cit., and it can be described as follows:
the stabilizer of any semisimple d matching ~y is isomorphic to the product of the compact unitary
groups U(W) for W € # (). For W of dimension n’, by [Lu, §7.4 on the Lie algebra, and (7.15)
and Remark 7.10 on the group] we have

n/

cw = volh(U(n/, R))™! He(l — i,né/R, )L 5(1/2,770/R’¢)n/(n’+1)/2
i=1

x neyr(dise(V7))" +L (4.1.8)

Here vol®(U(n/,R)) is the volume of the compact unitary group U(n’,R) for the normalized
measure d’g of § 2.2.1, which is the measure in [Lu, §7.0.1] (for a suitable differential w). The
formula for the constant cyy differs slightly from [Lu] due to a few different conventions between
ours and those in loc. cit.:

— the factor % appears on both the GL and the unitary side, and hence our notion of matching

H
is equivalent to that of [Lul;
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— Theorem 7.15 in [Lu] is expressed in terms of the normalized orbital integral, and this results
into the factor L, (1)~! on the left hand side of (4.1.7);

— when defining I,(f’,1), we only consider the plus-regular element 4" with image v € B" and
our notation has already included the transfer factor (our transfer factor is the plus-transfer
factor in [Lu]);

— our orbital integral in the unitary side is taken over the full group H3 x HS,, whereas in loc.
cit. the integral is taken over the quotient of the full group by the stabilizer: this results into

the volume factor in (4.1.8);

— In [Lu, (7.15)] the additional factor disappears because our choice of 4/ above 7 is plus-regular
and the formula in [Lu, Thm. 7.9] simplifies to [Lu, Remark 7.10, (7.16)].

The factors in the second line in (4.1.8) are signs, hence lie in Q*. By definition, the L-factor
L.,(1) is the product

dim W
L= [T I LO-insm):
Wew (y) i=1

Therefore, to show that I5(f',1) € Q, from (4.1.7) and (4.1.8) it suffices to show that for all
n' > 1, the product

n’ n'

vol' (U, R) ™ [T L = dmgym) [T et = domiymo ) ™" - £(1/2,m0m, )™ 02 (4.19)
i=1 i=1

lies in Q.
By Tate’s thesis (e.g. [Tat79, §3.2]), the standard choice of 1 (z) = €2™@ gives
e(s,ngr,¥) =1" €C
for all s € C and a € {0,1}. In particular, we have
e(1/2,nc m, )" I = 0/,
and )
TL ’
[T —imgmw) ™ =it
We note that n'(n’ +1)/2 = L(nl’_—li— 1)/2] mod 2, and hence
e(1 =iy ngm ) - e(1/2,meyr, )" I = 41 (4.1.10)
Next we note for a € {0, 1},
L(s,n&m) = L(s +a,1) = 7~ “T2T((s + ) /2)
and we have its special values
r=(=9/2D0((1 = 4)/2), i >0 even,

L(l - iani = .
om) r= (=020 (1 — i+ 1)/2), >0 odd.
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In both cases we have

L(1 —i,ng ) € 72 Q% i>1. (4.1.11)
Similarly,

L(i,ngg) € n PRI Q¢ i1, (4.1.12)

We compute the volume vol?(U(n/, R)) of the compact unitary group. Denote by vol(U (n/, R))
the volume under the unnormalized measure d, g of § 2.2.1, then

vol* (U :H an/R ) -vol(U(n', R))

HL(Z UC/R Hvol (821

i=1

:\

.
Il
—

i

(by (4.1.12)) GHW L+1)/2) i . >

H li/2) . @

where vol(S%~1) is the usual volume of the unit sphere of dimension 2i — 1. Combining this with
(4.1.11), we have

vol!(U(n/,R))™* HL —1 nC/R )e Q™. (4.1.13)

Therefore the rationality of (4.1.9) follows from (4.1.10) and (4.1.13), and the lemma follows from
this and the rationality of J§(f3,) (Lemma 4.1.2 (2)). O

4.2. Rationality statements. We state the main results of this section, whose proofs will be
completed in § 4.5.

4.2.1. Rationality of L-values. The following is Theorem A from the introduction.

Theorem 4.2.1. Let L be a number field and let 11 be a trivial-weight hermitian cuspidal auto-
morphic representation of G'(A) defined over L. There is a function

K(MH, ) S ﬁ(YL)
such that for each x € Yr.(C) with underlying embedding v: L — C,
Z>(1/2,11, )

n+1

(3.7

Z (M, x) =

4.2.2. Special Hecke algebras. Let L be a field that is embeddable in C, let S be a finite set of
finite places of Fy, and let ? € {rs,reg™,0}. We denote by

H(G(A®), L)% » o € H(G'(A®), L)°

Ks,?,qc
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the space of Gaussian measures f'* with weakly ?-support (Definition 3.3.5; there is no condition
if ? = () such that for every +: L — C, some preimage ‘e, € S(G/(A),.L)® of 1f"%ey, is
quasicuspidal.

If IT € €(G')(L) and x € Y(L), we say that a Hecke measure f° € 7 (G/(A®), L)° is adapted
to (I, x, Ks) if (®ygsTm,)(f,x%) # 0 and for every t: L < C, some preimage f“'ex, €
H(G'(A),LL)® of 1f"ef, sends o7 (G') into (the image in <7 (G') of) II. We denote by

%(G/(As)a L);(s,?,l_[,x

the space of Gaussians with weakly ?-support that are adapted to (II, y, Kg). When x = 1 we

omit it from the notation.

4.2.3. Rational relative-trace formula. We introduce a variant of the distribution I and its ex-
pansions. From now on, we change the notation for the distributions I of the previous section
by appending a superscript ‘C’, thus writing Irfj in place of I7; we also write L?C for the abelian
complex L-functions attached to orbits.

We introduce some further notation. For a finite place v of Fp and an ideal m C OF,,, let
Yy, (m) = Spec Q[Fy, (ﬁ;w N1+4+m0r,,)], viewed as the space of characters of the group within
square brackets. Let Y, = hﬂr Y, (v"). For the sake of uniformity, we will denote (G, L)° =
A (G, L) if vt oo, and Y, := Spec Q.

In the rest of the paper, unless otherwise noted all products ‘[[,’ run over the union of the
set of finite places v of Fy and {v = co}. If J# is a Hecke algebra over a field L and Y is an

ind-scheme over L, an L-linear functional D: 2 — 0(Y') will be called a distribution.

Proposition 4.2.2. Let L be a field that can be embedded in C. There exist:

(1) for each finite place v of Fy and for v = oo, and for each tempered irreducible admissible

representation I, of G, over L, a distribution

In,: #(G,,L)° — O(Y, 1)
characterized by
IS, (tfhxw)  ifvtoo
L5 (florxo) if v =00

for each x, € Y, 1.(C) with underlying embedding v: L — C;

I, (le;v Xv) =

(2) for each representation I1 € €(G')"*" over L as in Theorem 4.2.1, a distribution
In: #(G'(A),L)° — O(YL)

defined on factorizable elements f' = ®@yjo0fy @ fh by

In(f',x) = %iﬂ(Mn,x) T (s xe)- (4.2.1)

(3) for each finite place v of Fy and for v = oo, and each v € Bl a distribution
Lw: (G, L) — o, 1y
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characterized by
I, (fyx0)  ifvfoo
f?f(bfm Xo) ifv =00
for each xy €Y, 1/=3(C) with underlying embedding v: L[y/—1] — C.
(4) for each v € B'(Fy)° := B/(Fy) N BY,
(a) an element Ly, € O(Y), characterized by L.(x) = Lgo’c(x) (the L-function without
archimedean local L-factors) for every x € Y(C);

I’y,v(le)v XU) =

(b) a distribution
[ _/@ ’Y H )L)O—>ﬁ(YL)

where the product is locally finite.

(5) a distribution
I:#(G'(A), L)

admitting the spectral and geometric expansions

Z In=1= Z L,

HE‘ﬁ(G’)her ’YEB’(F())

— ﬁ(YL)

regt,qc

where both sums are locally finite.

Remark 4.2.3. Tt should be possible to interpret the rational distribution I as the inner product of
analogues of P; ,, P in the rational Betti homology (in complementary degrees) of the symmetric

space for G'.
We prove Proposition 4.2.2 (1)-(4); the proof of part (5) is deferred to § 4.5.

Proof of Proposition 4.2.2 (1)-(4). We need to show the existence of various distributions.

Archimedean distributions. Suppose that f.  is an L-rational Gaussian matching foo = cf3 €
H (G, L). Then by Lemma 4.1.2, Lemma 4.1.4, and (4.1.4), we may define

cvol(HY,) if Io = IIS

0 otherwise,
cI2(f°,1) ifye B2
L(fl) =47 >

0 otherwise,

for any Gaussian f’° matching f°, where the orbital integral is rational by Lemma 4.1.4.

Orbital integrals. Suppose v is non-archimedean. Then part (3) of Proposition 4.2.2 follows from
Proposition 3.3.2 (3b) together with Lemma 3.3.4.

Part (4a) is a well-known rationality theorem of Klingen and Siegel [Sie70]. Part (4b) then
follows from part (3) and Proposition 3.3.2 (2), together with (3.3.9) and Lemma 4.1.1 for the
elimination of v/—1 from the field of rationality.



GAN-GROSS-PRASAD CYCLES AND DERIVATIVES OF p-ADIC L-FUNCTIONS 45

Local spherical character. It suffices to show that Py, v, (W), P, (W,) and Oy, (W, W) are
polynomials, with L-coefficients, in the values of W, and x,. The rationality in W, is observed
in Remark 3.2.1. Then we only need to consider the function x, — P11, .y, (Wy). Let Y, be the
ind-finite scheme over L of smooth characters of & ;O,'u; then x — Xolo%, gives an exact sequence
of ind-group-schemes 1 — Y, — Y, — Y, — 1 where Y = G,,  parametrizes unramified
characters of FOX’U. Thus locally we may reduce to proving the desired result when Y, is restricted
to Y, at the cost of replacing II, by (one of locally finitely many) ramified twists. In this case,
that P, is a polynomial in Y;? and the values of W, is one of the main results of [JPSS83],
whose proof considers unramified characters of the form |- |5 but goes through in our context. O

4.3. Test Hecke measures. We now give some key results asserting the existence of suitable
Hecke measures.

4.3.1. Test measures at finite places. Let v be a finite place of Fyy and let L be a field that can be
embedded into C. A character ' = &K --- K¢, (F)” — C* is called regular if the characters
&) are pairwise distinct. A regular principal series representation of G|, is a representation II, =
I, , W11, 41, such that for v = n,n + 1, all places w|v, and any ¢: L < C* the representation

I, w =1, y\GL, (F,) is unitarily induced from a regular character of the diagonal torus.

Proposition 4.3.1. Let 11, be a hermitian (§ 2.4.1) tempered representation of G\ over L, and
let x, be a smooth character of FOX’U with values in some finitely generated extension L' of L. For
? € {0, reg™}, denote by

H (G, L)1, ,x,
the set of those f, € A (G, L) that are supported in G5, and satisfy In, (f}, xv) # 0.
(1) We have (G, L)1, x, 7 0.
(2) If 11, and X, are unramified, then f,> € A (G, L), v, -

(8) If v splits in F' and 11, is a regular principal series, for every choice of sign + there exists
f:,i: € %(vaL)regi,Hv,xv'

whose matching fy+ € H(Gy, L) is invariant under a deeper Iwahori subgroup. If moreover
I1, is unramified, we can take f!. to match an fy € H(G,, L) that is bi-invariant under an
Twahori subgroup.

The proof of part (3) relies on some explicit results from later sections. (In fact, see § 5.1.4 for
a definition of Iwahori subgroups.)
Proof. We omit all subscripts v.
(1) Let K C G’ be an open compact subgroup. The restriction of Iri(+, x) to 5 (G’) k is the inner
product, for the natural pairing, of the elements

Pl,H,x‘HK o H() c HK,\/ ®L L/, PQ‘H\/,K c (H\/,K)V ~ HK

Now if K is sufficiently small, both Py rj\px and Pypv,x are nonzero — the former by the
theory of [JPSS83], the latter because II, hence I1V, is hermitian. Since IT¥ is irreducible as
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an J(G', L) x-module, there exists an f7, € #(G’, L')k such that P« o II(f7,) and
Pyrv.x do mot pair to zero. Fix an embedding ¢: L' < C. If ¢(L) is not contained in R,
then it is dense in C, and any f’ € J(G’, L)k that is sufficiently close to f], in the topology
induced from C by ¢ will also have the desired nonvanishing property. If ¢(L) is contained
in R, note that one of Retf},, Im¢f], has the nonvanishing property, and then so does any
sufficiently close f' € #(G’, L)k (for the topology induced from R by ¢).

(2) This follows from Remark 3.2.1.

(3) This will be proved at the end of § 6.1 based on an explicit construction from § 5.3.4.
O

4.3.2. Test Gaussians. For a pure tensor fg = fofl, € H (G, L)°, we define f¢ = fsfL,
and extend this definition to all of (G’ , L)° by linearity.

Soo?

Proposition 4.3.2. Let I be a trivial-weight hermitian cuspidal automorphic representation of
G'(A) over a field L admitting embeddings into C, let K = ], Kv C G'(A*) be an open
compact subgroup such that IIX # 0, and let P be a finite set of non-archimedean places of Fy

vfoo

containing all those for which K, is not mazximal.
There exist a finite set S of split non-archimedean places of Fy disjoint from P, and Gaussians
(fgoo)L € H ‘%ﬂ( fS'oo?LL);(sw fé'oo € %( fS’oo?L);(S
t: L—C
such that for every v: L — C:

(1) the image of fg ., in H (G, L)y, equals tfg . ;
(2) Iy, (féoo XS00) # 0 for every unramified character xsoo: Fy oo/ Fooo — C*;
(3) R(fL.) maps o (G"E into (II)K. (In particular, for any f'9° € S (G',.L) s, the Hecke

measure f'5° ft_ is quasicuspidal.)
The proof will be given in § 4.4.

Lemma 4.3.3. Let I be a representation in €. There exist infinitely many places v of Fy that
are split in F' such that I1, is an unramified reqular principal series.

Proof. This follows from the similar observation about II,, made in the proof of [CH13, Proposition
3.2.5). O

Corollary 4.3.4. Let II be a trivial-weight hermitian cuspidal automorphic representation of
G'(A) over a field L admitting embeddings into C, and let x € Y. Let P be a finite set of
nonarchimedean places of Fy and let Kp C G5 be a compact open subgroup such that Hg” #0.

For ? € {regt,reg™,rs}, there exist L-rational Gaussians f}¥ € %(G'(AP),L)}’{P;,’H,X with
weakly ?-support that are adapted to (I, x, Kp) (in the sense of § 4.2.2).

Proof. In fact we construct an f’* that has at the same time plus-regular support (at one place)
and minus-regular support (at another place), hence weakly semisimple regular support since
Gis = Gl g+ NGl (The construction can of course be simplified if only one of those two

properties is desired.) Let R be the set of all finite places of Fy at which II or x is ramified. Let
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v4, v— be two distinct finite places of Fj, split in F, not in P U R, such that II,, is a regular
principal series and x,, is unramified. Let f} , be as in Proposition 4.3.1 (3), and for v € R
let f) be as in Lemma 4.3.1 (1). Let fg., be as given by Proposition 4.3.2 for the set of places
P'=PURU{vy,v_}, and any level K that is maximal away from P’ and sufficiently small at
the places in RU {v4,v_}. Then

= Fp i oo T #7

viPSoo

is as desired. O

4.4. Isolation of cuspidal representations via Gaussians. In this subsection, we prove
Proposition 4.3.2.

We will refine the arguments of [BPLZZ21], of which the reader is invited to open a copy.
Briefly, in order to construct the desired fg., we will start from a Gaussian f{’ g0 CODstructed
in a simple way as a pure tensor, and then correct fL g'oo DY acting on it by a carefully chosen
multiplier of the Hecke algebra for G'(A).

The substance of this subsection was generously provided to us by Yifeng Liu. Of course, any
defects in the following pages are to be attributed to the authors only.

4.4.1. Archimedean multipliers annihilating non-strongly typical cuspidal data. We momentarily
consider the more general situation of [BPLZZ21, § 3.2]. Consider a connected reductive algebraic
group G over a number field Fy. We freely adopt notation from [BPLZZ21, § 3], up to cosmetic
modifications to adapt to our conventions (for instance, in loc. cit. the algebraic group is denoted
by G rather than G). Take a unitary automorphic character w: Z(A) — C*. We fix

— a subset P of primes of Fyy containing S¢, and a character
€= (b0, £7%): Z(g) x PN (G(AT™)) — C,

where the second factor is the spherical Hecke algebra with respect to some choices of hyper-
special levels away from P (thus & is a P-character for G in the sense of [BPLZZ21, Definition
3.3]);
— a finite set S of primes of F' satisfying S¢ C S C P;
— a subgroup K C K§° of finite index of the form K = Kg x vas Ko .
The following definition is modified from [BPLZZ21, Definition 3.11]; the set €(M,w)", con-
sisting of classes of cuspidal automorphic representations of M(A), is defined bid. p. 550.

Definition 4.4.1. Let M C G be a standard Levi subgroup. We say that a o € ¢(M,w)"
is strongly &so-typical if yw(&o.,) € M(€xo). We denote by Q(M,w)?oo! the subset of &(M,w)"
consisting of strongly £,.-typical elements.

It is clear that the set Q(M,w)?oo! of strongly {.-typical elements is a subset of (’Z(M,w)zo,
the set of £-typical elements defined in loc. cit. The following lemma slightly strengthens
[BPLZZ21, Lemma 3.14], whose notation we simplify by putting

Moo = M (b))
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for the Weyl-fixed elements of the space of holomorphic functions from [BPLZZ21, Definition 2.8].
We fix an element %, and a finite set T of Kg'oo—types as described after [BPLZZ21, Definition
3.11].

Lemma 4.4.2. For every standard Levi subgroup M C G, there exists an element
€ Moo

satisfying:

— for every open compact Ky C M(A®) and every finite set Ty of K(l)\f[oo-types satisfying the
conditions following [BPLZZ21, Definition 3.11] with respect to (ul,, %), for every non-strongly
typical

o € €M, w; Ky, Tn)¥ — €M, w)¢,

and every s € ay; o, we have
M /G —
:uoo(‘fas,oo) - 0

Here, 5(95 _ 15 the infinitesimal character of IndSM (0s,00)-

Proof. By Definition 4.4.1, it is easy to see that for each element o € €(M,w; Ky, Tn)Y —
C(M,w)g)o!, there exists a W-invariant polynomial function v, on hg satisfying v,(€x) # 0 and
ve(§8 ) = 0 for every s € a}; . By [BPLZZ21, Lemma 3.14], we have an element v €

Mg(h*&)w satisfying the similar property but with Q(M,w)?oo! replaced by Qﬁ(M,w)Zo. Now by
[BPLZZ21, Lemma 3.13], the set

¢ = (M, w; Kni, Sn)¥ N (C(M,w)?oo - Q(M,w)?oo!)

is finite. Thus, we may take

M . M
fog = Vag * H Vg
oee’

O

The following is a direct analogue of [BPLZZ21, Proposition 3.15] in terms of Lemma 4.4.2;
the background is the Langlands decomposition

—

LA(G(F)\G(A),w) = (P

of (3.1) ibid. in terms of a set D(G,w)" of classes of cuspidal data.

2
(MJ)ED(G,W)OL(M,U) (G(Fp)\G(A),w)

Proposition 4.4.3. There exists oo € Moo such that

— Hoo(€oo) = 1;

— for every cuspidal datum (M, o) for G’ that does not belong to (G, w, K, ‘I)g}o! and for every
f € #(G(A),C)k, the endomorphism R(ps * f) of L*(G(Fy)\G(A)/K,w) annihilates the
subspace L%M U)(G(Fo)\G(A)/K, w).

4.4.2. Multipliers annihilating strongly typical cuspidal data for a proper Levi subgroup. We now
specialize back to the setup of Proposition 4.3.2. We denote by &3, the infinitesimal character of
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ITS,. We still freely use terminology and notation from [BPLZZ21, § 3] where not in conflict with

ours.

Lemma 4.4.4. Let (M,0) € €(M, 1) satisfy
Ebioe = Eo-

Then for every finite place v at which o, is unramified, the Satake parameters of o, are algebraic.

Proof. We start with some preliminaries. If M,, is a Levi subgroup of GL, /r of type (a1,...,a;),
put Y, = XI_, | det \% If 0, is a representation of M, (A), denote ol = oy ®1Ynr,. We extend
the definitions to the case of Levi subgroups of G’ in the obvious way. For M a Levi subgroup of
G’ and o a cuspidal automorphic representation of M(A), let B be the isobaric sum introduced
(for general linear groups) in [Cl0o90, p. 85], and let BT be the twisted version B¢ = B o? of
[C1090, Définition 1.9]. The operation E” preserves fields of rationality and induces the direct
sum operation on infinity types [Clo90, Lemme 3.9 (ii)].

Let a2, be the infinity type associated with {5, which is regular ([Clo90, Définition 3.12]).
Since any direct summand of a2 is also regular, it follows that ob is regular algebraic. Thus by
[Clo90, Théoreme 3.13], it is defined over a number field. It follows that its algebraic twist o has
algebraic Satake parameters. O

For a characteristic-zero field L, define ’]I‘SLPI’P c (G (Apoo),L)pr Ko to be the spherical
Hecke algebra of elements supported at a set of places of Fy split in F' and disjoint from P. If
L is a subfield of C, define M, 1, to be the L-linear subspace of M, consisting of those p such
that u(€3,) € L. We put

MP = A7 @1 Moo 1,

which is stable under multiplication and preserves J(G'(A), L)%.. We have a surjective map
[_]o: szl,P SN T/[s/pl,P
p— [p]®

given by the evaluation at 3. It is clear that the action of /\/lSLpl’P on S (G'(A),L)° factors
through [—]°.
We denote by € C € the subset consisting of those I’ with IT'K £ 0.

Lemma 4.4.5. Let II' € €x(C) and let (M, o) be a strongly £, -typical cuspidal datum for G
with

M # G,
Denote by Q the algebraic closure of Q in C.
There exists an element y € MERLE satisfying:

Q
— for every f' € S(G'(A), C)k, the endomorphism R(ux f') of L*(G'(Fy)\G'(A)/K) annihilates
the subspace L%M U)(G’(Fo)\G’(A)/K);

— (&) = 1.
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Proof. We refine the argument in the proof of [BPLZZ21, Proposition 3.17].1° Denote by L' ¢ Q
the field of definition of II'. Note that the subspace a}, C h™* has a natural model QMQ C b'é
over Q. We fix a rational splitting map ¢: l‘)a — a*MQ and an element o € £ . By Ramakrish-
nan’s Proposition 2.5.2, for every w € W', there is a finite place v[w] ¢ P of Fp, split in F, such
that §gw’v[w] # &ufw) Where s, = l(wa) — l(a) € a}j; .

This allows us to choose an element v, € 7 (G;j[w},L’ ) Kl such that

v (&) # vu(€C ).

T sap,v[w]
By the process in the proof of [BPLZZ21, Proposition 3.17], it suffices to show that for every
w' € W/, the value Vw(goc's/w/,v[w]) is algebraic. By Lemma 4.4.4, the Satake parameters of o, [y
are algebraic numbers. Since s, € a*M7Q, it follows that the Satake parameters of o , ) are all

algebraic numbers as well, which implies that v, (fg 1’[w]) is algebraic. O

We now extend the result to a finite set of cuspidal data and descend it to Q. For u € M%’I’P
and 7 € Gal(Q/Q), we denote by 7. € MSplP a chosen lift of 7([u]°).

Proposition 4.4.6. Let D be a finite set of strongly &2 -typical cuspidal data for G’ such that
M # G
for every (M,c) € ©. Then there exists a collection
(o) e T M3

t: L—C
satisfying:
(1) for every f' € S(G'(A),C)k, every v: L — C, and every (M,o) € ©, the endomorphism
R(ux f") of L*(G'(Fy)\G'(A)/K) annihilates the subspace L(M U)(G/(Fo)\G/( )/ K);
(2) there exists a [upl® € Tfpl’P such that [u%]° = t[up]® for every v: L — C;
(3) o (&fl) =1 for every v: L — C.

Proof. We denote the elements of ® simply by o in order to lighten the notation. For each
t: L — C and each 0 € @, let y,, be as provided by Lemma 4.4.5 applied to o and II*. Let L'
be a Galois extension of Q in C containing L and the fields of definition of y, for every o € ©
and every ¢: L — C. Now take the collection
wo= I IImHor
T€Gal(L'/Q) 0€D
We verify that it satisfies the desiderata. The first one is enforced by the factors with 7 = 1.
For the second one, by Galois theory we need to check that for each 7/ € Gal(L'/Q), we have
Tl = ,ug ‘. indeed, by a change of variables

T/(['UL@]O) - H H T/T([M@T*lb]o) = H H T([Ma,qﬁlT’L]O) = [M%,L]O.

T€Gal(L'/Q) oc€D T€Gal(L'/Q) c€D

10with respect to the notation of loc. cit., we omit the central character w, which in our setup is necessarily trivial.
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For the third property, it suffices to note that by construction we have

T':“’J,T*%(gll_;) - T(ua,TflL(Eg-r*lL)) =1

for each 7 and o. O

4.4.3. Proof of Proposition 4.3.2. Let fi ., € (G, Q)* be a nontrivial rational Gaussian,
which exists by Proposition 4.1.3. By Proposition 2.5.2, we can find a finite set Sy of split places
of Fy, disjoint from P and the ramification set of II, and an

f{,Sl € %(Gsl’L)KSI’

such that II(f;g,) # 0 and II'(f1,5,) = 0 for every II' € €k, — II. For each v: L — C, let
1 =1tflg ® floo ® Ougsicofs-
Let pioo and © = D(G,w, K, ‘I)Zo! be as provided by Proposition 4.4.3; the set ® is finite and
it consists of of strongly &2 -typical cuspidal data for G'. Let (uf),, [up]® be as provided by
Proposition 4.4.6 for ©. Let

(f") = p *pos * f1's [ = [10]” * [1oo]” * fi
By construction, there is a set of split places S D S; disjoint from P such that for ? = +,0), we
have f* = & ® ®ugsfo for some
A

Soor f é'oo
that satisfy the desired properties. The proof is complete.

4.5. Proofs of the rationality statements. We will prove Proposition 4.2.2 (5) (recall that
the other parts were proved at the end of § 4.2) and, as an interlude, Theorem 4.2.1.

4.5.1. Global distribution. The global orbital-integral distributions I, of part (4) are well-defined
and we may define the distribution I of part (5) by its asserted geometric expansion:
I= > 1,
YEB/(Fo)

We show the sum is locally finite. We may assume that f’ factors as f/ = f*°® f/_. By definition,
the sum is supported in B/(Fp) N B . The invariant map (3.3.2) sends B’ isomorphically to an
closed subvariety of the affine space Resp/p A"t Let Q> C (A¥)?"*! be the image of the
support of f/* € #(G'(A>)), which is compact. Let Qo C F2"'! be the image of B. By
definition, this is contained in the image of the positive-definite unitary group G2, under the
invariant map, which is compact. Therefore the support of the sum is in bijection with a subset
of the set F2"t1 N Q™0 as the first intersecting set is discrete and the second one is compact,
the intersection is finite.

By construction, I has the geometric expansion asserted in part (5); by Prop. 3.3.6, it satisfies

I(f, x) = 6(Lse) T IC(f", %) (4.5.1)
for any x € Y.(C) with underlying embedding ¢: L < C, and any f" € %”(G’(A),C);eg+ ”

mapping to ¢f’.
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Remark 4.5.1. By linearity, we may extend the distributions I, Iy, I, to distributions (de-
fined over Q or, for Iy, the field of definition of IT) on the space of locally constant functions
02 Fg\A*/F§, — L, in such a way that for every 7/ € Gi (Fp) with image v € B (Fp) and
every f'* ® fl, € #(G(A),L)°, we have

L(f.) 4 d*hyd°hy
L(f,0) = 1-00 / / ' (hT Y h2)l(h1)n(he) ——,
A0 K(loo) koo (Vs 1) JH, (A%e) JHa(A>) (I Jilha ) (hz) dig
where diz := HUJ[OO d®z,, and the integral reduces to a finite sum.

4.5.2. L-function. We are now ready to prove the rationality of .Z.

Proof of Theorem 4.2.1 (= Theorem A). For x € Y, consider the set %(G’(Am),L)?eg+Hx of
Gaussians with weakly plus-regular support that are adapted to (IL, x) in the sense of § 4.2.2. It

is non-empty by Corollary 4.3.4. For any x € Y, and f' € #(G'(A*), L)

4- I(flv )
(®ul1, ) (f3, )
away from the zeros of the denominator. Then for any x € Y7 (C) with underlying ¢: L — C and

o
rs.ye W€ define

g(MH, )f’ =

any f’* as in § 4.2.2, we have
4-I5.(f",x) _ (/2,11 )
F(Loo) @upo IS, @ IR (F %) (4,42
where the first equality is (4.5.1), and the second one is (4.1.2). Thus the functions .2 (M, -) ¢/
glue to the desired .2 (M, -).

X(Mrh X)f’ =

O

4.5.3. Spectral expansion. We define
1
It =-2ZMnp)- | | I
= 2 (M) 1:[ I,

Then the spectral expansion of part (5) of Proposition 4.2.2 follows from the definition, Proposi-
tion 3.3.6, and (4.5.1). This completes the proof of the proposition.

4.6. On the Ichino—Ikeda conjecture. For expository purposes, we recall an outline of the
proof of the following special case of the Ichino—Ikeda—Harris conjecture (in its most general form,
the conjecture is now [BPCZ22, Theorem 1.1.6.1]), paying special attention to the rationality.
The basic architecture of the proof of Theorem D in § 12 will be similar.

Let V € #°7 be a coherent pair, let H=H" € G = GV, and let &/ (G)° := Q[G(Fp\G(A)/G(Fp.)],
which is equipped with the Petersson product with respect to the measure dg. Let 7 be a cuspidal
automorphic representation of GV (A), trivial at infinity, over a number field L. Upon choosing an
embedding in Hom(r, o/ (G)}) (which is an L-line by [KMSW], see [LTX"22, Proposition C.3.1
(2)]) we have an H-period

P.:m— L (4.6.1)
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defined as in (3.4.8) (where the integration reduces to a finite sum). The unique embedding
7Y < &/ (G)$ that intertwines the natural duality 7 x 7¥ — L with the Petersson product gives

rise to the analogous period Pyv: 7" — L.

Theorem 4.6.1. Assume that 7w is stable and cuspidal, and let I1 := BC(w). Then for all ¢ € ,

¢ €, we have
1

Pa(6)Per(¢) = 1 £ (Mn,0) - a(6,0).

We need a lemma to isolate w within the discrete automorphic spectrum.

Lemma 4.6.2. Let L be a characteristic-zero field and let V € ¥°. Let ¥ be a finite set of
isomorphism classes of discrete irreducible automorphic representations of GV (A) over L, trivial
at infinity (Remark 2.5.8). Let ® € ¥ and assume that T = m @ L for some representation 7
over L. Let P be a finite set of places of Fy containing all places at which w is ramified. Then
there is a finite set S of split places of Fy, disjoint from P, a hyperspecial subgroup Kg C Gg,
and an fs € A (GY, L) ks , such that

7(fs) = idg, 7'(fs) =0 for all 7' € ¥ with BC(r") # BC(x).

Proof. We view L — C by fixing any embedding. By Remark 2.5.8, we have a set ¥/ =
{BC(n") | #’ € ¥} of isomorphism classes of isobaric, trivial-weight automorphic representa-
tions of G/(A) over L; moreover BC(7) descends to a representation Il := BC(nw) over L. By
Proposition 2.5.2 and Remark 2.5.8, there are a finite set of split places S disjoint from P,
and an fg € H(Gy, L)k, (for Ky = G'(OFR, ), satisfying II(fg) = id and II'(fg) = 0 for all
II' € ¥ — BC(7). Then the fs € #(GY,, L) matching f§ satisfies the desiderata. O

Proof of Theorem 4.6.1. (For more details on the argument, see the proof of Theorem D in § 12.)
The formula extends by bilinearity to any 7 € 7 @ w¥, and by multiplicity one if suffices to prove
it for any 7 not annihilated by «a.

By Corollary 4.3.4 (with y = 1 and P = )) and Lemma 4.6.2 (with P a set of places such that
the Gaussian produced by Corollary 4.3.4 is spherical away from Poo), together with the explicit
matching at split place of Lemma 3.5.6, we may construct matching Gaussians f’ € 7 (G/'(A), L)°
and f € #(G(A), L)° with weakly regular semisimple support that are adapted to II = BC(m)
and, respectively, w. Then for all v and matching v € Bl (Fo), d € Brs(Fo),

L(fy) = Js5(fo)
so that by (3.3.12) and (3.4.3),

() =J)= Y. JH= >, L()=I{)=Iulf)

3€Brs (Fp)° YEB(Fo)

where Bl (Fp)° = Bl (Fp) NB'(Fp)°. By the factorization of I1j in Proposition 3.2.2 and the local
spectral matching (together with the fact that [, (7)) = 1), we have

To(0) = (") = =2 (/21 8,2 () = 12 (M, 1) - Oupoe J2. (6,
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where we have used the definitions of J; in (4.1.3)and of .Z/(My) in Theorem 4.2.1. This is

equivalent to the desired formula for 7 = 7 (f). O

5. p-ADIC SPHERICAL CHARACTERS

This section and the next one contain the local results needed, at p-adic places, in order to
develop the p-adic relative-trace formula; in particular, the construction of a suitable family of
Hecke measures. Remarkably, suitable members of these families can be used at any (split) place
as the regular local test measures needed to prove the results of § 4.3.

Throughout this section, we fix a non-archimedean place v of Fjy and work in a local situation,
dropping all subscripts v. We denote by & the ring of integers of the étale Fy-algebra F, by & the
ring of integers of Fy, by w € 0 a chosen uniformizer, and we let qy == |0y /w0y, q == |0 /wO|.

5.1. Group-theoretic preliminaries. We introduce some notation and the group-theoretic
foundations for the construction of the p-adic distribution.

5.1.1. Notation. If v splits in F', we fix an isomorphism F' & Fy x Fy and we expand our list of
groups to include
66 =G0 % Gpyr0s Hig =Gy,
so that G/ = G x Gl and H| = Hj 4 x Hi. We may then write elements of G' = G'/(F)? as
[gl;gg] with g; € é6
We will denote all conjugation actions by

29 =g lug.

Convention. Throughout this section, for v € {n,n + 1,0} and x € {(),0} we will define various
subgroups and elements [, , of Gly,* (or é{) for this ‘pair’ of subscripts). Unless otherwise specified,
we will define U, « in a way that makes sense for v =n,n+1, and tacitly stipulate that [, is the
product of Oy, and Op41 4, if * = 0, or its image via G’ — G if x = (). For the sake of uniformity,
we introduce the notation

Y =G, G =dq.

5.1.2. Some subgroups. The lattice 07 C F' induces an integral model for G , over 0Op, still
denoted by G’M*. Let T, « C G;/,* denote the diagonal torus, and let W, , be the associated Weyl

group, identified with the permutation matrices in G{,7*. We denote by
Wy x € Wy,*

the antidiagonal matrix (wy«)ij = 05p41—j-

5.1.3. On the torus in Gﬁ,y*. We denote by N, . C G,’/’* the set of upper-triangular unipotent

matrices and by
Nli* = NV,* N G:,’*(ﬁo)
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Let T, C T, be the sub-monoid consisting of those ¢ such that Ny% = (Ng,)! C Ng,, and
T,5.F C T,}, the multiplicative subset ot those t such that

(N = {1}
r>1
Concretely, T,f, (respectively T,}.") consists of matrices diag(t1, ..., t,) with ¢; € F* and v(t;/ti11) >
0 (respectively > 0) for all 1 <i <wv —1.
The group T, . is equipped with the involution

. —1,-1
Lt — w,/j*t Wy, 4,

which preserves 7,7, and T,/.F. We still denote by ¢ the resulting involution on Q[T ].

U,

We identify Z” with the space of cocharacters of T, . via
A [z — 2 = diag(z™, ..., 2™)] € Tpo C Tpx,

where the inclusion is diagonal.
We fix the elements

tl/,* = w(l/_17~-'70) c Tl;t_:_7 Zl/,* — wl/—]-ll, & G;/,* (511)
Then
the =zpitus,  tusth, =@

where p, € Z denotes half the sum of positive roots (with respect to N, .); concretely,

1 1
Py = §(V—1,I/—3,...,1—Z/)E§ZV.

5.1.4. Iwahori and deeper Twahori subgroups. The standard Iwahori subgroup
Iw, . C Glm*

is the set of matrices in GJ, ,(0p) whose reduction modulo @ belongs to the image of the upper-

triangular matrices in Gj, ,(0p). An Iwahori subgroup of G, is one of the form Iw}, . for some

1 1
283 Vyx

for some g € G}, .. It is said to be semistandard if N;,, C K C Iw} . for some g € Ny (Ty4),
the normalizer of T, in G, ,; it is said to be standard if K C Iw, . and K N Ny = N,j”*.

Uk

g € G, A deeper Twahori subgroup of G, , is an open subgroup K C G, , satisfying K C Iw) .

For r € Z — {0}, we define three families of subgroups
Kl c k") c k(1) (5.1.2)
of Gly,*(ﬁb) by

)

={g€ Ky*) | gi €1+ a""10,, 1<i<v)

KY) =Gl (60) Nt TG, (60,
K} :

={ge K |gie1+alo, 1<i<v}

They are standard deeper Iwahori subgroups whenever r > 1.

Kl

)
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For r > 1, we say that a standard deeper Iwahori K, . has level < r if
K. D K.
5.1.5. Twahori—-Weyl symmetries. For ¢ > 1, define
Wi p,e = Wyuly,, € Nay (Tox) C G-

Let K C GL* be a semistandard deeper Iwahori subgroup. We say that K is symmetric if
K%v+e = K for some ¢ > 1 such that K,@ C K. If v splits in F and * = (), we say that K is
conjugate-symmetric of depth ¢ = ¢(K) > 1 if K = Ky X Kéﬂ”‘o’c for some standard deeper Iwahori

subgroup Ko C G}, containing Kl(,cg

Remark 5.1.1. For r > 1, the subgroups K,[,T]k - KIQ - K,5>2 c @

v« are all symmetric, whereas

for v > 3 Iwahori subgroups are not symmetric. On the other hand, conjugate-symmetric deeper

Iwahori subgroups of G!, are obviously abundant.

5.1.6. Iwahori—-Hecke algebras and the operators Uy. Let K C Gﬁ,y* be a semistandard deeper
Iwahori subgroup. Define sheaves of Ogpec q,-algebras by

%” CX(K\KT,,K/K, Ospecq,)dg  C  Hicx = CX(K NG, /Ky, Ospecq,) dg.

The involution ¢ extends to e%”]ij by linearity. For z € G’V* and a semistandard deeper Iwahori
subgroup K’ C K, we define

[KzK] := vol(K,dg) 1.k dg

in ¥ . The map
Ospec [T /T N K] — ALY

(5.1.3)
[t] — Ui = [KtK].
is an Ospec ,-algebra isomorphism. We define
%I; = %T—’—[(Ut K)teT*] ﬁSpecQP[T*/T* ﬂK]
For ? = +,0, we define %ﬁj IL X K’i, where the limit runs over the standard deeper

Iwahori subgroups and the transition maps are *eg : C%”Iz: :%”]zj By Lemma 5.1.2 below,
the limit U :==lim Uy i € %jf is well-defined. Concretely, if we denote

7(7") tT’ NO t_

UV, %"V *x

we have

Utuy* = Z :L'tu,*

zeNg, /NS

as operators on the Ny -fixed points of any smooth G, ,-module.
5.1.7. Multiplication rules in Iwahori—Hecke algebras. We have the following basic result.

Lemma 5.1.2. Let K C G, be a deeper Twahori subgroup, and define {r: K\G), /K — N by
g% = |KgK/K| = |K/KNgKg™'|. Then:
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(1) We have KgK¢'K = Kgg'K in #% if and only if Lk (g99") = lk(g9) + Lk (g').
(2) Assume that K is standard. Then for all t' € T},
U (twy) = b () + lrc (W), O (wyut™h) = e (wy) + e (E).

(3) Assume that K is standard, and let K' C K be a standard deeper Iwahori subgroup. Then
for allt" € T,f,,

Kt'wK' = Kt'wK, ex*|[K't'wK'] = [Kt'wK].
If moreover K is of level < ¢ and t’t;i € le"*, then
K'tK =Kt{'K, [K'tK'|xex=[Kt{'K].

(4) For all g € G}, ,, we have
ex x gex = 4. “Y[KgK].

Proof. Part (1) is well-known, see [How85, Ch. 2]. Consider the first equality of part (2), and
drop all subscripts. By part (1), it is equivalent to prove Kt' KwK = Kt'wK. Since the quotient
K\Kt'K is represented by lower-triangular matrices in K, it suffices to show that for such a
matrix k, we have t'kw € Kt'wK; fact, since K O N° we even have kw € wK. The second
equation follows from taking inverses in the identity Kt' KwK = Kt'wK.

Consider now part (3); we only prove the equalities as sets, from which the ones in Hecke
algebras can be easily obtained. For the first equality, It suffices to prove that for any lower-
triangular k& € K we have t‘wk € Kt'w, which is clear since t'wkw~'t'"' € N° ¢ K. For the
second one, it suffices to prove that for any lower-triangular kt’ € Kt' we have kt' € ' K. In fact,
by the assumptions we have ¢~ 'tk € K( N K C K. Part (4) follows from the definitions. O

5.1.8. Twisting matrices. Let u € (ﬁ;p)”; we will take u = (1,...,1)" to fix ideas in computa-

tions. Then we define the twisting matrices'

M =1n,  Mppie = ( n i‘ ) , (5.1.4)

and for r > 1 we let
My s r = mu,*t;*
5.1.9. Subgroups of Hj. Recall that by the convention introduced at the beginning ot this sub-
section, [0, denotes the (image of the) product of 0, . and 0,41 4 in G; For r € Z+, let
Kg,)* = m*Kifr)m;l N Gy,.(Oo) (5.1.5)
= m*K*[fr]m*il N G;u*(ﬁo) - Gln,*(ﬁﬂ) - H{,*a

where the intersections are with respect to the usual diagonal embedding H {* — G,

HEor their history, see [Jan] and references therein.
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)

ok

Remark 5.1.3. A simple computation shows that Kg consists of the matrices h satisfying

hij € wﬂi*ﬂ O

. ) (5.1.6)
Zj:l hij cl+wo"0,

for all 1 < 4,5 < n. This description also shows the equality in (5.1.5). We may then compute
that

n -1

n)s s 1 — Yk
Vol (K.) = ¢ vl = T ﬁ (5.1.7)
=1 *

is a rational number independent of s > 1, and a p-unit.

We record the following easily checked property, for a later use: for all r» > 1, we have
m K m, ¢ KO n Kl e kI (5.1.8)

5.1.10. Twisting identity. We come to the key result of this subsection, which refines [Jan, Lemma
5.2] in the spirit of [Loe21, Lemma 4.4.1].

T . : . +1
Lemma 5.1.4 (Twisting identity). Let r > 1 and let K C G, be a subgroup containing Kir ).

For all © € N, there exists hy, € Kg) such that

My K = hgmy p 1 K (5.1.9)
Moreover, the map
NPN? — KK,
[z] = [ha]

s well-defined and a group isomorphism.

Proof. We omit the subscript “+’ from the notation. It suffices to take K = K1 . Consider the
diagram

Kngl)\Kg) N K(—r—1>\K[—r} L No,(r-{—l)\No,(r) J No,(l)\No
where a: h — m~'hm, B is induced by the inclusion N o(r) ¢ K=" and ~ is the isomorphism
x +— t"zt™". All four quotients have cardinality ¢ where d(n) = (5.1.11), and by (5.1.5), a is
well-defined and injective. Hence all three maps are isomorphisms, and the second statement of
the lemma is proved with [h,] = @' o Bo~([z]). The first statement is then easily verified using

t—r—1K<—r—1>tr+1 — K(r—l—l)' 0
Corollary 5.1.5. Let r > 1, and let K, = Kiﬂrn C G; For all s > r, we have the identities

. y/
m*,sUt*,K* = Z hm*,erleK* m Cc(G*/K*)a
heK g TO\K),

avg

d _ 1)d - 1 , .

e =0 S D i gy
heKGT\KE),

(5.1.10)
where >*'® denotes average.
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w)r

5.1.11. Volumes. The volumes of K,(,Q and Kg?* are constant multiples of ¢, ©"’", respectively
q*_d(n)r, where
o(v) = %(V (v +1)
n 1 (5.1.11)
din) =Y k= gn(n +1)2n+1) =c(n) +c(n+1).
k=1

5.2. p-adic periods. Let II, . be a tempered representation of Gﬁ,y* over a field L of characteristic
zero. Denote by B, . C G’%* the upper-triangular Borel and by dp,, : T,« — Q* its modulus
character.

5.2.1. Finite-slope subspace. Let
I, I,
be the subspace where T,jf* acts invertibly. It has a structure of %T*(L)—module, and it is
isomorphic as L[T), «]-module to the twisted Jacquet module ép,, ® (IL,«)n, .
[Eme06, Proposition 4.3.4]).
We define ¢(IT") to be the minimal ¢ € Z>; such that H,T,,* C IIF, for some deeper Iwahori

subgroup K of level < c.

of II,  (see e.g.

Denote by T the dual torus (as a scheme over L). For a subgroup K C G’ containing N°,
let It be the image of ITX in It under the Us-eigen-projection, for any sufficiently positive t.
Then there are decompositions into generalized ,%”[I—eigenspaces

K, K,
T = @ Hf T{{L
¢eT(L)
- t_ oyt
and similarly II. = @ IL-[¢].
If II is a subquotient of a regular principal series (as defined in § 4.3.1) and ¢ is a character
ot T occurring in HTZ’ then by [Jan, Proposition 1.3 (ii)] (or its proof, applied to II,,, II,,4+1), any
Whittaker model of Iy, contains a unique vector

We (5.2.1)
satisfying We(1) =1 and UyW = £(t)W for all t € T,

5.2.2. Ordinary representations. Suppose for this paragraph only that L is a finite extension of
Q,, with algebraic closure denoted Q,.

Definition 5.2.1. Let N° C K C G'. We say that the tempered representation II is K -ordinary
(with respect to I13.) if there is a character £° € T, .(Qp) occurring in 5T (that is, such that
II51[¢°] #£ 0) satisfying

&) =1
for all # € T+ and the absolute value on Qp.u We say that II is ordinary if it is K-ordinary for
sufficiently small K O N°.

12This definition is adapted to the local components of automorphic representations of trivial weight at infinity; in
general it would need to be modified, see [Hid98].
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We call a character £° as above an ordinary refinement of I1. By the following proposition, an
ordinary refinement is unique and defined over the field of definition of II. We will then denote

ord = I, [€°] N1IL

Proposition 5.2.2. Let II be an ordinary tempered representation of G' over L. Then II is a

subquotient of a reqular principal series, the space It is Tr-semisimple, and every & € TL(QP)

occurTing in H% satisfies dlm 1'[T [5] = 1 and is defined over L. Moreover the ordinary
P

refinement £° is unique.

Proof. This is essentially [Hid98, Corollary 8.3]. We recall the argument, working over Q,, without
signalling this in the notation. Let W be the Weyl group of G’. Recall form § 5.2.1 that
It = 63 ® Iy, the dp-twisted Jacquet module of II. By Frobenius reciprocity, & occurs in
IIT if and only if II embeds into the normalized induction IndG(g) where E 1/ 2§ Now
Indg (§ ) & IndG (5“’) for all w € Wer. If §|T+ is valued in units, then the stabilizer of £€° in Wer
is trivial, therefore its orbit consists of [W¢| distinct characters &, and Ind$ (€) is regular. By
[BZ76, Theorem 5.21], we have dim ITy < |Wr|, hence all the characters £ occur with multiplicity
one. The rationality assertion follows from the fact that the Gal(Q,/L)-action on the set of

occurring £ preserves valuations. O

Denote by
eord: HNO N Hord

the J#1-eigenprojector, and let eord = ey, Thus II is K-ordinary if e%dﬂ = T1ovd,

Lemma 5.2.3. Suppose that I1 is ordinary and unramified, and let K = G'(O,) C G'. Then
9T = 1107,

Proof. With notation as in the proof of Proposition 5.2.2, let ¢, be a generator of the line
It [£°.w], where we define &.w by 5 w = f“’ Write a nonzero spherical vector ¢ € IIX as

ok =D Cudu (5.2.2)

weWag
with ¢, € L. Then we need to show ¢; # 0. Now by [Cas80, Lemma 3.9], the expansion of
[Cas80, Lemma 3.8] (where x = £°) is of the form (5.2.2), and there one has (see Theorem 3.1
ibid.) that ¢ = 1.

]
5.2.3. p-adic Rankin—Selberg period. Let x € Y7,. We define a functional on IIT by
PIT,H,X = Sli>Igo Pl.i-,H,x,s’ PITH XS = qd(n)SPlanyX °© mSUtis: HT — L(X) (523)

Let ¢(x) to be the conductor of x in the usual sense: ¢(x) = 0 if x is unramified and otherwise
c(x) is the minimal ¢ € Z> such that X|14zeg, = 1.

Lemma 5.2.4. The sequence in the limit (5.2.3) stabilizes as soon as s > s = max{1, ¢(IIt) —

Le(x)}
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(s0)

Proof. In the definition of PlT Ix (W) in § 3.2.2, we may first integrate over K;;”’; observing that

X is (det KSO))—invariant, the lemma results from (5.1.10). O

5.2.4. p-adic pairing. We define a (non-degenerate) pairing
191[[ = lim 191[[77,, ﬂ;r_u(., Y= qd(n)ﬁﬂ(er;T', ): ot < vt — L.

T—00

It is easy to show, using the symmetry of K{9 that the sequence in the limit stabilizes as soon
as r > c(II1).

Remark 5.2.5. For all ' € T the 79}1—adjoint of Uy is Up.. Thus for every character £, the
pairing 79TH yields a perfect pairing on TIT[¢] x TIV:T[¢!] and moreover, for all r > ¢(ITf) and every
semistandard deeper Iwahori subgroup K C G’, a perfect pairing on IT¥T[¢] x TTV-E*"1[¢4].

5.2.5. p-adic Flicker—Rallis period. Suppose that v splits in F' and that II, is in the image of
the local base change map (2.4.1); in other words, we may write II, = II, o X Hl\,/,0 for some

representation II,, of Go. We define

. d _
Pjp=lim Py, Pamy = 43" Py o [13 w0, U5 1T — L.

The sequence in the limit stabilizes as soon as r > ¢(II').

5.2.6. p-adic Rankin—Selberg periods at Ui-eigenvectors. Identify 11,11 (respectively II,,) with its
- (respectively 1)-) Whittaker model, and IT with their product. Suppose that II is a subquotient
of a regular principal series.

Let € € T be a character occurring in HTZ; by the argument in the proof of Proposition 5.2.2,
we have dimpg) HE(E)HT (] = 1. We denote by W¢ € Il the element of (5.2.1).

Define

e(I, &, x) = P 11 (We) € L(€,)- (5.2.4)
Liu and Sun have recently proved an explicit formula for this term. Write E = En X EnH, and for
1<i<uw,let Ew: F* — L(€)* be the restriction of &, to the i*® component of T}, = (F*)/Fy.
For any character £’ of F* and any place w|v of F', denote by £, = § px; denote by Ny : Fyjf — Fy
the norm map. Finally, we denote by

V(8 Epus Yrw) ~H = L(s, &) /e(s, €y Ymw) L(L = 5,6571)
the inverse Deligne-Langlands ~-factor of a character of &,: F — C*. If
|2, ||V Y s L c C
or 1 < < are characters wit 1] = 1] , then 1t is easy to see
for 1 <k <N h ith [Ty, | - V%€, oy | [V2€r, then it i

that ngl ¥(1/2,&, YFw)/v(1/2, &), ¥Fw) belongs to L'. Thus the following expression gives an
element of L(&, x) (unless some division by zero has occurred).

Define
n+1
g(laXQ’d})( 2 ) 1 g g —1
é<H7 §7 X) = 2 7(77 X © Nw : gn,i,wfn—f—l, Wy waw) .
L(3,1T® x) 111 2 ’

i+j<n wlv
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Proposition 5.2.6. We have
e(IL, &, x) = £e(IL &, x).

Proof. This is equivalent to the identity of [LiSu, Proposition 11.18], where the sign + is explicit.
O

The key consequences for us will be Propositions 5.3.6 and Remark 5.3.3 below, both derived

from the following lemma. We temporarily restore the notation of the rest of the paper.

Lemma 5.2.7. Suppose that 1L, is a regular irreducible principal series that is the local component
of a representation Il as in Theorem A. For every character &, of T, occurring in HI, and every

finite-order character x, of Fy

0.vs We have
)

é(H’U? gU’ X’U) 6 L(H’ 57 X)X

Proof. By [Carl4, Theorem 1.1], for each place w of F, the semisimple Weil-Deligne representa-
tion attached to ppg,,, (cf. (1.2.1)) is

TMLw = @ E |1/22n,i7wgn+17j7w7
1<i<n,1<j<n+1
and it is strictly pure of some weight that is independent of w (here we identify a character of F}
with its correspondent on the Weil group of F, via class field theory). By considering det ryj 4,
at an inert place w we then see that the weight must be —1. Thus for each (i, 7), the character
| - \1/2F§Vn7i’wf§vn+lﬂ-,w is either ramified (so that its v-factor is an e-factor, hence nonzero), or it is
an unramified character whose value at a uniformizer of F), is a Weil g,,-number of weight —1,
which again implies the nonvanishing of each term in the y-factors of Hypothesis 5.2.6. U

5.3. p-adic spherical characters. We go back to the notation of the rest of this section.We
say that a subgroup K C G’ is convenient if either K = G'(0}), or v splits in F and K is a

conjugate-symmetric deeper Iwahori as defined in § 5.1.5 (henceforth: a CSDI).

5.3.1. Finite-slope spherical character. Let K C G’ be a convenient subgroup. We define a

distribution
Iy € 0] x V)
by T
Ty O (feg)) i K = G(00),
IlTI,K(fTa X) =
Tri“’X@ng“ (I(ffex)) if K is a CSDL

Remark 5.3.1. The second definition is the ‘correct’ one from the p-adic point of view. The first
one is made because, first, in the arithmetic side the geometry will compel us to work at spherical
level; and second, we have not investigated the analogue of the notion of ‘conjugate-symmetric’
in the nonsplit case.
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5.3.2. FEigen-decomposition. Suppose that II is a subquotient of a regular principal series, and
denote by Zg (II) the set of characters of T occurring in IT%1,

— If K = G/(0F,) and 11 is an unramified principal series, let Wy € TIX, Wév) e I-E pe
generators normalized by Wév) (1) =1, write Wy = > ¢ Ac¢We, and let
cx (IL &) = APy (W) /9 (Wo, W) = Ae. (5.3.1)

where the second equality follows from Remark 3.2.1. By the same proof as for Lemma 5.2.3,
we have \¢ # 0 for all £ € E(II). (An explicit formula for A¢ could be obtained from
combining the formulas cited in that proof with the Casselman-Shalika formula [CS80] and
the formulas [Ree93, Proposition 3.1] for Whittaker Ui-eigenfunctions.)

— If K is a conjugate-symmetric deeper Iwahori, define
QT H(WfL)
I (We, We:)

Here, the denominator is nonvanishing since U, is ¥-adjoint to Uy. Similarly, the numerator

cx (I1,€) = c(IL, §) = L(§). (5.3.2)

is nonvanishing if and only if I, is hermitian.

Then, in either case, by the definitions we have a decomposition

Ilt[K(f X) Z IHKgf X) (5.3.3)
E€EK(IT)
where
Iy e e (1130 = (e (L ©)e(IL €, x). (5.3.4)

5.3.3. Ordinary spherical character. Suppose for this paragraph only that L is a finite extension
of Q, and that there is an Op-lattice II5, C II that is stable under %, Then we have Hida’s
description

ord

e”" = lim Ut
N—o0

for the action of the ordinary projector on II.

Remark 5.3.2. The above assumption holds whenever II is a local component of a global rep-
resentation in 47. Indeed, representations in %7 can be realised in the Betti cohomology of
the locally symmetric space attached to G’, and the cohomology with coefficients in &, gives a
natural integral structure stable under the Hecke operators; see [Hid98] for more details.

For any convenient K C G’, we then define
g% (x) = Jlim IITIK(U X)-

If IT is ordinary, we denote
e(IL, x) = e(IL, £% x) € L(x),
e (I) = cx (I, €°) € L™
where the right-hand sides are defined in (5.2.4), (5.3.1), (5.3.2).

(5.3.5)

Remark 5.3.3. If I1,,, x, are as in Lemma 5.2.7 and moreover 11, is ordinary, it follows from that
lemma and Proposition 5.2.6 that e(Il,, x,,) and ck, (II) are nonzero.
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Corollary 5.3.4. Suppose that I1 admits an Op-stable lattice. Then for every x € Y, and every
convenient K C G', we have
cx(Ie(II, x) if II is K-ordinary

I (x) = _
0 otherwise.

Proof. This follows from (5.3.4). O

5.3.4. Relation to the character Itj. Let II be a tempered irreducible representation of G, let
x: Fy® — L* be a smooth character, let K C G’ be a convenient subgroup, and let s > 1. We
say that s is sufficiently positive for x (respectively for K) if s > max{1,c(x)} (respectively K
contains a deeper Iwahori of level ¢ with'® s > 2¢). We say that f1 € 21 is sufficiently positive
for T (respectively for sq, for x, for K ) if f1TI C TIT (respectively if U;* fT belongs to T+ for
s = sp or some s that is sufficiently positive for x, respectively for K).

It is clear that if fT is in the span of {U; |t € TT*} and s and II are given, then some power
of f1 is sufficiently positive for both s and II.

Lemma 5.3.5. For every s that is sufficiently positive for K and x and every fT that is sufficiently

positive for s and I, we have
I (10 = In(f'. %)
where
g [ e i K = G(00), (5.:3.60)
fos qg(n)(%_c) : msUt_szeKUﬁo;l] [wai; 1] if K is a CSDI of depth c¢.  (5.3.6b)
Proof. The first case is clear. Consider the second case, dropping the subscripts II and K from the
notation. Let Il g = wJIHE and let 19‘ 1 i @IIV'HE — L be the restriction of ¥: QY — L,

which is still a perfect pairing. By Lemma 2.6.3 (using, in order, part (1), part (2), and part (1)
together with part (3)),

d(n)e m P{®Ps[1;w < —e
]T(f’r) :qo( ) Trml 2 [L5wo ](H(fTeKUu;t;)]))

—d(n)e m Pl @Pa[1;w e c —
=g, "™ Loy, et ](H(fTeKU[to;to/t(L)]wcl))

= gg M E I PO ((m U7 flegc Ul we [Lwg k) = I(F),

where f’ is as asserted. O

5.3.5. A non-vanishing result. Unlike the rest of this section, the following result is not used for
the p-local theory of the p-adic relative-trace formula, but rather as an input to Proposition 4.3.1

(3).

Proposition 5.3.6. Let 11, x, K be as in § 5.3.4. Suppose that v is split, 11 is a reqular

principal series, and K is a conjugate-symmetric deeper Iwahori such that TI®t #£ 0. Then

131 fact, at least if K is an Iwahori subgroup or one of the subgroups (5.1.2) with r = ¢ > 1, the weaker condition
s > ¢ will suffice; this is only used in the application of Lemma 5.1.2 (3) in the proof of Lemma 6.2.1.
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there exists an fT € T that is sufficiently positive for 11, x, K, such that the Hecke measure
f"= fx = (5.3.6b) satisfies
IH(f}(,sa X) 7£ 0.

Proof. Let f}; correspond to fT = U} for some sufficiently large integer N. We may and do
extend scalars from L to C; we do not alter the notation. By (5.3.3), we have

n(fi) = > &BONex(ILEe(ILE, X).
§€EK (IT)
Order the characters ¢ occurring in IIT as &1, ..., &,; then we may write In(fy, x) = anx where

z = (mgex(ILE)e(ILE, x))i € C and aYy = (&(t)V); € C". Now all entries of the vector =
are nonzero by Proposition 5.2.6 and Lemma 5.2.7, and the Vandermonde matrix A with rows
an,...asn,-..,a;N is invertible. Hence there is some 1 < ¢ < r such that 0 # a;yz = In(f/y, X)»
as desired. O

6. p-ADIC ORBITAL INTEGRALS

We define and study certain local orbital integrals matching the spherical characters just de-
fined. After establishing their p-adic boundedness (as the character y varies, in a suitable sense),
the main result of this section, Proposition 6.1.2, says that in case K is a CSDI, our orbital
integrals have plus-regular support, and it explicitly computes the values at all orbits.

We continue with the notation of the previous section.

6.1. Definition and statement of the main result. Let K C G’ be a convenient subgroup.

6.1.1. Definition. For f1 sufficiently positive (depending on x) and v € B/, let s and f}(,s be as
in Lemma 5.3.5, and define

I (11 X) = Ly 0OL (o X) = S (fle 4y 0x) (6.1.1)

whenever the last term (defined with respect an embedding ¢: L < C) is an absolutely convergent
orbital integral (that is, it reduces to a finite sum); this is the case when + is regular semisimple
or fk ¢ has plus-regular support.

Lemma 6.1.1. Let v € B’ and let f € H#T(L) be such that the expressions I,;K(fjf,—) are
defined. Then:

(1) the right hand side of (6.1.1) is independent of the choices of an s that is sufficiently positive
for K and x, so long as f1 is sufficiently positive for s.

(2) Suppose that fT € H#T(0r). For any sy that is sufficiently positive for K such that fT is
sufficiently positive for sg, the map

X — I (F1,%)

extends by linearity to a functional C°(Fy /(1 + w* 0y), O01) — kO, for some constant
k € Q* depending only on K.
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Proof. If K is a CSDI, let ¢ = ¢(K) be the depth of K, and let T = U[Cto_l} [wo_é;l]; if K is

unramified, let ¢ = 0 and T' = id. For a Hecke operator 7" = 3", \; Vol(Ai)*llAi dg € %, denote
1y € T = > Nila, (7).
Let sg be sufficiently positive for K and x. The integrand in the explicit expression for I i x(f )
equals
gl M=y ()1 [yhy € hyma U fle T (6.1.2)

and it is KSO) x (K N HY)-invariant by (5.1.8). Integrating first over over KSO) C Hj, the relation
(5.1.10) shows that (6.1.2) is independent of s > sg. We also see that if
k= qp "™ ol (K N Hy) vol® (K ) (6.1.3)
where vol°(Kg) = (5.1.7). Then the functional IiK(fT, —) sends C®°(Fy /(1 4+ w™0y), OL) to
kO
O

6.1.2. Main result and application to regqular test Hecke measures. When K is a conjugate-
symmetric deeper Iwahori and fT is sufficiently positive, the following key result asserts that
the associated f}ﬂ ¢ has plus-regular support and the p-adic orbital integral may be explicitly
computed. A remarkable fact is that its value is independent of .

By linearity, it suffices to study the case fT = Uy for some t' € TT+.

Proposition 6.1.2. Let K = Ko x K* C G' be a conjugate-symmetric deeper Iwahori (in
particular, v splits in F). Assume that fT = Uy € 1 for some t' € TT+. Then:

(1) for every s that is sufficiently positive for K such that f1 is sufficiently positive for s, the
support of
fj(js = (5.3.6b)

is contained in G;ngr ; moreover, f}gs matches an fx s € (G, L) that is reqularly supported
and bi-invariant under a subgroup conjugate to Ky;
(2) there exists a compact subset
Bi.(fHyc B
with the following property: for every smooth character x of Fy such that fT is sufficiently

positive for x and K, we have
. K ify e BL(fh
Ify’K(f 7X) = . T .i.

where k! = k:qO_EKO(wO), with k = (6.1.3).

The proof of Proposition 6.1.2 will occupy the rest of this section, which may be skipped on a
first reading.
The first part allows to complete the proof of Proposition 4.3.1.
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Proof of Proposition 4.3.1 (3). We drop the subscript v from the notation of the statement of
the proposition. Recall that we need to find an fi € #(G’, L) that is supported in G/, ogt and
adapted to a given pair (II, x).

We may take f! to be the element fks = (5.3.6b) associated to the data of: a conjugate-
symmetric deeper Iwahori K such that IT® = 0; an integer s > 1 that is sufficiently positive for
x and K; and an fT that is sufficiently positive for II, y, K. Then fi is adapted to (II, x) by
Proposition 5.3.6, and it has plus-regular support by Proposition 6.1.2 (1). If IT is unramified we
can take K to be an Iwahori subgroup, hence (again by Proposition 6.1.2 (1)) we have that f/
matches an fy that is biinvariant under an Iwahori subgroup.

We may take f := f for the involution g° = g~ !* of Remark 3.3.1. By that remark, f’ is
minus-regular, and it is clear that its matching f_ is bi-invariant under an Iwahori subgroup if f;
is. Moreover, Irj(f_,x) = It (f+,x 1) for TI°(g) := II(g°); since I1° =TIV = II, this expression
is non-vanishing too. (I

6.2. Reduction to p-adic linear algebra. We start working towards the proof of Proposition
6.1.2, of which we retain all the assumptions. The proof of part (2) relies on some reductions in
the present subsection and § 6.3, and on two auxiliary inductive lemmas in § 6.4, 6.6, and it is
completed in § 6.7. The proof of part (1) relies on the first auxiliary lemma, and is given in § 6.5.

We keep using the notation of § 5.1; however, at various steps of our descent into the argument,
we will lighten (and sometimes recycle) the notation for the sake of readability. We start by
dropping all apices from the notation, writing for instance f and G in place of f’ and G’.

We define involutions w and ¢ on Z* by

()\w)i = )\u+17i7 A= —)\w,

and a notion of positivity by declaring A € Z*" if \; > ;41 for all 1 < i < v —1; thus ¢ preserves
Z"". We also write A = XN if A= X € Z*T. Then @w* € T, if and only if A\ € Z*T, and
(@) = .

Extending the notation from (3.3.16), let p,: G, — G, x G, 0/F;* be the projection, and let
Pux: H(Gy) = H(Gyo x Gyo/Fy) be the pushforward map. Thus p := p, X Ppy1: G — G and
P+ = Pnx & Pntl,+-

Let ¢ be the depth of K. By the positivity condition on f! and linearity, we may assume that

fi=Unkx =l fl @ fl), f11 = [Kupow™ Kool fl,=Kla™ K] (6.2.1)

for some A, ; € Z¥ with A, ;, Abi = (s+¢)py.
We decompose
= frs = (53.6b) = g U flecUS 1 Twg 1] = fo ® fug
where each f, is a Hecke measure on G, /F;, and further decompose

fu = qng*C)C(V)mu,sijtzseKV U[;VC’O;” [w&ll@& 1] = pu,*(fu,l & fu,2)a
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where f,; € #(G,) are defined up to some scalar ambiguities that we do not need to resolve.
We also denote f; = f; ® frny1, for i =1, 9 14

Fix a representative v = [v0;1] = [(7n,0, Yn+1,0); (In, In41)] € G under the decomposition
G = (GmO X Gn+1,0)2/FUX’2.

Decompose Hi = H12,07 and write hy € Hy as hy = (hi, hll,O)' In the orbital integral (3.3.4),
we first integrate over Hy (noting that n = 1), to find

X(m) (1, %) = / F([hi§0has By g hol) dhy x(h1) dhy

i St (6.2.2)

= [ Pkt o) (o b ) dhsodh
(H1,0)?

where
[ =fixfy € #(Gnp x Gni10)-

(As part of of the proof, we will show that the above integral always reduces to a finite sum.)

Lemma 6.2.1. Assume that fi = (6.2.1), and let A\, = A1 + Ao = 2(s+¢)py,. Then f* =
Ji® faqa Jor
2 —/ v
f; :: qosc(u) Ky,o(w ,O)mS[Kw/\V—Zspl,wK]ms—l c %GV
Proof. Let 0, :== (v —1,...,0) € Z", so that t = w? and o, + 0, = 2p,.. Abbreviate w = w,,,
We = Wi0,c5 Ms = My t = by K = Kyp; K' = K¥; K" = K. Then

26— _ _ _ _
flf — fzz,l * fl){Q — q(() s c)c(l/)msUt sflleKUtcwc leK’(Ut sf:[,2)vms 1

! 3 - - _ _
= gV m K" w50 K e e gontCe gorwy LK Mt (59 )y 1

2 — _ _ _
_ qosc(u)TnS [Kl/w)\l,JJr(c S)UVK”](BK'LU(BK// [K”w Av,2+(s—c)ou K"]ms 1

— g ) Oy (K50 K e (KM w K| [K e vt K m
= qgsc(y)_ZK” (w)ms [K" w1 =50v K"e g [K"w%,?”LSU'L’wK”}m;l

= 2t ) g K[ K ot K !

_ qgsc(u)fﬁx(w)ms [Kw,\u—2spqu]ms—1’

where we have used the symmetry of K” and the algebra rules of Lemma 5.1.2. (]

Let
X2 =™ 2Py, 0 € Gyp. (6.2.3)

By Lemma 6.2.1, the integrand in (6.2.2) is non-vanishing at h; if and only if

hi g 1wohh o € MoKy Xo Ky omy, g (6.2.4)

v,0,s

14The context should prevent any possible confusion from the clash of notation with f,, € (Gn/Fy), since the
integer in this f, will never be specialized.
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for v = n,n + 1. Therefore, if the orbital integral IW(fT7 X) is non-vanishing, up to changing the
representative v in its Hq g-orbit we may and will assume that

Y0 € mu,O,sKV,OX,SKu,Om_I (625)

v,0,s"

We introduce the convenient variables

X, = m;(l)’sf}/y,()mv,(),s' (626)
Then (6.2.5) is equivalent to
X, € K ,0X°K, 0 (6.2.7)
and (6.2.4) is equivalent to
ml:é,shl_,(l)my707s ’ XV ’ m;(l),sh,170my7078 € KV70X1C/)KV7O' (6'2'8)

We will reduce Proposition 6.1.2 (2) to the following.

Proposition 6.2.2. Let X = w’\ifw,,,o for some X, € Z", and let (X, Xpni1,h1) € Gn,o %
Gt x Hy satisfy (6.2.7), (6.2.8) for v =n,n+ 1. Then hy = (hyo, i) € K37,

Lemma 6.2.3. Proposition 6.2.2 implies Proposition 6.1.2 (2).

Proof. By linearity we may assume that fT is of the form (6.2.1). Let X° := (X5, X5i1) €
Gno %X Gpi1,0 (which depends on fT) be as in (6.2.3), and let B}; = Bl((ff) C B’ be the image of

mgy Ko X Komg, x {1} C G.

We have already noted that if v ¢ B! , then IV(fT) = 0. Assume thus that v € B! , and pick
a representative of the form [yp; 1]. Proposition 6.2.2 and the discussion preceding it, applied to
X, = (6.2.6) and X, = X\, — 2sp,, show that the integrand

f;[,'yo,xz hy — X(hl)f*(hl_,(l)')/()h/l,o)
)

in (6.2.2) has support contained in KI(; . Thus in order to prove Proposition 6.1.2 (2) we need to

show

= qgsd(n)*fko (wO)' (6.2.9)

*

fH

Recall the observation from (5.1.8) that if hy g € K};)O, then m&ihiém% € KSHD C K, and

similarly for h{ ;. Therefore the equivalent form (6.2.8) of (6.2.4) and the fact that Xl = 1
’ H

imply (6.2.9). O

ﬁmx\KS

In §6.3 we reduce Proposition 6.2.2 to a simpler statement, to be proved in the remainder of
this section.

6.3. Contraction. From now until the end of the section, we lighten the notation by: dropping
all subscripts ‘0’; writing h in place of hj, and A’ in place of h/1,03 and writing mg € GLy41(F)
in place of my41,, whereas we recall that m,, s =t;.

We extract, from the pair of conditions on h, b’ in (6.2.8), a single condition on h.
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Let epq1.n = (lg) € My+1,(F) be the matrix with rows (e1,...,e,,0). Denote s == (s,...,s) €
Z" and @, = w! = wl, € GL,(F), and define the (n + 1) x n matrices

. -1 -1
X = Xpr1my eptinty X

n<Tn

n

-\ —2spp—s
_ _ / w g
X=X, ymy len+1,nthXZ’ L= w’\n+1wn+1 < 0 )

where in the second-last matrix 0 € (F™)*, and A; := (A, 1 )nt2—i — (A)i — (n 4+ 2 — 2i)s. Then
Aig1 — A > 25
forall1<i<n-—1.
Let

toSw, th gttt N (w T — 1,)u

hg = ms_lh_lmS = ( ) € GLy41(F),

1 (6.3.1)
hs :=t,°ht; € GL,(F).
Lemma 6.3.1. If (6.2.7) and (6.2.8) are satisfied for v =n,n+ 1, then
X € Kp1 X°K,,
- (6.3.2)
thhS S Kn+1X0Kn
Proof. Denote by Y, the left-hand side of (6.2.8). Then those equations imply that
_ . L (EEKXPTK
Yn+1ms_1€n+l,ntfzyn_l = hsXhs € Kn+1Xn+1Kn+1ms 1< mer (;l n) (6.3.3)

We simplify the right-hand side. First, we have
K, XK, = Kyw,w K, = K w,mw K,

where the group K,<L28> is as in § 5.1.4 (the second equality can be shown by observing that the
quotient K,<L25>\Kn is represented by lower-triangular matrices). By the symmetry of K7<12S>, we

have
(B Kyw,m MK, wgstgswnthK£23>wglw_’\;tKn
Kn—i—lms = Kn+1
0 0
@, o 25Pnap, K5 w, P o A= 20n |, K =2 —s ¢,

Therefore (6.3.3) is equivalent to

K7<742S> w_>‘/n —2spn—s

Esth € Kn+1w)\;1+1wn+1Kn+1 < 0

)Kn = Kn+1XOKn7
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where the identity follows from writing

Ky(fs)wf)\ilf%pnfg}'{n ] oA —25pn—s
Ky = lim K41 Kn—l—len—l-l,n
0 e—0 €

and applying the multiplication rules of Lemma 5.1.2. We conclude that we have
XeK,1X°K,
hsXhs € K, 1 X°K,,

where the first containment follows from the above calculation and (6.2.7). O

We show that the following solution to the contracted problem (6.3.2) implies Proposition
6.2.2.

Proposition 6.3.2. Let K, be a deeper Iwahori of level < s. Let
X° = o .- € M(n+1)xn(F) (6.3.4)

with \ip1 > XNi+2s foralll <i<n-—1, and let X € K, 1X°K,.
If h € GL,(F) satisfies
hsXhs € K1 X°K,

with the notation (6.3.1), then h € Kl(;).
Lemma 6.3.3. Proposition 6.3.2 implies Proposition 6.2.2.

Proof. We revert for a moment to the notation of Proposition 6.2.2. The discussion preceding
Proposition 6.3.2 shows that this proposition implies the conclusion that hy o € KI(;)O. Observe
now that (XZ’_I,XZ’_;I;X,II,X;L; h&,m hi,) also satisfies the hypothesis of Proposition 6.2.2.

Then the previous argument applied to these data shows that h‘ll,() € KS)O as well. [l

The proof of Proposition 6.3.2 will occupy the rest of this section.

6.3.1. ITwahori-invariants from minors. We say that a size-r minor M of a matrix X € M, x,(Fp)
is
— Southwest principal if it is obtained by deleting all but the last r rows and all but the first r

columns of X;

— quasi-SW-principal if r > 2 and M contains the Southwest principal minor of size r — 1;

anchored if M contains part of the last row of X.

Definition 6.3.4. Fix integers A\; < -+ < A,. We say that X € M(,,;1)x,(F) satisfies the Minor

Condition if for every 1 < r < n, every r X r-minor M )(g) of X, and the Southwest-principal
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r)

7 X r-minor P)(( , we have

(et MP) >SN, o(det PYY) Z by (6.3.5)

i=1
We say that X € M, 1 1)xn(F) satisfies the Weak Minor Condition if (6.3.5) holds for all anchored

minors.
The first example of a matrix satisfying the Minor Condition is X° = (6.3.4).

Lemma 6.3.5. Let X, X" € M4 1)xn(F).
(1) If

X' € Iwp 11X Twy,
then X satisfies the Minor Condition if and only if X' does;

(2) if
X' e < Lwn )Xlwn,
1

then X satisfies the Weak Minor Condition if and only if X' does.
Proof. This follows from the Cauchy—Binet formula for minors of products. U

The reader may wish to glance at the proof of the two parts of our Proposition in §§ 6.5, 6.7
before looking at the auxiliary lemmas that occupy §§ 6.4, 6.6.

(s)

6.4. First auxiliary lemma. We define some variants of the condition h € K;

Definition 6.4.1. For s > 1, we say that a matrix h € GL,(F) is

— s-small if for all 1 < 4,5 <mn,
v(hii) =0 and wv(hi) > |j —i|s; (6.4.1)
— wupper-s-small up to row i if there is a decomposition
h=hr"h{)

where th) is s-small, and h@ admits a block decomposition

o ( . ) (6.4.2)

such that a € M;(F') is lower-triangular with units on the diagonal.
— extremely s-small if it is s-small and (wh — 1,)u = 0.

(s)

Remark 6.4.2. The set of extremely s-small matrices is a subgroup of K;;’, which in turn is a
subgroup of the group of s-small matrices. If h is of the form h(_lfl) and it satisfies (6.4.1) for all
j < i, then h is upper-s-small up to row i. (In fact, there is a decomposition h = h(j)h(j) with

hgi) differing from the identity only in row i.)
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From now until the rest of this section, we write ¢ in place of t,,. We denote h™* = w,h~ 1w, !
for h € GL,,(F'), and we simply denote by 0 the zero row vector of length n. The following remark

will often be used in conjunction with Lemma 6.3.5.
Remark 6.4.3. If h is s-small, then t~%ht and t~*h~"t belong to Iw,,.

Lemma 6.4.4. Let 1 <i <n, and consider the equation
t—sh—wts
X.sh = ( . ) Xt~ *ht® = X', (6.4.3)

subject to:
— X, X' € Myq1yxn(F) satisfy the Weak Minor Condition of Definition 6.3.4;

— the entries of the last i rows of X below the lower antidiagonal are zero, that is

U(Xn-‘rQ—i’,i’) =\, X?’L+2—i’7j =0 for all j > i’ <1 (644)
(where the first equation is a consequence of the second one and (6.3.5));
— h e GL,(F).
We have:

(1) for given X, every solution (h, X'") has h upper-s-small up to row i;

(2) if h is of the form hY as in (6.4.2), then X' also satisfies (6.4.4).

(3) for given X', there exists a solution (h,X) with h extremely s-small (and in fact upper
triangular).

Proof. We proceed by induction on i. Write

/
=) *=(%)
C C
with A, A’ € Myn(F)

Consider first ¢ = 1. The last row of (6.4.3) reads

c;- = clhlj/w(j_l) (6.4.5)

for j < n. Thus if X, X’ satisfy (6.3.5), then v(h11) = 0 and v(hi;) > (j — 1)s, hence the
first statement is proved and the second one is immediate. On the other hand, substituting
hip =137, hig, c1 = ¢;hy! in (6.4.5) gives the integral linear system

n

Z(c'léjk + w(k_l)sc;) RSy = c;

k=2

(1-k)

in the variables w Shig. As the system is invertible, the third statement is proved too.

Now let ¢ > 2 and suppose the first two statements known for ¢ — 1. By Remark 6.4.3 and
)

preserves the Weak Minor Condition on X’; hence

in a decomposition h = hgfl)hgf;l). In other words, we may

Lemma 6.3.5, acting on the right by hgﬁ_l

we may and do replace h by hgfl)
assume that for j >4 <i—1,

U(hi/i/) = O, hi’,j =0.
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The same conditions are then satisfied by h~1.
For 5 > i, let

be the quasi-SW-principal minor of X’ of size ¢ whose upper-right corner is X/, 2 thus by

the induction hypothesis M"™+2~%J has zero entries below the antidiagonal, and its antidiagonal
entries have valuations (in order, starting from the SW corner)

)\]_, ey >\7«_17/U(X';L+2—’L,j)

In particular,
'U(det ]\471—’_2_27‘7 Z )\ )\ + U n+2—i,j)‘
Hence the Minor Condition (6.3.5) implies
i+ v(Xpi0 ) =0, i +0(X), 49 ;) >0 forall j > i (6.4.6)

As A =t75h~Yt5 At—5ht®, we have for all 1 < j < n:

oy A - ket 1—i k1—j
Xptoi;j=w@ (h Yo imi1 k@ TS X g B
(6.4.7)
1—1
1 (kfl—i)s _—X; kp1—j
= bl @ T AN X g T
k=1

by our assumptions on h. Moreover, for j > i by induction hypothesis hy,1; = 0 for all k <i—1,
hence
w 7,1+2—i7j - h;luflhi,jw(l_])swﬂi n+2—isi (6.4.8)

Since hz’il1,i71 and w_/\anH,m- are units, condition (6.4.6) is equivalent to
U(hm’) = 0, U(hijj) Z (] — i)s

for all j > 4, establishing the first statement. If h is of the form A"
immediate from (6.4.8).

(i

) , the second statement is

Consider now the third statement. After replacing X’ by X’.¢(h’)~! where A’ is as given by this
statement for i — 1, we may and do assume that X’ satisfies (6.4.4) for i’ < i. We seek h extremely
s-small, upper-triangular and differing from the identity only in row ¢; hence in particular h takes
the form hg_l), and by the second statement for i — 1, we only need to find a solution to (6.4.8)
in h (with the further simplification h;—j ;-1 = 1).

Weset h;; =1 —Zk# ik, necessary for h to be extremely s-small, and substitute in X, 12_;; =
h;. :X’+2 ;i We find the linear system

n
Z (wi)\l n+2—i 15]k + ot m ZXn+2 i ]) hikw(iik) =w NX; n+2—i
k=i+1

7.7
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in the variables w(~*)%h;, for k > i + 1. By our reductions, —\; + (X} 9 ;) = 0and —\; +
v(X] +2fi,j) > 0, hence the system is integral and invertible; its solvability implies the third

statement. |

6.5. Plus-regularity of support: proof of Proposition 6.1.2 (1). We prove part (1) of
Proposition 6.1.2. It follows from Lemma 6.2.1 (via Lemma 3.5.6) that f’ = (5.3.6b) matches an
f € (G, L) that is invariant under K)"*. We now turn to proving that f’ is supported in the
plus-regular locus G; egt (thus f is also regularly supported).

Recall that we defined in (3.3.3) the quasi-invariant D¥ on G , by pulling back the corre-
sponding function D* on the symmetric space S. Now that the place v is split in the quadratic
extension, we identify S with G,41. Tracking the process of contracting the test function, it
suffices to show that the function f; x f;,; on Gy 11 = S has plus-regular support, where f,; and
fh41 are as in Lemma 6.2.1.

n

A b
Now we note that, for v = ( J
c

) € Gp+1 = S, the invariant DT is equal (up to a sign) to

Dt (y) = det(c,cA, -, cA" ).
Note the quasi-invariance property: for h € G,
Dt (W 'yh) = DY () det(h).

Then by definition, v € Gy,41 is plus-regular if and only if DT (v) # 0, or equivalently the vectors
c,cA, -, cA" ! form a basis.

We observe that the plus-regularity depends only the first n columns, so that we may talk
about the plus-regularity of an element (‘2) € M(n+1)><n(F ). Therefore by Lemma 6.3.1 (together
with the discussion preceding Proposition 6.2.2), it suffices to show that the following subset of
M 41yxn(F) is inside the plus-regular locus:

msKp 1 X Kty !, (6.5.1)

where X° is as in (6.3.4).
By Lemma 6.3.5(1), any element in the set K, 11 X ° K, satisfies the Minor Condition (Definition
6.3.4). It thus suffices to show that, if X satisfies the Weak Minor Condition, then the element

1 u wt? s
R

= wt?® s
X = ( 1 )Xt S M(nJrl)Xn(F).

is plus-regular. Set

1 c
so that (! If))? = (L%ul. We see inductively that the span of ¢, E(Z + uc), ... ,E(ﬁ +uc) =t is
equal to the span of ¢,¢A,...,¢(A)"~!. The claim follows.

1 ~ ~ _ _
Then we claim that < Y > X is plus-regular if and only if X is. To see this, we write X = (A)
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It remains to show that X is plus-regular. By Lemma 6.4.4 (3) (applied to the case i = n),
there exists h € GL,(F) such that, if we set

hiXh=X'
- ts
where X' = < v ) > X't™* € M(;41)xn, then the entries of X’ below the lower antidiagonal

are all zero. It therefore suffices to show that X’ is plus-regular. We note that

*x a2 0 O
~ 0 ;1/
/
X'=1x% =« an | — (5, )7
x % *
ag 0 - 0
where a1, as, ..., a, are all non-zero. For 1 < ¢ < n, denote by e; € F{ the standard basis vector,
and by V; C F{' the subspace spanned by ey, ..., e;. In particular, @ = aje;. Then by induction

we see that

o Ani—1 — t t
61(14 ) = aiei HlOd ‘/7;_1.

It follows easily that the subspace spanned by e!, ..., etl(g’ )=l is exactly Vi forall 1 <i<n.

The desired assertion follows.

6.6. Second auxiliary lemma. We continue with another lemma towards the proof of part (2)
of Proposition 6.1.2.

Definition 6.6.1. We say that a lower-triangular matrix h € GL,,(F') with units on the diagonal
is lower-s-small from column j if

v(hijr) > (i —j')s for all i > j' > j.
This is equivalent to the existence of a decomposition
h==0pnp .0Op

where Wh__ is lower-triangular and s-small, and

p_ = ( o ) (6.6.1)
* lpgi—j

with a_ € M;_1(F) lower-triangular with units on the diagonal.

Remark 6.6.2. For a lower-triangular matrix h with units on the diagonal:
— h is lower-s-small from column j if and only if h~! is;

— h is lower-s-small from column 1 if and only if it is s-small.

Lemma 6.6.3. Let 1 < j <n, and consider the equation

X.ch = ( ErhT . )Xt_shts =X/, (6.6.2)
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subject to:
— X, X' € Myq1)xn(F) satisfy the Weak Minor Condition of Definition 6.3.4;
— the entries of X, X' below the lower antidiagonal are zero, that is
v(Xnt2-ii) = i, Xnyo—ijy =0 for all g >
(where the first equation is a consequence of the second one and (6.3.5)), and similarly for X';
— the entries of the last n — j columns of X above the lower antidiagonal are zero, that is,
Xnpio—ij =0 foralli>j >j+1; (6.6.3)
— h € GL,(F) is lower-triangular with units on the diagonal.
We have:
(1) for given X, every solution (h,X") has h lower-s-small from column j;
(2) if h is of the form Dh_ as in (6.6.1), then X' also satisfies (6.6.3);

(3) for given X', there exists a solution (h, X) with h extremely s-small.

Proof. We prove this by decreasing induction on 7, the case j = n being trivial. Thuslet j <n—1
and assume the statements proved for j + 1.

After replacing h by U~Dh_ as in the decomposition (6.6.1), that is acting by sUTDh__ on
both sides of (6.6.2), by the induction hypothesis we are led to a situation that is equivalent
for the purposes of the first two statements. Hence we may and do assume that h has the form

G+Dh_. For i > j, let
NP

be the quasi-SW-principal minor of X’ of size j + 1 whose upper-right corner is Xr,z+1fi,j+1? thus
the matrix N*T1=%/+! has vanishing entries below the antidiagonal, and its antidiagonal entries

(in order, starting from the SW corner) have valuations
ALy N (X )
In particular,
j+1
1—ij+1
v(det N™FITHEN) = 3 TN — N+ 0(X )
§'=0

Hence (6.3.5) implies
—Nj+1 Ho(Xp i) 2 0. (6.6.4)
The same condition holds for X by assumption.
We have
A;ilX;L—&-l—i,j—i-l = @ it Z (™) 1-im 1@ X1 g b ja w9
1<k, l<n
(6.6.5)

7
—1__(k—i)s_—X;
=Y el X
k=j
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where we have used our assumptions on h and X. All terms are integral except possibly the
last one, whose valuation is v(h;_ jl) — (i — 7)s. That this should be non-negative, for all i > j, is
equivalent to h being lower-s-small from column j, proving the first statement.

If moreover h has the form )h_, then in (6.6.5) all terms are zero unless i = j, in which case

we only have the term corresponding to i = j = k, giving X' = Xyt1—j,j+1 = 0. This

n+1—7,j+1
proves the second statement.

For the third statement, we seek an extremely s-small matrix h that differs from the identity
only in column j. Then h~! satisfies the same conditions, A is of the form U~Yh_, and we need it
to satisfy (6.6.5) (for some X), in whose right-hand side only the terms k = j,7 may be nonzero.
Substituting

hit=1=>"hi', Xpprggin = 0= hi) ' X g
i>j i>]
and observing that for i > j + 1 only the term k = i may be nonzero in (6.6.5), we find
hi V™o A X g = @ X

This is an invertible integral linear system
i
=it /! i k—j,__—Xi+1 / j—k)sp—1 __ —Ait1 !/
E (@ X 10k w0 T T Xn+1fi,j+1)w( ) hg =@ 7 X
k=j+1

in the variables wwl—+)s h,;jl. The solvability of the system implies our third statement. U

6.7. Proof of Propositions 6.1.2 (2), 6.2.2, and 6.3.2. By Lemmas 6.2.3, 6.3.3, it suffices
to prove Proposition 6.3.2. Thus we need to show that for XY € K, 1 X°K,, all the solutions
in h to the equation
Y = hsXhs (6.7.1)
have h € K};). By Lemma 6.3.5, both X and Y satisfy the Minor Condition.
Write X = () € M(y11)xn(F), with ¢ € F™'. Then

Y =hXhy =X+ X",

R e e e T
X=Xk = < ct=shts ’ (6.7.2)
—S4—S8 -1 _ ln
X" =X..;h = (w t (w(f)L )u>ct_shts,

where the notation X.gh is as in Lemmas 6.4.4, 6.6.3.

Note that X” =Y — X’ is a rank-1 matrix whose rows are all multiples of row n+1 of X’ (and
whose last row is zero), so that the determinants of any pair of corresponding anchored minors
of Y, X’ are equal. In particular, X’ also satisfies the Weak Minor Condition of Definition 6.3.4.

We proceed in several steps to show that h € KS).

(1) By applying first Lemma 6.4.4 (3) for ¢ = n, then Lemma 6.6.3 (3) for j = 1, we find an
extremely s-small A’ such that, first, X..;h’ = 0 (which is automatic by the extreme smallness
of 1) and, second, X.;h' = E;X hs has zero entries outside of the lower antidiagonal and of
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column 1. Hence, up to changing variables by such an h/, we may assume X satisfies these

vanishing conditions.
(2) Apply Lemma 6.4.4 (1) to the equation
X=X ;h, (6.7.3)

to deduce that h is upper-s-small, h = h_hy with h_ lower-triangular with units on the

diagonal and hy s-small.

(3) Act on (6.7.3) by .Shjrl; by Remark 6.4.3 and Lemma 6.3.5 (2) this preserves the Weak Minor
Condition. We can then apply Lemma 6.6.3 (1) (with j = 1) to the resulting equation, to
conclude that h_ and h are s-small.

(4) By Remark 6.4.3 and Lemma 6.3.5 (1), we deduce that X’ = X.;h satisfies the full Minor
Condition; in particular, all entries of X’ have valuation no less than v(A;). Since this also
holds for the entries of Y, it must hold for the entires of X” too. As )\flct*S ht?® is integral with
first entry a unit, the condition on X” is satisfied if and only if = 5t=*(wh™! — 1,)u € O™;
that is, h € K}j).

The proof of Propositions 6.3.2, 6.2.2 and 6.1.2 (whose part (1) was proved in § 6.5) is now

complete.

7. THE p-ADIC RELATIVE-TRACE FORMULA AND p-ADIC L-FUNCTIONS

This section is dedicated to the construction of the p-adic L-function of Theorem B and the
related RTF. In § 7.1 we give the statements. In § 7.2 we give the proofs: similarly to what done
in § 4, we construct the p-adic relative-trace distribution from its geometric expansion, then we
extract from it the p-adic L-function and deduce the spectral expansion. In § 7.3, we give a RTF
for the derivative of the distribution.

Throughout this section, we fix a rational prime p.

7.1. Statements. Recall that we denote I' = I', = F* \A°°7X/5’\§’OX, and % := Spec Z,[I'p,] ®
Q, We say that IT € ¢ (G’ )1(53; is ordinary if for all v|p, the representation II, is ordinary in the
sense of Definition 5.2.1. The ordinary representations form an ind-subscheme

% (G)rerord C ¢(G) .

For K, =[], Kv, we let € (G’)l}g’ord be the subscheme of those IT which are K,-ordinary for all
v|p.

7.1.1. p-adic L-function. The following is Theorem B from the introduction

Theorem 7.1.1. Let L be a finite extension of Qp, and let II be an ordinary hermitian trivial-
weight cuspidal automorphic representation of G'(A) over L.
Assume that for each place v|p of Fy, v splits in F or 1L, is unramified. Then there exists a

unique function

fp(MH) € ﬁ(Q/L)
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whose restriction to Y (p™°), satisfies

Z,(Mn)(x) = ep(Mngy) £ (M) (x) (7.1.1)

where £ (Mn) is the function in Theorem 4.2.1, and ep(Mugy) = ]I, e(Ilv, xv) for the factors
of (5.3.5).

7.1.2. Generalized Radon measures. We make the first of two preparations which will be relevant
to the p-adic relative-trace formula.

Recall that a Banach ring is a topological ring equipped with a norm |-| for which it is complete;
the relevant examples for us are the finite extensions of Q, (with the p-adic norm) and (%)

(with the Gauss norm).

Definition 7.1.2. Let X be a set and let R be a Banach ring. A generalized bounded Radon

measure'® with values in R is a pair (u, LY*°(X, 1)), where

— LY°(X,p) € L*®(X) is a closed subspace of the R-Banach space of bounded R-valued function
on X;

— p: LY*°(X, 1) — R is a bounded R-linear functional.
We will usually denote such measures simply by p, and for ® € LY*°(X, ), we will use the

notation

[ 2@ dn(o) = (o)
X

When R’ O R is an extension of Banach rings, an R-valued generalized bounded Radon measure
i gives rise to an R'-valued generalized bounded Radon measure by extension of scalars, which
we will still denote by p. We say that a function ® € L*°(X) is u-integrable if it belongs to
LY%°(X, ). When we make an assertion regarding [ + ®dp for some ® € L*>°(X), we implicitly
include the assertion that ® is p-integrable.

7.1.3. Local distributions at p. Let Kp =[],
is convenient in the sense that each K, is (as defined in § 5.3.1). We will say that K, is a

K, C G/(Fup) be a compact open subgroup that

conjugate-symmetric deeper Iwahori (CSDI) if each K, is (as defined in § 5.1.4).
For x € Y (p) and f} = @y, fl € 4 = Ry
K, (in the obvious sense derived from § 5.3.4 for each v|p), and for II, a tempered irreducible

A that is sufficiently positive for IL,, x,, and

representation of Gj, and v € By, we define
oo (o) =TT e (Floxe)s I (Foxe) =TT 2 ke, (£ x0),
vlp vlp

where the last factors are as in (6.1.1); we impose the restriction that v € B;SJD unless K, is a
CSDI.

7.1.4. p-adic relative-trace formula. For K, as above, recall the Hecke subspace

(G (AP)) K, rs.qc C A (G/(AP))

5When X is a topological space and L"*°(X, i) contains C.(X), the functional x is a (bounded) Radon measure
in the sense of Bourbaki.
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of § 4.2.2. We denote Uy, = ®,,Uy, .

Ip

Theorem 7.1.3 (p-adic analytic RTF). Let K, =[]
and let L be a finite extension of Q.
There exist:

olp v C G/(Fo,p) be a convenient subgroup,

(1) For each finite place v t p of Fy and for v = oo, for each v € Bl,, and for each tempered
irreducible representation 1L, of G, over L, distributions
f]‘[v: %(G;},L)O — ﬁ(@L),
j’y,v: %(G;HL)O — ﬁ(@L[\/jl])
obtained from the corresponding distributions of Proposition 4.2.2 (1), (3) by pullback via the
restriction maps % 3 X = xv € Yu(1)q,. (If v =00, Yy(1) := SpecQ.)

(2) For each representation I1 over L as in Theorem 7.1.1, a distribution
1 ¢}
Sy = ex, (1) Z,(Mn) [, : 2(G'(AP),L)° — 6(#1),
vtp

where the constant cy, (I1) =[], ck, (Il,) for the factors of (5.3.5).
(8) For each v € B'(Fy)°, a bounded-by-1 p-adic L-function

Ly~ € Zy[TR) C O(%)
(p)

whose restriction to Y (p™) equals Ly” = Ly/[l,, Lyw (where Ly is as in Proposition
4.2.2(4a) ).
(4) An orbital-integral function
IP: B (Fy)° x A (G'(AP),L)° — 0(%1) (7.1.2)
defined by

(7, f7) = TP(") = 5(Loo) Ly [ F0
vip
which is bounded in the variable ~.

(5) (a) for every xp € Yp(p™), a Qu(x)-valued generalized bounded Radon measure I1°*9 ;- ()

'Yap:Kp
on Bl (Fy)°, defined by the limit of weighted samplings
d — 1 i N!
/B’ (Fo)° PO AL, () = Jim D L (U ) () (7.1.3)
R YEBL,(Fo)°

on the space of bounded functions ® € L (Bl (Fy)°®) for which the sums over ~ converge
and the limit converges;

(b) if K, is a CSDI, a Qp-valued generalized bounded Radon measure I%?Kp on B'(Fp)°
(whose restriction to on Bl (Fp)°® coincides with I;’rng (xp) for every xp), defined by

[ eedre =k lim Y e (7.1.4)
B(Fp) ’YEB/(FO)OHB;N
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here, B;N =11
(6) A distribution

olp B}(U(Ugfm) and ky = I[, |, kv, with the factors as in (6.1.3).

Ik, H (G (AP), L), qo — O(ZL)

which admits the spectral expansion

I, = D, S

ne? (G5

and:

(a) after restricting to 7 (G'(AP), L)‘}(P’rsqC if Kp is not a CSDI: for each finite-order x €

%1, the geometric expansion in L(x)

T 0= [ ) g (o)
Bis(Fo)°
(b) if K, is a CSDI, the geometric expansion in O(%r,)
T = [ i,
B/(FO)O

7.2. Proofs. We will prove Theorem 7.1.3 and, as an interlude, Theorem 7.1.1.

7.2.1. Boundedness of local orbital integrals. We consider the local distributions I, of Proposition
4.2.2 (3).

Lemma 7.2.1. Let v { poo or, respectively, v = oo, and let f € (G, L)°. There is a constant
c(fl) € Q* such that for every v € Bl (respectively, for every v € B ), the polynomial

L(f)) € 0(Y,(1))L = L[T]

(respectively the number I,(fL,,1) € L) belongs to c(f,)OL[T) (respectively c(f),)Or). Moreover,
for all but finitely many v, if f) is the unit Hecke measure then we may take c(f}) = 1.

Proof. By the definitions and Lemma 3.3.4, it suffices to consider I 7,( fu, xv) instead of I (f7, Xu),
for any + in the unique plus-regular orbit above ~.

First consider the case of v = oo, for which we may assume that f. matches f3: then by the
proof of Lemma 4.1.4, the function v — IV,( f1.) takes finitely many values on B, so that the
boundedness is trivial.

Assume now that v { poo. If 4/ is regular semisimple, then the orbital integral Iv( floxw) is
equal to IP/,( 7, Xv) defined by (3.3.4). The latter is a finite sum of the values of the integrand
at the cosets under the maximal compact subgroup of Hj , x Hj, under which f; is invariant.
Therefore the integral is a polynomial in x,(w,) and . (w,) ' whose coefficients’ denominators
are bounded by those of f/. If f} is the unit measure or more generally spherical, then the orbital
integral is an integral polynomial since the volume of the compact open subgroup GL,(0F, ) x
(GLy, x GLypy1)(OR,,) of Hy , x Hy, is equal to one by our choice of measures.

In general, for a plus-regular element +/, by [Lu, Lemma 5.14] the integral in (3.3.4) is absolutely
convergent (in the archimedean topology) when the exponent of |x,| is small enough. This implies
that for some large integer N, the product X(wv)*Nfg,( ! Xv) is a power series in x(w,)~!. Now
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I, (Fhxo
the normalized orbital integral I,(f, xv) is by definition (cf. (3.3.7)) given by L(f(v X)). In

particular, we have an equality of power series in x(w,) !

X(@0) NI (f) xw)
Ly o)

The same argument as for the regular semisimple case shows that the coefficients of the power

X(wv)iNL/’ (f{n Xv) =

series ()N Ii,( s Xv) are p-adically bounded, and integral if f; is spherical. Since L./ (x,) is
an integral polynomial in the variable x(z,) ™!, it follows that the coefficients of the power series
x(w@y) "N L/ (f}, xv) are also bounded (in the p-adic topology), as desired. O

7.2.2. Proof of Theorem 7.1.3 / I. Part (1) and the definitions in part (4) and (5) of Theorem
7.1.3 are self-explanatory.

For part (3), it suffices to show the existence of an integral interpolation of the functions
on Y(p*)q, C # given by the abelian L-functions in (3.3.11) (with the Euler factors at poo
removed). This is a consequence of the results of Deligne—Ribet [DR80], who prove that for every
totally even (respectively odd) finite Hecke character £ of of a totally real field F{| and every even

(respectively odd) k > 0, there is an Ly(1—k, &) € Zy(§)[I'g;] interpolating X" — Ly (1 -k, £x/).16
rd
I;’ p,Kp
from Lemma 6.1.1 (2). Their explicit and uniform variant over B(F)° when K, is a CSDI follows

The boundedness of the measures (xp) (which is, importantly, uniform in y,) follows

from Proposition 6.1.2 (2).
The boundedness of v — Z7(f'P) follows from the integrality of L., and Lemma 7.2.1.

We have thus proved parts (1), (3), (4), (5) of Theorem 7.1.3. After some preliminaries, we
will now prove the existence of the global distribution and the geometric expansion in part (6).
The spectral expansion in part (6) (with the definitions from part (2)) will be proved in § 7.2.6.

7.2.3. Finite-slope distributions. For v € Bl ,(A), and II as in Theorem 7.1.1, we first define the
following distributions on the subspace of #(G'(AP), L)° ® %ﬁf of elements that are sufficiently
positive for all the relevant data:

Lo, (PP 5200 = 52 0in) - T, (o) - T s, () = Fn(F25)),

utp (7.2.1)
I};,Kp(f/pfgaX) = K/( 1Lp HI U fvaXU T,p(fgaxv)'
vtp
Then we may define and expand
Lo, Ui = D0 Th (0 = D0 L, (P (7.2.2)
e (Gt YEB'(Fb)

where the geometric expansion is valid if f7 has weakly plus-regular support or K, is a CSDI,
and is a consequence of Proposition 4.2.2 (5), the definition (6.1.1), and Proposition 6.1.2 (1).

16The results of Deligne—Ribet are stated for totally even characters only and include the interpolation at varying
k: it is well-known that this allows to obtain the case of a totally odd character £ by reduction to the totally even
character éw, where w is the Teichmiiller character.



84 DANIEL DISEGNI AND WEI ZHANG

For an integer s > 1, we denote @, = [[,, @, € O, and

vlp

FFg,s = FFO/(I + w;ﬁFO,p)'

Lemma 7.2.2. Let f'? € 7#(G'(AP),L)°. There is a constant c(f'?, K,) € Q* such that follow-
ing holds. For each v € B'(Fy)°, each s that is sufficiently positive for K, for all v|p and each
(fg)v‘p € Hv|p %’J(ﬁL) that are sufficiently positive for s, if we set f1 = fP® ®v|pr, the maps
Y(@;) 2 x— 1 (1)
Y(w,) > x — Ii,K(fTvX) (if Kp is a CSDI or £ has plus-regular support)

extend by linearity to functionals C(T'g, s, O1) — c(f'?, K,) 07,

Proof. The desired extension of If% Kp( f1) is the convolution of the measure on I'r,,s given by
I;KU (f), which are bounded in terms of K, by Lemma 6.1.1 (2), and (the restriction of) 47 (f'?),
which we have seen to be bounded uniformly in ~. For I}f(p( f1), the extension is defined via the

(finite) geometric expansion.

O
7.2.4. Proof of Theorem 7.1.3 / II. Corollary 5.3.4 shows that in the limit
1
ord . . N!
IKp (f,p)X) = ngncojl{p(f/pUt,KP7X) = Z Zep(Mth)g(MHaX) : (®u¢pIHu)(f/p7Xp)'
He(g(Gl)her,ord
(7.2.3)
The existence of the limit and (7.2.2) prove that the orbital-integral functions
I (17,30 7 — k(L) ™ (@) (F747)
are I ‘v’f}‘i k, (Xp)-integrable, and that
A= [ B ) (7:2.4)
7(£0)°

where ? = () if K, is a CSDI and ? = rs otherwise.
Now by Lemma 7.2.2, the map x — I?(rj(f’p, X) coincides, for each s, with the evaluation of a
limit of uniformly (in both ff = UN' and s) bounded Radon measures on I'z ¢, hence it extends

uniquely to a bounded Radon measure
I, (f7): CTRr, L) — L (7.2.5)

corresponding to the element pr(f’p) € 0(%,) of part (6).
The geometric expansion in part (6a) is (7.2.4). Then if K, is a CSDI, by Lemma 7.2.3 below
applied to (7.1.4), the distribution JKP has the geometric expansion described in part (6b).

Lemma 7.2.3. Let (IN)NeN, Foo € O(¥). Suppose that for all x € Y (p°°) we have
lim Iy (x) = oo (X)-
N—00

Then imy_yo0 IN = Foo.
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Proof. Recall that Y (p™) = liAlY(ps); then observe that the ideals J; .= Ker[0(#') — O(Y (p®)) C
[T\ ey ) Qp(X)] form a fundamental system of neighbourhoods of 0 in &(%). O

We now turn to the p-adic L-function, then to the spectral expansion of .#, K,

7.2.5. Proof of Theorem 7.1.1 (= Theorem B). Let K, =[], K, be a convenient subgroup such
that for every place v|p of Fj, the representation II, is K,-ordinary. Similarly to the proof ot
Theorem 4.2.1, we use Corollary 4.3.4 asserting the existence of suitable test Gaussians. (Note
that as x|a»r.x is smooth, the definition of ‘adapted to (II, x, K})’ in § 4.2.2 still makes sense, and
the proof of that corollary goes through.)

For any x € Y (p*°), and any f? € 7 (G'(AP>), L)} v v, We define

4ﬂKp (f/p, )
CK, (1) - (®vfplﬂv)(f1ln )

away from the zero set 2°(f’?) of the denominator. Note that we may assume that f’? is a pure

LM, ) g =

tensor with factors equal to the unit Hecke measure at places v { poo where II,, is unramified; if
so, each Z(f'P) is the pullback of a closed subset Z(f?) C Ys(1)r := [],cg Yo(1)r for some fixed
set of places S. As .k, restricts to I}’(rj, it follows from (7.2.3) that the functions .Z,(M, -)
glue to a function .Z,(Mpy, -) with the desired interpolation properties, on the complement of the
polar locus & = ﬂf/e’f(G'(pr)vL)%p,rs,np,Xp Z(f'?) C #1. By Corollary 4.3.4, the closed subset
Z is empty. The function .Z,(My) is still bounded since, by the Nullstellensatz applied to a
finite subproduct of [ [, Yu(1) 1, finitely many [P suffice to construct .Z,(Myr). This completes

the proof of Theorem 7.1.1.

7.2.6. Proof of Theorem 7.1.3 / III. Part (2) of the theorem is now clear. The spectral expansion
of Z in part (6) then follows from the definitions and (7.2.4). This completes the proof of
Theorem 7.1.3.

7.3. Derivative of the analytic RTF. We study the derivative of the distribution Y, .

7.3.1. Notation. ’Denote by m C Oz the ideal of functions vanishing at y = 1. For a % -scheme
%' and a function ® € m&' (%), we say that ® vanishes at x = 1 and we denote by 9P be the
image of ® in m/m? ®g,, Onr = Oz &R,

For V € 7° a coherent or incoherent pair of definite hermitian spaces as in §2.1.3, and v a
finite place of Fp, we let:

— G (Gherord V. = @ (Gberord he the subset of those isomorphism classes of representations IT
such that for each finite place u of F{y, the space V,, is the one attached to II, by the local
Gan-Gross—Prasad conjecture (Proposition 2.4.1).

— %(G/(Ap)»L);éch C %”(G’(A*"’),L)?{mOlC be the subspace of those f’7 that match (spectrally
and geometrically, see Proposition 3.5.3) a function on 2 (GY (AP),L)° := J#(GY (AP),L)®[,
Lf%;

— 1y be the characteristic function of Bl (A)y =[], Bl v, C Bs(A);
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— V(v) € #° be the pair such that V(v), =V, exactly for u # v; it is coherent if and only if V'

is incoherent.

Proposition 7.3.1. Consider the situation of Theorem 7.1.3, and let V € ¥~ be an incoherent

pair. For all f'P € %”(G’(Ap),L)}qu, the following hold.

(1) For all TI € € (G)herord gnd all v € B/ (Fyp),
Ik, ([P, 1) = A (f7.1) = 77(f7,1) = 0.
(2) There is a spectral expansion

05k, (f7) = Yo 9k, ()

He%((}’)};f;’ord’v

where )
0Im K, (f7) = 1 cre, (I1) 02, (M) - (R A1, ) (f7, 1),
(8) Suppose that f'P has weakly reqular semisimple support. The function af(p_)(f’p) is integrable

for the Radon measure Ify’fp%Kp = IsﬁKp(l), and there is a geometric expansion
d
07N = [ osmmary,
Bis(Fo)°

(7.3.1)
-/ > L)) 00, () A
Bls(Fo)°

vfpoo nonsplit

where for any v we put I3 = k(o) ™t - Ly, Puop Fyu-

Proof. Consider the geometric terms %, (f’?,1). For v € Bl (Fp) N B, let V,, € ¥ be the
unique coherent pair such that v matches an orbit in By(Fp)y, as in (3.5.4); let X(v,V) be
the non-empty finite set of non-archimedean (and necessarily nonsplit) places of Fy such that
Vyw 2 Vi If v € 3(v,V), then by the assumption on f” we have I, ,(f/,1) = 0; hence 7 (f"?)
vanishes at 1 to order at least |X(v, V)| > 1. Moreover, if v € 3(, V) then

I, (f7) = I (f*7,1) - 0.7, ,(f,), (7.3.2)

which can be nonzero only if ¥(v, V) = {v}, equivalently V, = V' (v).

Consider now a representation IT = II,, K II,,1; € € (G/)Pemod Let Vi € 7¢I be the pair
such that IT € €(G/)herord Vit (cf. Remark 2.5.7). If ¢(TI) = —1, then .2 (Mp, 1) = 0 by the
functional equation of Rankin-Selberg L-functions; this implies (7, 1) = 0. If (1) = +1,
then for any finite place v such that Vi, % Vi, we have Iy, (f},1) = 0 by the assumption on f’.
This completes the proof of part (1). More generally, we note that the last argument shows that

I1 ¢ €(GberordV — [y (ff,1) =0 for some v { poo. (7.3.3)

This shows that the sum in part (2) indeed runs over € (G’)herordV: a5 above, this implies that
e(II) = —1 and .Z,(Mp, 1) = 0, which implies the second equality in (2).

We now consider part (3). By the definition of the measure I f;fz‘i K, the second equality follows
from (7.3.2), whose right-hand side can be nonzero only if V, = V(v). We consider the expansion
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in the first equality; it will hold without the condition that f” is quasicuspidal, and by linearity
we may thus assume that f? = ®,f/ is a pure tensor. Suppose first that K, is a CSDI. Since
Ik dlgfg K, is a bounded functional, we simply differentiate under the integral sign in Theorem
7.1.3(6). We now consider the general case. Viewing .#j as in (7.2.5) we have

05k, (f7) = Ik, (f7.0)

(see for instance, [DL24, Lemma 3.42]), where the ‘logarithm’ ¢: ', — F%O C I'p,®Q, is the
projection onto the maximal Z,-free quotient I‘f}o of I'g,.

For s > 1, let 4s: 'y, — F%O/ps be the reduction map, and let £ I'p, — F%O/ps — F%O be
any lift of /5, which is a linear combination of characters whose conductors at places v|p do not
exceed s. By the definition of .# Ky the expansion (7.2.3), and linearity, we have

I, (l) = lim I (fPUR" L)

Then by Proposition 4.2.2 (5), we have

T, (6) = lim > LU L), (7.3.4)
v€B(Fo)

By Lemma 7.2.2, up to multiplying f? by a power of p independent of s we have that all terms
in (7.3.4) are p-integral; hence it makes sense to consider the reduction of that identity modulo p?,

T, (L) = lim o TH(fPULE L)
’YEBQS(FO)
in I‘%O /p°. Now {5 = zv)(oo ls v, where £y, = ES‘FOX’H, so from Remark 4.5.1, the y-summand equals
1, (f5%) / / 100 (1 —1 1 d*hidihy
—OO foo(h f)/ h/2 ES,’U hl,’U 77 h‘2 - 5 ..
2 K(Loo) Koo (V') JH, (A=) JHy(A>) ! Jaw(hw)nihz) dig (7.3.5)

vfoo

in F%O /p°; here v/ € Gl (Fp) is any preimage of 7. (Note that only finitely many v-summands are
nonzero, hence it is trivial to interchange sum and integration.) For v { p, the v-summand is

I’Y(féo) t N! / /
R MO DEP 1) )
1
=~ 1f (UN' 1)9%P(f"P 1) 0.5 .
K(loo)/’ioo(’)/) 'y,p( tp 0 ) o (f ) ) 'y,v(fv)
For v|p, the v-summand in (7.3.5) is a multiple of #%(f’?, 1), which is zero by part (1). Therefore
oy -
0Iy (f") is congruent to
/ — 1 1 N! . ’
T (70 = Tim ST LU 1) 0.7 (f7)
’YEBLS(FO)
in F%O /p® for all s. We conclude that the above congruences amount to an equality in Ffro; by

definition, the right-hand side is

OIP(fP) dIS i
/B;S(Fw 7



88 DANIEL DISEGNI AND WEI ZHANG

as desired. 0

Part 2. p-adic heights and the arithmetic relative-trace formula

We now study the p-adic heights of Gan—Gross—Prasad cycles. In §8, we recall the relevant
Shimura varieties, the arithmetic diagonal cycles, and their moduli interpretations over the reflex
fields. In §9, we study various integral models and prove some vanishing results for their coho-
mologies. In § 10 we collect the necessary definitions and results on cycles and p-adic heights. In
§11, we define the arithmetic relative-trace distribution encoding the heights of GGP cycles, and
prove the corresponding RTF.

In §§8-9, we use slightly different notation on unitary groups from the rest of the paper.

8. UNITARY SHIMURA VARIETIES AND ARITHMETIC DIAGONALS

For this section and the next one, we largely follow [RSZ20,RSZ21].

8.1. Unitary Shimura varieties. We keep denoting by F a CM number field with maximal
totally real subfield Fj and nontrivial F'/Fy-automorphism c: a — a®. For an algebraic group G
over Fy, we denote its restriction of scalars to Q by

G’ = Resp,/q G-

8.1.1. Unitary Shimura data and the associated varieties. We denote by Q the algebraic closure
of Q in C. Let v be a positive integer. Recall from [RSZ21, §2.2] that a generalized CM type (or
a signature type) of rank v is a function r: Homgq(F, Q) — Z>0, denoted ¢ — 7, such that

ro + 1, =v forall ¢ € Homg(F,Q); (8.1.1)
here ¢¢ := poc. When v = 1, a generalized CM type is “the same” as a usual CM type, via

® = { ¢ € Homq(F, Q) ’ ro=1}.

Fix a CM type @ of F, and let (W, (,)) be an F/Fy-hermitian vector space of dimension v.
The signatures of W at the archimedean places determine a generalized CM type r of rank n, by
writing

sigWy = (rg,rpc), @€®, Wy =W ®p,C.
Consider the unitary group
G=UW). (8.1.2)
For each ¢ € ®, choose a C-basis of W, with respect to which the matrix of the hermitian
form ( , ) is given by diag(1,,, —1,,.) We now define a Shimura datum (G*,{h%}), where {h4}
is a G”(R)-conjugacy class of homomorphisms S = Resc RGmR — Gkﬁ. With respect to the
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inclusion and the identification induced by the fixed CM type &,
C’(R) C GLpgr(W @ R) — [] GLc(W,),

ped
we define hqp as (hgs ,)pead Where the p-component is defined on C* by

hgp ot 2 — diag(1,,, (zc/z)lrwc).

The reflex field F(G, hgs) of this Shimura datum is the reflex field E,; of the function r,
characterized by

Gal(Q/E,:) = {0 € Gal(Q/Q) | o*(r") = r* }, (8.1.3)
where we define a modified function
r%: Homg(F, Q) ———— Zxg (8.1.4)
0, e

pr—
Ty, @€ P

We then obtain a tower of Shimura varieties (Shx (G”, {h¢p}))kca(ax) over E,s.

Remark 8.1.1. The Shimura variety Shy(G”, {hg}) is not of PEL type, i.e., it is not related to
a moduli problem of abelian varieties (this can be seen already from the fact that the restriction
of {ha} to Gy, C S is not mapped via the identity map to the center of G?). However, this
Shimura variety is of abelian type.

8.1.2. A special signature type. If the generalized CM type r satisfies

v—1, = g,
ry= v (8.1.5)

v, ¢ € P~ {eo},

for some CM type ® and some @y € @, we say that the signature type of r is strictly fake Drinfeld
(with respect to (®,g)). In this case, we have pg: F = E ; for all v > 1; in other words the
reflex field is F' via the embedding po: F' — C ( cf. [RSZ21, Example 2.3 (ii)]). In this paper, we
will only consider data of strict fake Drinfeld type. We will abbreviate Shy (G) == Shx (G”, {he }),
omitting the superscript b and suppressing the datum {h }.

8.1.3. Hecke correspondences. Recall that if 2 be a scheme, a correspondence on 2" is a diagram

v /%/\%

It is said to be étale if both morphisms are étale. Correspondences on £  form a monoidal

of finite morphisms

category under composition. If L is a ring, we denote by EtCorr(% )r) the L-algebra generated
by isomorphism classes of étale correspondences on 2. It acts (on the right) on cycles and
cohomology of 2" by pullback and pushforward.
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For each K C G(A®), and each characteristic-zero field L, we have an L-algebra homomor-

P T: #(G(A®), L) g — EtCorr(Shg (G))
Shy (G)
Kgk] s y m (8.1.6)
Shx(G) Shi (G)

where [KgK] == vol(K) '1x,x dg, K' .= K N gKg™', and the map nat; is the natural map
induced by the embedding K’ C K while nat, is induced by the composition

Shcr(G) —2 Shy1 g1y (G) —— Shyc(G) -

For the other Shimura varieties in this section, we also have Hecke correspondences defined in an
entirely analogous way.

8.1.4. Product Shimura varieties and the arithmetic diagonal. Let ® be a CM type, let W), be a
hermitian space of dimension n > 1, and assume that the associated generalized CM type r,, is
of strict fake Drinfeld type. Let W, 11 = W @+ Fe where e has norm 1. Let G, = U(W,) for
v =mn,n+1, and let (Shg, (G,))k, be the corresponding tower of Shimura varieties. We also have
a product Shimura variety Shx(G) = Shg(G) = ShK(Gb, hqy) associated with G = G, x Gy
and hgy = hep X hG'iLH' Denote H := G,,. The map

1 H—G

that is the graph of the natural embedding G,, — G, induces a corresponding map of Shimura
varieties

9: Shgy, (H) — Shg (G) (8.1.7)
whenever Ky C 371 (Kg) € H(A®).

The target Shimura variety has dimension 2n — 1, and the image of j has codimension n, in
the arithmetic middle dimension (i.e., the codimension is just more than half the dimension of
the ambient variety). We thus call the map (8.1.7) the arithmetic diagonal, and the image cycle
(defined in more detail in § 11.2.1) the arithmetic diagonal cycle in Sh(G).

8.2. Incoherent Shimura varieties. For our specific signature type, we may present the above

Shimura varieties more symmetrically using incoherent hermitian spaces.

8.2.1. Shimura varieties for incoherent unitary groups. Let V be a totally positive definite in-
coherent F'/Fy-hermitian space of dimension v. The theory of conjugates of Shimura varieties

([MS82]; see also [Gro,ST]) shows that there exists a unique-up-to-isomorphism tower

(Shi (G))kca(a=)

over Spec F' with the following property. For any CM type ® of F' and any archimedean place vy
of Fy, let ¢g € ® be the unique embedding above vy, let G(*0) = U(V(vg)) be the unitary group
associated to the nearby hermitian space V(vp), and let (Shg(G(0)) g be the tower of Shimura
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varieties associated with the data (G(UO), ®,¢p) as in § 8.1.2. Then
Sh (G) XSpec F, o SPEC P0(F) —— Shg (G0)) |

where we have an isomorphism G(A>) ~ G(*0)(A>) induced from a fixed isometry V (vg), ~ V,,
for all v { co. We will call Shx(G) the Shimura varieties attached to the incoherent hermitian
space V' (even though strictly speaking they are not Shimura varieties defined by Deligne).

From now on we will also make the assumption that all our unitary groups G are anisotropic;
in the incoherent case this means that G(%) is anisotropic for any (hence every) archimedean
place vg € Hom(Fp,R). Then Shi(G) is proper for any compact open subgroup K C G(A);
this is guaranteed if Fj # Q.

8.2.2. The arithmetic diagonal for incoherent Shimura varieties. Fix now an incoherent pair V =
(Vi, Vag1) € 77, We denote G = GY = G} x G}, | == U(V,,) x U(Vy,41) (an incoherent unitary
group as in § 1.3.1), and let Shg,, (G) denote the product of Shimura varieties constructed in §8.1.4.
Then for every place vy € Hom(Fp, R), let G(0) := G{") x G,(lvﬁ)l = UV (v0)n) x U(V(v9)n+1)) be
the unitary group associated to the nearby hermitian space V' (vg). Then there exists a projective
system of varieties (Shx (G))xcg(a~) over Spec I such that, for every embedding ¢o: F' — C
extending vy and every choice of CM type ® such that ¢y € ® we have

Shrc(G) Xspec F Spec po(F) —— Shy(G*0)) (8.2.1)

where Shy (G(*)) = Shy (GO hyug)s) With hgeg s = hors X hwo)s (the latter defined in
n n+1

§ 8.1.1). Similarly, we have incoherent Shimura varieties Sh ¢, (H) for the group H = HY = U(V},).
As in § 8.1.4, we have (finite) maps

7: Shi, (H) — Shg (G), (8.2.2)
which are the pullbacks of (8.1.7) via (8.2.1).

8.3. RSZ Shimura varieties. The unitary Shimura varieties above do not admit natural moduli
descriptions. Hence we will relate them to RSZ Shimura varieties, which admit a PEL type moduli
definition. They will play an auxiliary role when computing local heigts. We will follow [RSZ21].

8.3.1. Shimura varieties for unitary similitude groups. We resume the notation from §8.1. Thus
let ® be a CM type, and let W be a hermitian space of dimension v > 1 whose associated
generalized CM type r, is of strict fake Drinfeld type in the sense of §8.1.2. Recall also that G,
denotes the multiplicative group over Q.

We first consider the group (over Q)

GQ = Resg, /g GU(W) XResgy/Q Gm,Fy Gm

of unitary similitudes of (W, ( , )) with similitude factor in Gy,.



92 DANIEL DISEGNI AND WEI ZHANG

Let {hga} be the GR(R)-conjugacy class of the homomorphism hga = (hga ,)pes, where the
components hGQ7(P are defined with respect to the inclusion

G2(R) € GLrgr(W ® R) — [] GLc(W,),
ped
and where each component is defined on C* by
hega y: 2 — diag(z - 1, 2° - 1@,‘:)-
We single out the special case v = 1. We let W = W) be totally definite and we write ZQ = GQ

(a torus over Q) and hyq = hgq. Explicitly,

ZQ = {Z S ReSF/Q Gm | NmF/FO(Z) S Gm }
The reflex field of (Z9, {hzq}) is Eg, the reflex field of the CM type ®.

8.3.2. RSZ Shimura varieties. The Shimura varieties of [RSZ20] are attached to the group
G =179 xg, G, (8.3.1)

where the maps from the factors on the right-hand side to G, are respectively given by Nmp, g,
and the similitude character. In terms of the Shimura data already defined, we obtain a Shimura
datum for G by defining the Shimura homomorphism to be

(hzQ:hga) =~
R

hg: C G(R).

Then (G, {h&}) has reflex field E C Q characterized by
Gal(Q/E) = {0 € Gal(Q/Q) | c0o® = ® and o*(r) =1} 039
:{UEGal(Q/Q)‘oo@z@anda*(rh):rh}. (8:32)

In other words, the reflex field is the common composite & = EoE, = EeE,.; = Eg for our
signature type (8.1.5).

Remark 8.3.1. The RSZ Shimura varieties are related to the unitary Shimura varieties as follows.
The torus Z® embeds naturally as a central subgroup of G®, which gives rise to a product
decomposition

G —=572x@

8.3.3
1), (8.3.3)

(2,9) —— (2,27

where G* € GQ is the restriction of scalars of the unitary group (8.1.2). The isomorphism (8.3.3)
extends to a product decomposition of Shimura data,

(G, {hg}) = (29, {hza}) x (G", {h%}). (8.3.4)
Hence, for a decomposable compact open subgroup K = Kyq X K, there is a product decom-
position
Shi (G, {hg}) = Shi g (29,{hza}) x Shi (G, {hc}),

of Shimura varieties over E.



GAN-GROSS-PRASAD CYCLES AND DERIVATIVES OF p-ADIC L-FUNCTIONS 93

8.3.3. Product Shimura varieties and the arithmetic diagonal. Let now W = (Wy,, Wy,41) € ¥
and G == G, X Gpq1 = U(W,,) X U(W,,41) be as in § 8.1.4. Similar to (8.3.1) we set

G =72 xg,, G xg,, G, .. (8.3.5)

where G9 is the similitude unitary group attached to W, as in (8.3.5). We have an analogous
Shimura datum with the reflex field £ = Eg, and an isomorphism induced by (8.3.3)

G " 72 x @ (8.3.6)

In this situation, we will always assume that the open compact Kg is decomposable of the form
Kg = Kza X Kg = Kzq X Ky X Kpy1. In particular, we have a finite étale morphism Shg (G) —
Shg, (G)E over Spec E.

Moreover, let H :== G,,. Then we have a map 7: H — G and corresponding maps

Shyc, (H) — Shy (G) (8.3.7)

that are the pullbacks of (8.1.7) along the projection Shr g « ko (G) = Shi (G) given by (8.3.6).

8.4. Moduli functors over E. We formulate the PEL type moduli functor for RSZ Shimura
varieties, following [RSZ21, §3]. Denote by (LNSch), the category of locally noetherian schemes
over a ring R, and by Sets the category of sets.

8.4.1. The torus case. First we consider the torus ZQ. The construction of [RSZ21, §2.2], spe-
cialized to n = 1, gives a Kottwitz PEL moduli functor (LNSch),z — Sets, which is represented
by a finite étale stack My K,q over E = Eg. Since the precise definition of this functor plays
only a minor auxiliary role in this paper, we omit it and refer the interested readers to loc. cit.;
it suffices to recall that (among other data) one needs to fix a certain F'/Fp-traceless element
VA € F* adapted to the CM type ®. The stack My, K,q 1S isomorphic, over F, to finitely many
copies of the Shimura variety ShKZQ (Z®Q). For our purposes, it suffices to work with a fixed copy,
which we denote by Mg K,q'

8.4.2. Definition of the moduli funtor. Let now W be of dimension v as in §§ 8.1.1, 8.3.1, and set
V = HOH]F(W(), W)

We now present the moduli functor M represented by the Shimura variety ShKé(é). For
simplicity, we will always assume

Kg = Kza x K
where K C G(A) is a compact open subgroup. For each scheme S in (LNSch), g, Mk, (S) is
by definition the groupoid of tuples (Ao, to, Ao, g, A, ¢, A, 77), where
e (Ao, o, No,Tp) is an object of M&KZQ (S);

e A is an abelian scheme over S;
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e 1: F — End’(A) := End(A) ®z Q is an action of F on A up to isogeny satisfying the Kottwitz
condition of signature type r given by (8.1.5),

char(u(a) | Lie A) = H (T —p(a))™ foral a€F (8.4.1)
pEHom(F,Q)

e )\ is a quasi-polarization on A whose Rosati involution satisfies condition
Rosy(u(a)) = (@) forall ac€F, (8.4.2)
and

e 7] is a Kg-orbit (equivalently, a K G-orbit, where K¢ acts through its projection K5 — Kg) of
isometries of A’ /A-hermitian modules

n: V(Ag, A) =5V @p AR, (8.4.3)
Here, denoting by \A/(A’ ) the adelic Tate module of an abelian variety A’,
V(Ap, A) = Homax (V(Ao), V(4)), (8.4.4)
endowed with its natural A%-valued hermitian form h,
h(z,y) = X' oy¥ oXow € Endax (V(Ao)) = AF, z,y € V(Ao A). (8.4.5)

Finally, there are natural functors interpreting Hecke correspondences T'(K gK) for g € G(A®).

Proposition 8.4.1 ([RSZ21]). The functor M is represented by Shy (G).

9. INTEGRAL MODELS

We define and study various integral models of the RSZ unitary Shimura varieties introduced
in the last section.

9.1. Integral models with parahoric levels. We follow [RSZ21, § 4] with slightly different
formulation. We continue with the notation of § 8, we we fix a rational prime ¢, and we denote
by V, the set of places of Fy over £. If £ = 2, then we assume that every v € Vy is split in F.

We will assume that Kyzq o C Z9(Qy) is maximal. Then the auxiliary moduli stack M, K,q
(respectively its substack Mo k,q ) has a natural integral model M,k (respectively Mg K, Q),
which is finite étale over Spec O (. For each v € Vy, we endow the F,/Fp,-hermitian space
W, =W ®p F, with the Q-valued alternating form trp, /q, \/E_l( , ), and we fix a vertez lattice
A, C W, with respect to this form, i.e., A, is an OF,-lattice such that

Ay CAY C oy tA,.

Here , denotes a uniformizer in F, (if v splits in F', this means the image in F,, of a uniformizer
for ), and Ay C W, denotes the dual lattice with respect to trg, /q, \/Zfl( y )
We assume that Kg C G(Ag) is of the form Kg = Ké x Kq e, where Ké C G(A™®) is
arbitrary and where
Koo = ]] Koo C G(Foe) = [] Go

vEVy veEVy
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with
Kg, = Stabg, (Ay). (9.1.1)

We note that if v is unramified in F', then Kq, is a maximal parahoric subgroup of U(W)(Fp).

We then define Mg as the functor that associates to each scheme S in (LNSch) 4, (v the

groupoid of tuples (Ag, to, Ao, 4, ¢, A, °), where

e (A, o, Ao) is an object of M{(S);

e A is an abelian scheme over S;

e 1: Oy — End(y(A) is an action up to prime-to-¢ isogeny satisfying the Kottwitz condition
(841) on ﬁF,(Z);

o )\ € Hom(A,Av)z“)
(8.4.2) on O, y); and

is a quasi-polarization on A whose Rosati involution satisfies condition

o 7isa Ké-orbit of isometries of Aﬁ?o / Aﬁ%o-hermitian modules
nt: VA, A) 5 V op AL, (9.1.2)
where
VE(Ag, A) = Hom g0 (V(4p), V/(4)), (9.1.3)
and where the hermitian form on V¢(Ag, A) is the obvious prime-to-¢ analog of (8.4.5).
We impose the following further conditions on the above tuples.
(i) Consider the decomposition of ¢-divisible groups
Al = T Ap™] (9.1.4)
VeV,

induced by the action of Op, ® Zy = Hvew

polarization \,: A[v>®] — AV[v>®] = A[v>®]Y of ¢(-divisible groups for each v. The condition we
impose is that ker \, is contained in A[i(m,)] of rank #(AY /A,) for each v € V.

Oryn- Since Rosy is trivial on OF,, A induces a

(ii) We require that the sign condition, the Eisenstein condition hold; we omit the definitions and

refer to [RSZ21, §5].

The morphisms in the groupoid M (5) are the obvious ones.
We have the following result from [RSZ20,RSZ21].

Proposition 9.1.1. The stack M, is Deligne-Mumford, and regular with strictly semistable
reduction at all places u of E above £, provided that u is unramified over F. It is smooth over

Spec O,y if the lattices A, have type 0 or n for every v | £. The generic fibre of Mk, is Mk,

Finally, there are natural functors interpreting Hecke correspondences T'(fY) for all f* €
H(G(A')) . The correspondences T(f*) are all étale.

9.2. More integral models at split places. We need to have regular integral models for deeper
levels at split places. We will consider two cases: the Iwahori case and the principal congruence
subgroup case.
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9.2.1. Setup. Fix a place v € V, that splits in F, say v = ww. Let u: E — Q, be a place of
E above v; we will assume that E, is unramified over Fp,. Let u: Q — Q, be an embedding
extending u. Then u induces a bijection Hom(F, Q) ~ Hom(F,Q,). Let Hom,(F,Q) be the
subset of Hom(F, Q) consisting of ¢ € Hom(F, Q) such that @iog induces w. The set Hom,, (F, Q)
depends only on u but not on the choice of u. Note that the distinguished element ¢y belongs
to Hom,, (F, Q). We will assume that the matching condition between the CM type ® and the
chosen place u of E is satisfied:

Hom,(F,Q) C ®, (9.2.1)

cf. [RSZ20, §4.3]. Note that, for our signature type (8.1.5), this is equivalent to the condition
that the restriction T\Homw( FQ) of the signature function is of the form

n—1, = € Hom,, (F, Q);
ry = R w(£Q) (9.2.2)

n, ¢ € Homy (F, Q) ~ {0}
9.2.2. Principal congruence subgroups. We now recall from [RSZ20, §4.3] the moduli problem in
the case of principal congruence subgroups. Let m be a nonnegative integer, and define K¢  to
be the principal congruence subgroup mod p;* inside Kq ,, where p, denotes the prime ideal in
OUF, determined by v. Let

2i=Kzo x Kgx K&, x| Kew C Kg.
v’ €Ve~{v}
Then one can extend the definition of M Kg,0p,, 10 the case of the level subgroup Kg by adding

a Drinfeld level-m structure at v. More precisely, consider the factors occurring in the decompo-
sition (9.1.4) of the ¢-divisible group A[¢>],

A[p™] = A[w™] x A[T™). (9.2.3)

The condition (9.2.2) implies that A[w*] is a one-dimensional formal ' ,,,-module. We introduce
Tw(Ao, A)[wg'] = Homg, (Ao[w™], A[w™]) and T(Ag, A) = lim Tw(Ao, A)[wg']. Note that
Tw(Ap, A) is a 1-dimensional formal O ,,,-module. The datum we add to the moduli problem is

an Opg-linear homomorphism of finite flat group schemes,
¢ g A/ Ay — Tig(Ag, A)[w™], (9.2.4)

which is a Drinfeld w"-structure on the target. Here Az is the summand attached to w in the
natural decomposition

Ay = Ay ® A (9.2.5)
with A, the vertex lattice at v chosen in §9.1. See [RSZ20, §4.3] (which we note interchanges the
roles of w and w) for more details.

Then by [RSZ20, Theorem 4.7], the moduli problem M Ko is relatively representable by a
finite flat morphism to M Kg and consequently it coincides with the normalization of M Kg in
the generic fiber of M Kz It is regular and flat over Spec O (,). Furthermore, the generic fiber
M K™ XSpec 0, ) Spec E is canonically isomorphic to M K-
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9.2.3. Iwahori subgroups. We will also need the Iwahori case. For simplicity we assume that the
vertex lattice A, in (9.2.5) is self-dual. We now choose a chain of O ,-lattices

Ap=A0 c Al .o c Al — riag,

where each inclusion has colength one. Equivalently, we choose a full flag in the k,-vector space

Ay /mwAy. This chain determines uniquely a chain of vertex Op, = Op,, X Opy-lattices A( )
Ay ® AQ 0 < i < n. The stabilizer of the chain A{” is an Iwahori subgroup Iw, of Stab(A,).
To the moduli problem M Kg,0p,u0 We add the datum of a chain of isogenies of &ry-divisible
modules

with equal heights #k,. An equivalent datum is an Iw,-orbit of the Drinfeld level structure
¢: nt A/ Ay — Tir( Ao, A)[@].

The resulting moduli functor is then denoted by M where K vy denotes the compact sub-

KIWV B

group of K5 with the Iwahori factor at v. Then the moduh problem M is relatively repre-

KIWV
sentable by a finite flat morphism to M Kg and consequently it coincides w1th the normalization of
M K¢ in the generic fiber of M KIWV. It is regular, proper and flat over Spec 0 (,,). Moreover, by

the theory of local models, the scheme M has strictly semistable reduction over Spec O ()

KIWV
G
(namely, its generic fiber is smooth and every closed point of the special fiber admits an open
neighborhood which is smooth over the scheme Spec O ()[x1,- -, 2m]/(I[}2, #; — @) for some

m > 1, cf. [Har01, Prop. 1.3]). Moreover, there is a natural morphism from M K=t to M KOs

which is finite flat. There is a stratification of the special fiber M KIWV ® ky, Where ky denotes
the residue field of O (,):

Mieies @ by = U Myt i (9.2.7)
1<i<n
where M 1w, , . is the closed subscheme where the kernel of the isogeny G; 1 — G; in (9.2.6) is
G vy

connected, cf. [TYO07, §3] for a similar case. By [TYO07, Prop. 3.4] (or rather its proof), each of
MKéWV,ku,i is smooth over Spec k.

9.2.4. Hecke correspondences. We recall from [RSZ20, §4.3] that, in each of the above two cases
(principal and Iwahori level), there are natural functors interpreting Hecke correspondences at-
tached to functions 1x,x for any g € G(A°), where we simply denote K = Kg:

MKL
G
‘V Xat" (9.2.8)
K- M

where Ké = Kzaq x K(, and K¢, is a subgroup of Kz N gKég_l. We refer to [RSZ20, §4.3] for
the unexplained notation. (Note that in loc. cit., the authors only consider the case of a principal
congruence subgroup Kg = K¢'. The Iwahori case is similar and may be reduced to the case
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Kq = K@ as follows. We can factorize [Iwglw] as ery * [KgK] % [Iwglw] for some K = K& C Iw,
and accordingly we define the correspondence for [Iwglw] as the composition of the three factors:
the middle one is as in loc. cit., and the other two are given by the natural map from the principal
level to the Iwahori level.)

Both maps nat; and nat, are finite flat, and étale if g = 1. The Hecke correspondence
(9.2.8) induces an endomorphism (by the usual pull-back and then push-forward maps) on the
group of cycles (with L-coefficients), rather than merely cycles modulo rational equivalence. This

endomorphism is independent of the choice of K é in the diagram above. The resulting map

T: A (G(A'), L) g — EtCorr(Mg)p,

is a ring homomorphism.'” Moreover, in the Iwahori case, the away-from-¢ Hecke correspondences
preserve the stratification (9.2.7).

9.3. Moduli functors for the product Shimura varieties. It is now easy to extend the
construction in §8.3 to the product unitary group G defined in § 8.3.3. There are analogous
moduli functors over E and over Of 4. For example, the f-integral model may be succinctly
defined as

MKé = Mg (9.3.1)

where K¢y, ) = Kzq x K, for v € {n,n+1}.
The product M Kg May no longer be regular even if both factors are regular, and we may need

Mg Mk

_ X ~
G(Vn) G(Vi41)’

to resolve the product singularity. We will need to study two cases: the vertex parahoric case at
an inert place, and the Iwahori case at a split place.

9.3.1. Vertex parahoric level at an inert place. We first consider the vertex parahoric case from
§9.1. Fix a place v € V; that is inert in F' and we let w denote the unique place of F' above v.
We fix a vertex lattice AL’) C Voo of type 0 <t < mn and let A, = AE] &) <e>ﬁm C Vpg1,0 where
the hermitian norm of the special vector e has valuation € € {0,1}.!18 Then A, is a vertex lattice
of typet+e. Welet u: E — Qp be a place of F above v and we further assume that F, is
unramified over Fp,. We let K, , and K,;1, be the stabilizer of A'l’} and A, respectively. We
then call K, = K, X K,t1, a vertex parahoric subgroup of type (t,t + €). The (self-dual)
hyperspecial case corresponds to type (0,0).

In this case, the integral models M K& v and M K&, 1) have strictly semistable reduction
over Spec 0 ; and MKé(vn) (resp. MK@<Vn+1)) is smooth over Spec O, only when t € {0,n}
(resp. t+ € € {0,n + 1}); see Proposition 9.1.1. When MKé(vn) or MK@(Vn+1) is non-smooth
over Spec O, its special fiber admits a “balloon-ground” stratification ([LTX22] for ¢t = 1 and
[ZZh] for general t): the special fiber is a union of two Weil divisors

Mg = MS UM, 4 (9.3.2)

G(Vn)’ K&y, ku K&y

ITHowever, we do not know if the assertion remains true for the full Hecke algebra 5 (G(A™), L)x. When m = 0,
the recent work of Li-Mihatsch [LM, Proposition 3.4] shows that the assertion holds.

18Note that in §2.1.3 we have assumed the special vector has norm 1. For the general discussion of the geometry
of Shimura varieties with parahoric levels, it is more convenient to relax this condition.
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where the first one M%@(V ke is called the balloon stratum and the second one M3 Gk is
called the ground stratum. (When ¢ € {0, n} we understand that the balloon stratum is empty.)
When M K¢ is not regular, we let M Kg be the blow up along the product of the balloon strata

of the two factors, and denote the blow-up morphism

m Mg, —— M, (9.3.3)
For (7, 7n41) € {0, ®}%, we denote by /\7([?(?’?,:“) the strict transform of/\/l?K"~ L XM?[?_TI . -
G G(Vp) ¥ G(Vpgp1)™™¥

For later reference we record the following result from [LTX"22] for t = 1 and [ZZh] for general ¢.

Proposition 9.3.1. The scheme MvKé s reqular with strictly semistable reduction

Mg @k= |J M, (9.3.4)

(?n7?n+1)€{07.}2

(70,7 . .
where the schemes Mg'(f"k"“) are smooth of pure dimension 2n — 1.
G7 v

The map 7 is small, i.e., a proper birational morphism with the property that
codim{z € Mg | dim N z) > i} > 2 +1,

for alli > 0.

9.3.2. Iwahori level at a split place. Fix as in §9.2 a place v € V, that splits in F' into v = ww
and we let u: E — Q, be a place of E above v. We further assume that E, is unramified over
Fy. Then the integral model /\/IKé over Spec O () is smooth if one of the two compact open
subgroups K, , and K, 1, is hyperspecial. When both K, , and K, are Iwahori, M Kg is
no longer regular and we need to resolve the product singularity. More precisely, we consider the
fiber product of the stratifications from (9.2.7)

MKé,ku,(i,j) =M Euyi XM Mg, );k"u,,j' (9.3.5)

Ké(Vn)’ G(Vpt1

We choose an ordering of the set {(7,5) | 1 <i<n,1 <j <mn+ 1}, and rename the component
Mg ku(ing) 88 MKk, Where 1 <7 <n(n+1). Let Mggé = Mg, and for 1 <7 <n(n+1)
let M%)é be the blow-up of M%gl) along (the strict transforms of) Mg k, . We write //\/vié

for Mg?énﬂ)), and M Kk, (ir)) for the strict transform of M Kk The composition of the

,5)
natural blow-up maps is denoted as

! .//\;l/}(é e MKé (9.3.6)

(We also note that the resolution in the inert case earlier can also be view a special case of the
current procedure: one simply orders the components such that the first one is the product of
the balloon strata.)

Proposition 9.3.2. The scheme MVKG 1s reqular with strictly semistable reduction

MEg ke = U Mg ku(ing)» (9.3.7)
1<i<n,
1<j<n+1
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where the schemes ./K/(vKa,km(i,j) are smooth of pure dimension 2n—1. The map w is a small map.

Proof. The first part is well-known, for example see [Har0l, Prop. 2.1] or [GS95]. For the
smallness, we use the explicit description as in the proof of [Har0O1, Prop. 2.1]. Consider a point
P = (a,b) on the special fiber Mk k, With an open neighborhood that is smooth over

Spec ﬁE,(u)[xl) s Ty Y1, ys]/(H xr; —w, Hy] - TD')
=1 j=1

for some (uniquely-determined) integers r,s > 1, such that P lies over the point defined by
z; = 0,y; = 0,1 <i <71 <j <s. Then keeping track of the steps of the blow-ups in loc. cit.
shows that the dimension of the fiber of P is min{r — 1, s — 1}. Note that the locus of P with
fixed r,s > 1 is contained in the union of

(Mg N---N Mg~ N- N Mg

. ; i) X (Mg ; ;
G(Vi) Furtt G(Vn)’k“’ZT) ( KG(Vn+1)’k”’]1 G(Vn+1)’k"’]5)

for all possible 1 < i1 <--- <4, <n,1<j; <---<js <n+ 1. The codimension of such locus
in Mg, isr+s—12>2min{r — 1,5 — 1} + 1, which proves the smallness of the map . O

This procedure depends on the choice of an ordering and therefore it is not canonical. Never-
theless the smallness of 7 shows that the resolution has the property that 7,Q, ~ IC, the latter
being the intersection complex of the Qp-sheaf (for p # ¢). Moreover, the resulting M Kg and
each of M Kz ku,(irj) Still has an action of 7’ (G(A*®)) g, by correspondences.

9.3.3. Integral arithmetic diagonal. We have an integral model
7 Mgy — Mg, (9.3.8)

of the morphism (8.3.7). In the two cases discussed above, over a place u of E, we have the small

resolution M, and we denote by
7 MvKﬁ — MVKG (9.3.9)

the strict transform of M. along the resolution morphism. For uniformity of notation, we will

put M Ky = M Ky M Kg = M Kgs 7= 7 in the cases where those schemes are already regular.

9.4. Vanishing of absolute cohomology. We will prove the vanishing of the top-degree abso-
lute cohomology of the scheme M Kg» for certain levels K and after suitable localizations.
Let L be a finite extension of Q,.

9.4.1. Correspondences that annihilate the cohomology. We use some general result from [L1.21,
LL22], that we now recall. Following [LL21, Appendix B], we define a commutative L-algebra
of €tale correspondences on a scheme 2 to be a commutative L-algebra T equipped with a
homomorphism T — EtCorr(2 ).

Let 2" be a regular scheme, proper and flat of relative dimension 2n — 1 (not necessarily
strictly semistable) over the ring of integers of a non-archimedean local field, with residue field
k; we assume that the generic fiber X is smooth. Let T be a commutative L-algebra of étale
correspondences on £  with a maximal ideal m. Let Y denote the reduced special fiber of Z .
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Assume that there is a stratification Y = Y™ 5 ... 5 Y0 by closed subschemes and, for each
0 < i < d, a refinement of Y@ =yl \Y["*” as a disjoint union of open and closed subschemes
of Y@ of pure dimension d;:
y @) — H y (M),
MeG!
over a finite set of indices &, such that
(1) For every i and M € &, denoting by YIM] the Zariski closure of Y then YIM is smooth

and is a disjoint union [],,, Y (M) where & is a subset of & = [[&®);

€6

(2) For every i and M € &, the scheme Y M) is stable under the action of T.

Proposition 9.4.1 (Li-Liu). Under the above assumptions, if we further suppose that either of

the following two conditions holds:

(1) H(YM @, k, L) = 0 whenever j # dim Y™ for every M € &,

(2) H*(X,L(n))m = 0 and H/(Y® @4 k,L)n = 0 whenever j < dimY® — codim,Y® for
every i,

then H*(Z , L(n))m = 0.

Proof. Case (1). The vanishing assumption H7 (Y™ @k, L)y, = 0 is the assertion of [L1.22, Prop.
4.25]. The proof of [LL22, Theorem 4.21] applies verbatim to show that the assumptions imply
the desired vanishing H?"(2", L(n))m = 0.

Case (2). This is [LL21, Corollary B.15]. We sketch their proof for the convenience of the
reader.

By the assumption H?*(X, L(n))m = 0 and the exact sequence

HZW(Z) —— H*™(Z) —— H>(X)
it suffices to show HZ"(2 )m = 0. This follows from an induction using

— the exact sequences

HE (2) —— HE(Z) —— HE(Z\ V),

Y41
— the absolute purity theorem of Gabber H¥ (2 \ Yj41) ~ H?*" 2" (Y7) for the regular local
J
immersion Y < 2"\ Yj;1 of codimension ny,

— the Hochschild-Serre spectral sequence H" (k, H® (Yf’@;ﬁ)(n)) = H""*(Y?)(n). In particular,
it suffices to replace (3) by a weaker assumption H?2"~ 2" (Y7 @k ky L) = H?"2 _I(on Rk
k,L)m = 0 (namely Hin*CYj*i(on @k ky,L)m = 0 for i = 0,1 where dy, and cy, denote
respectively the dimension of Y; and the codimension of Y; in 2.

]

9.4.2. The vanishing result. We consider the scheme M Kg over Spec Og,, of § 9.3 where v and
K¢, are in one of the following cases:
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(1) the split-(Drinfeld-level, hyperspecial) case: the place v is split in F' and in the product (9.3.1)
one of the two factors has Drinfeld-level for some integer m and the other has hyperspecial

level;

(2) the split-(Iwahori, Iwahori) case: the place v is split in F' and in the product (9.3.1) both

factors have Iwahori level; in this case M Kg 18 the small resolution in Proposition 9.3.2;

(3) the inert-vertex-parahoric case: the place v is inert in F' and in the product (9.3.1) both factors
have vertex-parahoric levels (of type (¢,¢ + €)); in this case M K¢, is the small resolution in
Proposition 9.3.1.

Proposition 9.4.2. Let S be a finite set of nonarchimedean places of Fy containing those above
{ and p and those where Kg is not maximal hyperspecial, and let

T =T = Q) #(Go, L)k, C H(G(A%, D).

vgS
split

Let m C T be the mazximal ideal attached to a representation m € €(G)(L). Suppose we are in

one of the above three cases, and suppose moreover that the following hold:
(1) In the split-(Iwahori, Twahori) case, the representation m, is a (tempered) principal series.
(2) In the inert-vertez-parahoric case, the type (tn,tn+1) satisfies t, € {0,1,n—1,n} and t, 41 €
{0,1,n,n + 1}
Then we have
H* (M, L(n))m = 0. (9.4.1)

Proof. We wish to apply the vanishing theorem of Li-Liu given in Proposition 9.4.1. For this, we
need to specify a stratification of the reduced special fiber of M Kg- In the split-(Drinfeld-level,
hyperspecial) case, for simplicity we consider the case the Drinfeld level takes place on the first
factor M K& vy Then the special fiber, denoted by Y, 41, of the second factor in the product
(9.3.1) is smooth. In [LL22, §4.3] the authors have defined a stratification of the reduced special

fiber, denoted by Y,,, of M Kg essentially a refinement of the Newton stratification

n—1
Yn = H H Yn(M)7

i=0 MeS;

(Vn)’

where &; denotes the &¢ in loc. cit.. Here we simply take the stratification of Y = Y;, x Y;,41 as
the product of the stratification of Y;, with Y, 11

n—1
Y=]] I] %" x Yoy
=0 MeG;

By [LL22, §4.3] this stratification of Y;, verifies the two conditions stated before Proposition 9.4.1
(for ' =M Ké(vn>)' It follows easily that the above stratification of Y verifies the two conditions
stated before Proposition 9.4.1 (for 2" = M)

In the split-(Iwahori, Iwahori) case and the inert-vertex-parahoric case, the scheme 2~ = M Kg
has strictly semistable reduction. The special fiber Y is already reduced and we define the
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stratification induced by the union (9.3.7) and (9.3.4) respectively, as follows. Let J denote the
set of indices in (9.3.7) and (9.3.4), and denote Y = Ujc7Y;. Then we define & to be the set
of subsets M of I with #M = #I — i such that YIM = NjemY; is non-empty (then it has
codimension #M + 1 in 2°). Set Y1 = Uy eqi YIM and YM) = yIMI\ y#M+I | Then we have

the resulting stratification
#J

#T
y=][v"=1] [] v™. (9.4.2)
=0

i=0 Me6;
The strict semistability of 2 implies that the stratification verifies the two conditions stated
before Proposition 9.4.1. (Note that the scheme Y is empty once i > dimY".)
We write T = T,, ® T),41 and m corresponding to (m,, m,41) for maximal ideals m, of T,,v €
{n,n + 1}. We will distinguish the three cases.

Split-(Drinfeld-level, hyperspecial) case. By Proposition 9.4.1 (1), it suffices to verify that, for
every M € &, we have H7 (Y[M] ®k k, L)m = 0 whenever j # dim YIM] This follows from the
Kiinneth formula, [LL22, Prop. 4.25] for HI(Y,M @, &, L)m, = 0, # dim Y;'"), and the similar
vanishing result for H7 (Y41 ®g k, L)m,,, = 0,7 # dim Yy, 41.

Split-(Twahori, Iwahori) case. We first define a stratification of the special fiber Z of M, prior
to the resolution, similar to (9.4.3):

#T #J
Zz=112"=1T [ 2z"". (9.4.3)
i=0 i=0 Me6;

Then, under the condition (1), it follows from [LL21, (3), p. 859] that H:(Z(™)),, = 0 for all i and
M € &, unless ZM) are maximal dimensional, in which case H Wz (M), = 0 unless i = dim ZM),
(In loc. cit. the authors only treated the case of Drinfeld levels; but the proof applies verbatim to
the Iwahori case.) Now we return to the stratum Y (™) in (9.4.3). It is easy to see that the natural
map ma: YM) — Z(M) is smooth and the direct images Rﬂng are constant on ZM) . Tt follows
that H é(Y(M New = 0 for all i and M € &, unless YM) are maximal dimensional hence equal
to ZM) | in which case H:(Y M), = 0 unless i = dim Z(M), Tt follows from the cohomological
exact sequence associated to YIM =y (M) y (YIMI\ y(M)) (see for example (9.4.5) below) and
an induction that H*(Y ™)) = 0 for all i and M € &, unless Y ™) are maximal dimensional,
in which case H(YIM) = 0 for i > dim Y™ and by Poincaré duality H*(YIM]), = 0 for
i # dim Y], We have thus verified the condition in case (1) of Proposition 9.4.1 and therefore

we have proved H?"(%2 )m = 0 in this case.

Inert-vertex-parahoric case. We note that the moduli space M K for type t, (at v) is isomor-
phic to another similarly defined moduli space of type v — t,. Therefore it suffices to consider
the cases when t,,t,4+1 € {0,1}. We first recall from [LL21, §9, p. 868] that, when the type is
t, = 1, the cohomology of the balloon and the ground strata satisfy

HY (Z @k, L)y =0, i#dimZ (9.4.4)
for Z =Y? ,YJ,Y;r respectively, where we simplify the notation Y, = M?Ké(v Lk in (9.3.2) for

? € {o,e}, and define Yl = Y>NYy. If one of ¢y,,t,41 is 0, the proof is now similar to the
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split-(Drinfeld-level, hyperspecial) case, Proposition 9.4.1 (1). It remains to consider the type
(1,1) case. For (?,,,?,41) € {0, 8}?, we will write Y7»"»+1 for the strict transform of Y,'» x Yg_ﬁl.

Then by the formula for cohomology of blow-up, H*(Y "+ @, k, L) is isomorphic to

0, (?nv ?n+1) = (o,o) or (’?O)

Hi((Y x Y, opk, L)@ B
v H72((Y x Y ) @, kL), (70, 7ug1) = (0,0) or (s, e).

Similarly we can compute the cohomology of all of the closed strata Y™ in terms of the notation
in (9.4.3) using (9.4.4)

HYM @k, L)w=0, i#dimy™),
for all M € & but one exception: the stratum Yol := y°° 0 Y** which is a P'-bundle over
Y. Nonetheless the exceptional case has vanishing (localized at m) cohomology at all degree
outside i = dim Y™ and i = dim YT 4- 2. Using (9.4.4) (for both n and n + 1) we can deduce
that

HYM @, % L)y=0, i>dimY™

for M # My € &. To treat the exceptional case, we use the exact sequence
Hi=Y(y Mo\ y(Mo)y sy iy (Mo)y (Y [Mol), (9.4.5)

Note that the stratum Y "ol has codimension 2 in 2", and Y'M0]\ Y (Mo) is smooth of codimension 3
in 2. Since H (YMol) ' = 0 when i > dimY[Ml 1 2 and HY(Y!Ml\ y(Mo)) = = 0 when
i # dim YIMol\ Y(Mo) — dim Y'Mo] — 1, we conclude that H!(Y(M0)) =0 when i > dim Yol 42,
By Poincaré duality we have H*(Y(M0)) = 0 when i < dim Y™l — 2. Since H**(X, L(n)) = 0,
we have verified the condition in case (2) of Proposition 9.4.1 and therefore we have proved
H?(2 ) = 0. O

Remark 9.4.3. The condition (1) in Proposition 9.4.2 may be unnecessary if one makes a more
careful study on the stratification of the special fiber of the small resolution.

10. p-ADIC ABEL-JACOBI MAPS AND p-ADIC HEIGHTS

We summarize the definitions and results we need from the theory of p-adic heights. For more
details or more general setups, see Nekovai’s original paper [Nek93] and [DL24, Appendix A]; our
constructions follow the sign conventions of the latter reference. Nothing in this section is new.

The notation of this section is independent of that of the rest of the paper. We denote by L a
finite extension of Qp, and by I' a finite-dimensional L-vector space. T

10.1. p-adic Abel-Jacobi maps and biextensions. Let F be a field of characteristic different
from p, and let X be a smooth projective scheme over F' of pure dimension m —1 > 1. We denote
by Z*(X)r the module of e-dimensional algebraic cycles with coefficients in a ring R (omitted
from the notation when R = Z), and by Ch®*(X)r = Z°*(X)gr/(rational equivalence) the Chow
R-module. We denote H'(F,—) = H¢ .(Gr,—).
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10.1.1. p-adic Abel-Jcobi maps. Let 0 < d < m and consider the absolute étale cohomology
H?Y(X, L(d)). By the Hochschild-Serre spectral sequence, it has a filtration Fil® with

0 — HY(F, H** (X%, L(d))) — H* (X, L(d))/Fil> — H(F, H*(X%, L(d))) — 0.

We denote by cl: Z4(X), — H(Gp, H* (X, L(d)) the geometric cycle class map, by Z4(X)%
its kernel, and we let N
cl: Zg(X)p — H*(X, L(d)))/Fil?,

cl: Zg(X)9 — HY(F, H*~ (X5, L(d)))

be the absolute cycle class map and the Abel-Jacobi map, respectively. The maps cl, cl factor
through the Chow group Ch?(X), and the map cl factors through the image Ch?(X)? ¢ Ch?(X)
of Z4(X)°.

If M C H*~1(X%, L(d)) is a Gp-stable subspace, we denote by

74,/(X)%, Chi (X)9

the preimages in Z4(X)?, Ch?(X)% of HY(F,M) ¢ HY(F,H*"' (X%, L(d))) under the Abel-
Jacobi map.

Suppose that F' is non-archimedean of residue characteristic £. We will consider subspaces M
satisfying the condition:

(1) if £ # p: HY(F, M) = 0;

(2) if £ =p: Hy(F, M) = H}(F, M).

Remark 10.1.1. Since by [NN’ 16, Theorem B] the map cl takes values in the subspace
Hy (F, H** Y (X7, L(d))),

the conditions above imply that
cl(23,(X)}) C H}(F, M).

If M is pure of weight —1 (as is implied for all M C H??~!(X%, L(d)) by the weight-monodromy
conjecture), then the relevant one among the conditions above is satisfied.

10.1.2. Biextensions from algebraic cycles. Let dy,ds > 0 be integers with d; 4+ do = m, and let
Zy € 77(X)), Zy e 72%(X)Y

be cycles with disjoint supports. Let M; = H?%~1(X%, L(d;)). To each Z; is associated an
extension of L[G g|-modules
0—-M;—-E —L—=0
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whose class in H'(F, M;) is the p-adic Abel-Jacobi image cl(Z;). A further geometric construction
yields the biextension E? = ng fitting in the following exact diagram

0 0 (10.1.1)
0 L(1) E? M 0
0 L(1) E? E; 0

L——1L

0 0

where M; = Mj(1) via Poincaré duality, and E? := Ej(1). We denote its class by [F?] €
H'(F, E?).

10.2. Height pairings. We collect some definitions and properties of local and global height
pairings.

10.2.1. Local height pairings of algebraic cycles. Suppose that F' is non-archimedean of residue
characteristic £. Let \: F*®L — I' be an L-linear map.

For i =1,2let M; C H*%~1(X%, L(d;)) be L[GF]-submodules, and denote still by (, ): M; ®p,
My — L(1) the restriction of the Poincaré pairing

Tr

()2 H*~\(Xp, L(dh)) @1 H*> ™) (Xp, L(dy)) -2 H?(Xp, L(m)) 5 L(1),

where the map Tr is the sum of the trace maps for the connected components of X. Assume that
My, M, satisfy the following conditions:
(1) (,): My ® My — L(1) is a perfect pairing;
(2) if £ # p, we have H°(F, M;) = 0 for i = 1,2; this implies condition (1) for M;, My in § 10.1.1,
and is implied by the condition that M; is pure of weight —1;
(3) if ¢t =p:
— M; is crystalline with Dcrys(Ml-)“":1 =0 for ¢ = 1, 2; this implies condition (2) for My, My
in § 10.1.1, and is implied by the condition that M; is crystalline and pure of weight —1;
— the Panchishkin condition: there is a (necessarily unique) extension of crystalline repre-
sentations
0— Mt — M, — M, —0
such that Fil’Dgg (M;") = Dar (M, )/Fil°Dar (M;) = 0; this implies that the natural map
Dar(M;) ® Fil’Dag (M;) — Dag (M;) (10.2.1)

is a splitting of the Hodge filtration on Dy (M;).
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Assume that Z; € Z(f\}[1 (X)°, Z, € Z‘]i\f[Z(X)O. Then the biextension class [ng] belongs to
the preimage Hzl\/ll-f(Fv E?) ¢ HY(F,E?) of H}(F, M) under the natural map H}(F, Bl —

H'(F, My). This group sits in the (pushout) diagram of exact sequences'?
0 —— HY(F,L(1)) —— H}; _(F,E*) —— H}(F,M;) — 0 (10.2.2)
T
OHHf(F,L(l))%Hf(FE)—>HfFM1) —0

admitting canonical splittings o, of. These are obvious if ¢ # p, as then H'(F,M;) = 0; for
¢ = p, they are induced by (10.2.1) (see [Nek93, § 4]). Morevoer, the Kummer map identifies
HY(F,L(1)) = F*&L(1).

Definition 10.2.1. Let My, Ms, Z1, Z5 be as above. We define
hxA(Z1,Z) = Ao o([E]]) € T. (10.2.3)

Remark 10.2.2. Since the conditions on the pair (M;, Ms) are stable under subobejcts and ex-
tensions (see [DL24, Lemma A.14] for extensions when ¢ = p), there is a maximal pair satisfying
those; in particular we may omit (M7, Ms) from the notation.

Remark 10.2.3. If £ = p, it follows from the previous discussion that o([E}]) € 07 &L C F*®L
if and only if [E7] is crystalline (that is, belongs to H} (F, E?)).

Lemma 10.2.4 (Base change). Consider the setup of Definition 10.2.1.
(1) Let F'/F be a finite extension, and let N := X\ o Npp. Then for any Z; € Zﬁ\l}l(X)o,
Zé S Z;i\/zlg (XF’)Of
hxp (21, NprypZy) = hx ., x (21,51, Z2).
(2) Let u: X' — X be a finite étale morphism, and let Z; € Z%}Il (X)0, Zy € Zﬁi (X)%. Denote
by Z! the pullback of Z; to X'. Assume ¢ # p. Then

1
hx \(Z1,Z2) = @hxp\(zi,z@-

Proof. Part (1) is [Nek95, (II.1.9.1)]. Part (2) follows from [LL21, Lemma B.3] and [DL24,
Proposition A.7]. O

10.2.2. Global height pairings for Selmer groups. Let now F' be number field and A\: I'r;, — I" be
an L-linear map.

Let M7, M be L-vector spaces endowed with continuous G p-representations that are unramfied
at all but finitely many places of F', and de Rham at all the p-adic places. Assume moreover
that M;, My are endowed with a perfect G p-equivariant pairing (, ): M; ®1, My — L(1), and
that for each ¢ and each finite place w of F', the representation M; restricted to G, satisfies the
conditions (2), (3) of § 10.2.1.

9This diagram should also replace an incorrect one in [Dis17, (4.1.4)].
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Under these conditions,? Nekovai [Nek93] defined a bilinear height pairing on the Bloch-Kato
Selmer groups
han ot Hi(F, My) @ Hi(F, M) — T (10.2.4)
as follows. For ¢ = 1,2 pick representatives E; of the extension classes [E;] € H} (F, M;), and let
E? be a biextension fitting in a diagram (10.1.1) of G p-representations. For each place w of F,
one can then define hgf ([E1], [E2) by the right-hand side of (10.2.3) (where everything is viewed
as a representation of G ); the sum

(B, [Ea)) = S it ([En), [E2)

does not depend on the choice of E%

Lemma 10.2.5 (Projection formula). Let (M, Ma) and (M], M}) be as above. Let ¢: M| — M,
be a map of Gp-representations, and let ¢*(1): My — M} be the dual map. Let [E}] € H}(F7 M),
[Eo] € H}(F, Ms). Denote by Eby == ¢*(1)E2, E1 = ¢.E| the pushouts. Then

har ([E1), [E5]) = s, ([Brl, [Ea]).

Proof. Let E' € H}(F, E*) be a biextension (as in (10.1.1)) of Ef and E* = ¢*(E3(1)) = E5*(1).
The map ¢: My (1) & M| — M; = Mj(1) induces by pullback a map ¢: E? — E?. Then a
diagram chase shows that ¢.F’ € H}(F . E?) is a biextension of F; and E2. O

10.2.3. Decomposition in the case of algebraic cycles. Let X be a proper smooth scheme over F
of dimension m — 1, and suppose that M; C HQdi*l(Xf, L(d;)) are L|GF]-submodules satisfying
the above conditions with respect to a pairing (, ) that is the restriction of the Poincaré pairing.
We then denote hx x = har a,,n, for which we have
hxA(l(Z1),el(Z2) = Y hxyn, (21, 22), (10.2.5)
wioo

where the sum runs over all the non-archimedean places of F', and X,, .= XF,, Ay = )\‘ FXOL-

10.3. Relation to arithmetic intersection theory. We collect two results relating local heights
away from p, and the crystalline property of biextensions at p, with arithmetic intersections. We
start with some preliminaries. For more details on the background, see [LL21, Appendix B| and

references therein.

10.3.1. Extensions of algebraic cycles. Let 2" be a regular scheme; for a closed subset % (omitted
from the notation if % = 27) we denote by K7 (%) the K-group of complexes of coherent
sheaves on 2~ with cohomology supported in %". We denote by F*® the filtration on KSJ (Z°) by
the codimension of support. We have an L-linear map

K ZU ) — FKo(2)L (10.3.1)

such that if 27 C 2 is an integral subscheme, then x([Z]) = [O#].

20These are not the most general possible; for instance, the crystalline condition at p-adic places is not necessary.
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Let now F' be a nonarchimedean local field and denote by k its residue field. Assume that the
regular scheme 2" is endowed with a projective and flat map 7: 2~ — Op, and denote by X and
Z. respectively the generic and special fibre of 2.

Definition 10.3.1. Let Z € Z%(X)y, and denote by |Z| C X its support. We say that an element

7 e PRV (20, c FURY(2))

is an extension of Z if 2], € F4Ky(X), coincides with x(2).

10.3.2. Intersection pairing. Suppose that X has dimension m — 1 > 1. For a pair of integers
dy,ds > 0 with di +dy = m, and cycles Z; € F% Ky(2") with |27|N| 25| C | 2%/, we define their
intersection by
(21 2) = x(m(21U £2)),

where

U: FA RN (2) 0 FRRN(27) — PR
is the cup product, and x: Ky(Spec k) — Z is the Euler characteristic. The definition is extended
linearly to cycles with coefficients in L.

10.3.3. Arithmetic intersections and the crystalline property at p. Consider the setup of § 10.2.1
with £ = p.

Proposition 10.3.2. Assume that p > m or m = 2, and that X admits a proper smooth model
2 |Op. If the supports of the Zariski closures %4, %2 of Z1, Zy in Z are disjoint, then the
biextension [E?] is crystalline.

Proof. If p > m, this is a special case of [DL24, Theorem A.8]. If m = 2, this is a special case of
[Dis17, Proposition 4.3.1]. O

10.3.4. Arithmetic intersections and local heights away from p. Consider the setup of § 10.2.1
with ¢ # p.

Proposition 10.3.3. Assume that m = 2n and di = do = n. Let T1,Ts € EtCorr(%)L, and
assume that Z1. 11 and Z3. Ty have disjoint supports. Let 2 be a regular flat projective scheme
over Or with generic fibre X, and let 2; € F%Ky(Z") be an extension of Z; fori=1,2.
Suppose that one of the following conditions holds:
(1) Z is smooth over OF, %5 is (the image under k = (10.3.1) of) the Zariski closure of Z;, and
T; = id;
(2) Ty, Ty annihilate H* (%, L(n)).
Then
ha(241.T1, 25.T5) = —((Z4.Th) - (Z2.12)) AM(w)

where w € F* is a uniformizer.

Proof. In case (1), this is a special case of [LL21, Proposition B.10] combined with [DL24, Proposi-
tion A.7, Remark A.6]. In case (2), this is [LL21, Proposition B.13] combined with [DL.24, Propo-
sition A.7, Remark A.6]. O
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In favorable cases, correspondences satisfying condition (2) of the proposition can be found
using Proposition 9.4.1 as in [LL21, LL22].

11. THE ARITHMETIC RELATIVE-TRACE FORMULA

Let V € #°~ be an incoherent pair, and let G = GV, H := HY. In this section, we define
our cycles of interest, and a distribution ¢ = _#Zf, on (part of) the Hecke algebra for G(AP)
that encodes their p-adic heights. The main result of this section is the arithmetic RTF for _¢#
(Theorem 11.5.3).

We will denote Xg = Shg(G), Yk, = Shi, (H). In § 11.1 we study the étale cohomology
of X and define the Galois representation of interest. In § 11.2, we define and study the
arithmetic diagonal cycles and Gan-Gross-Prasad cycles. In § 11.3 we define _# by means of
height pairings of those cycles, and give its spectral expansion. In § 11.4 we prove some vanishing
results to decompose _# as a sum indexed by the nonsplit places of Fy. Finally, in § 11.5 we state

the geometric expansion of #.

11.1. Cohomology and automorphic Galois representations. Let L be an algebraic exten-

sion of Q.

11.1.1. Ordinary representations of G(A). We say that m € €(G)(L) is ordinary if for every place
v|p of Fy, the base-change BC(m,) satisfies the ordinariness conditions of § 1.1.2. If K}, C G(Fpp)
is a compact open subgroup, we say that m, is K,-ordinary if it is ordinary and moreover ke £ 0.
These conditions define ind-subschemes

%(G)%g C € (G)™ C €(G)q

p*

We also denote by € (H\G)°™d and %(H\G)%g their ind-subschemes of Galois orbits of distin-

guished representations. Finally, for the above decorations ‘?’, we define €(G)’(L) as the corre-

sponding sets of isomorphism classes of representations such that €(G)?(L) = €(G)(L)/Gy (cf.
§ 2.5.3).

11.1.2. Duals and Hecke actions. If S is a finite set of places of Fjy and M is an admissible (left)
L[G(A?®)]-module, we denote
M*:=  lm MKV
KSCG(AS>)
the algebraic dual of M, whereas as usual we denote by M"Y = hgrl s ME®V the contragredient;
for any compact subgroup K’ C G(A®>), we denote by M., the K'-coinvariants (thus the natural
map MVE" — M3, is an isomorphism if K” is open). We have a map
MY — M*

. (11.1.1)
T +— hlr{nx oex

(where ef: M — M* is the natural K-projection). The left Hecke action on M induces a right

action

T: #(G(A®), L) — Hom(M*, M").
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11.1.3. Hecke and Galois actions on the cohomology of unitary Shimura varieties. For i € Z, we

put ' ‘ . :
M = H(Shg (G, Qp(n)), M* = lim M. (11.1.2)
K

where the limit is with respect to the pullback maps. For ? = (), K, we also put M’ = IS M7,
it has a natural (left) action by J(G(A*),Q,)» and by the Galois group Gp.

Let o € ZU{®}. Then the 7 (G(A>), Q,)-action on M® makes it into an admissible G(A>)-
module, so that we may consider M®*. It is helpful to think of M®* as the inverse limit of
homology (and of M°, M®V as the direct limits of cohomology, respectively homology).

For m € €(G)(L), let

p[r]° = Hom yp(qacy (m*, M7 (1)),
M™ = n* K p[r] C M;™(1),

so that we have a Hecke-equivariant map
7 — Homg, (M°*(1), plx]) (11.1.3)

factoring through Homg, (M®™, p[r]). In fact, it is known (see [BW80, Theorem III.5.1]) that
the temperedness implies
M®™ = p2n-bm (11.1.4)

so that we will simply write M™ = M?"~ 17 p[r] = p[x]?" 1.

We put ME, = (ME)Y and M,v = lim My, so that M™ = M?*,(1). For 7 € {temp, t-ord},
we put

D, *
Mg, = @M MG, M =@M C M)

where the sums run over ¢ (G)(Q,) and %(G)Crd(Qp) respectively. These are base-changes of L-
subspaces M, C M2~ M? c M?"~1*(1). Poincaré duality gives an isomorphism My = M} (1),
which induces isomorphisms

for ? € {temp, t-ord} U %€(G)(L).

11.1.4. Automorphic Galois representations and decomposition of the cohomology. Assume from
now on that the extension L of Q, is finite, and denote by Q, an algebraic closure of L. Let
=1 K741 € €(G)(L).

Lemma 11.1.1. For v € {n,n+ 1} there is a semisimple continuous representation

Pr,Q 1 Gp — GLy (Qp)

characterized, up to isomorphism, by the property that for all but finitely many places w of F
split over Fy, the restriction P, QplGr,, is unramified, and a geometric Frobenius at w acts with
a characteristic polynomial equal to the Satake polynomial of m, viewed as a representation of
GL,(Ey). If m, is stable, then

Pr, @ = PBO(T,).Q, (11.1.5)
(where the latter is as in § 1.2).
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Proof. The construction is as in [DL24, Lemma 4.10], using [LTX 22, Proposition 3.2.8] (due to
Shin) instead of [Mok15]. Property (11.1.5) is immediate from the construction. O

Let
Pra,: GF = GLy(nt1)(Qp)
be defined by p_ 6 (—n) =p, @, @Pr 10y If p: Gp — GL,,(L) is a continuous representation,
denote by rg, =P AL Qp the base-change and by p2= a, its semisimplification.
The followmg key hypothesis gives an explicit description of p[r] (at least in the stable case).

Hypothesis 11.1.2. Let w € €(G)(L), and let K C G(A™) be an open compact subgroup. Then

p[w%p is is isomorphic to a direct summand Ofpn,é,,- Moreover, if w is stable then p[r]S = Pr,-

Qp

Remark 11.1.3. Let II € %(G’)}Sj’i and let L = Q,(I). Let 7 € ¢ (G")(Q,) be the preimage
of IT under (2.5.1); a priori we know it is isomorphic to its Gp-conjugates but not that it arises
from some 7 € €(GY)(L). Assume that Hypothesis 11.1.2 holds. By the definitions, the space

MTI'

is isomorphic to 7 X p[7] as a Hecke- and Q,[Gr]-module, and it is a G-invariant subspace of

Mé"_l’*(l). Let M™ := (M™)Gr ¢ M;" "*(1), and define the L[G ]-module
P

pri = (MT)HAT)
Then we have
pn @ Q= (7)1A @g pla].
The first tensor factor is 1-dimensional, so that by Remark 2.5.7 and (11.1.5), the representation
pr: Gr — GLy 1) (L)
satisfies
(o ©1 Q)™ = py. g, @ Prr, g, (0):
(In fact, it is conjectured that pr o is irreducible for v = n,n + 1, so that the semisimplifcation
v,Rp

should be superfluous.) This also implies that 7 has a model m = Homp g, |(M™, pi) defined
over L; in other words, for an incoherent V' € >~ we have (g(HV\GV)%p = %(HV\GV)%IJ.QI

11.1.5. Properties of automorphic Galois representations.

Proposition 11.1.4. Let m € ¢(G)q,(L). The Galois representation p = p_ q, Satisfies the
following properties:

(1) For every nonarchimedean place w of F, the representation PG, S pure of weight —1 in the
sense of [DL24, Definition A.11].

(2) The representations p® and p*(1) are isomorphic.
(3) For every place v|p of Fy and every place w|v of F':

(a) if my is unramified, then piq, —is crystalline;

2114 is plausible that this kind of equality holds more generally, but we do not explore this here.
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(b) if moreover m, is ordinary, then PlGp, s Panchishkin-ordinary.

If Hypothesis 11.1.2 holds, then the conclusions (1)-(3) above also hold for p = p[n] and
p=Mp.

Proof. Part (1) is a fundamental result of Caraiani [Carl2, Carl4] (see also [TY07, Lemma 1.4
(3)]). Part (2) follows from the last statement in [DL24, Lemma 4.10] for Praq,> and from
the Galois-equivariance of the Poincaré pairing for p[r], M;. The proof of part (3) is as in
[DL24, Lemmas 4.9, 4.14]. (In fact the assumption on m,, in (b) is stronger than the analogous
assumption in loc. cit.; correspondingly each factor pr,|q,. 1s also ordinary in the sense of [Nek93,
Definition 1.29]; however, only Panchishkin-ordinariness is stable under tensor products.) g

For the rest of the paper, we will assume Hypothesis 11.1.2 for every?? representation 7 €

%(G)(Qp)-
11.2. Gan—Gross—Prasad cycles. We define our cycles and study an ‘ordinary’ modification.

11.2.1. Arithmetic diagonal cycles. We have a fundamental cycle

[Y]O = ([YKH]O) € @ZO(YKH)CL
Ky

where the transition maps on the right are pushforwards and [Yx,]° = vol(Kwu, dh)[Yk,]. Let y
be (system of) arithmetic diagonal maps (8.2.2). The arithmetic diagonal cycle

Z =Y € L%HZ"(XG,K)Q (11.2.1)

is well-defined. We denote by Zx its image in Z"(Xq k)q-

11.2.2. Limits of Selmer groups. Let L be a finite extension of Q,, and let 7 € ¢(G)(L). For
? € {temp, t-ord, 7}, define

H{(F,M") == y?mHﬂF, M),  Hj(F,My):= l%nH}(F, M),

11.2.3. GGP cycles and associated functionals. Let
Zxx € Hf(F, My i)

be the Hecke-eigencomponent of (3~1(ZK) Here, by the discussion in § 10.1, the fact that Z; g
belongs to the Bloch-Kato Selmer group is a consequence of the vanishing of M, x N M>, and
Proposition 11.1.4.

Definition 11.2.1. The Gan—Gross—Prasad cycle of 7 is

Zp =lmZy i € Hy(F,M");
K

221y fact, it would be enough to assume it for the representation 7 in order to prove Theorem D for 7, at the cost
of some complication in the exposition.
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The H(A)-invariant functional associated to it via (11.1.3) will still be denoted by
Lp: T — H}(E,p[w])
O Zr@ = QpuZn

From the H(A)-invariance it follows that Z, vanishes unless 7 € € (H\G).

Remark 11.2.2. The linear functional Z,; valued in the Selmer group can be viewed as an arith-

metic analog of the automorphic period functional Py of (4.6.1).

11.2.4. Ordinary cycles. Suppose that every place v|p of Fy splits in F. For each v, we may
fix a place w|v of F' and compatible bases of V,, ,, giving isomorphisms Gg, , = GL;, X GLy41,
HFo,v = GL,, as algebraic groups over Fp, = Fj. Then we may and will use the notation,
definitions and results of § 5; we generally also denote [, := Hv‘p Uy; for instance, tg p = Hv|v 0,0,
NG p = o Now € GLi(Fop) X GLn41(GRy,) = G(Fo,p). We define an operator erd = lim U
it acts on M NG, and on 7V0» for any ™ € 4(G)q,; the representation 7 is ordinary if and only
if it is not annihilated by e°d

Let K, C G(Fpjp) be an open compact subgroup containing Ng ,, and let ¢ > 1 be such that K
(c+1)

contains K; ' ’. For positive integers r, N with N! > r > ¢, set mg, = Hv|p mo,re (cf. (5.1.4)

for the definition of twisting matrices) and define

Z}éf. [T 2T (mo,UY ek, ) € Z"(Xa k),
vlp
which is independent of r by Corollary 5.1.5.
We define the ordinary arithmetic diagonal cycle by

d . 1: ~/7T,N : 2 12 d
Zg, = lim cl(Zg') € 1%1(1{ "(Xgrk,, Qp(n))/Fil?).e"

For any 7 € €(H\G)°, we define the ordinary GGP cycle
Z%, € Hi(F,ME,)
to be the eigencomponent of Z;’(rd. By the definitions, for any sufficiently large r,

;’rr}i(p Hq’"d(” lim Z;.T(mo,UN5Te K, )-

N—o0 to.p

We have an induced H(Ap)-invariant functional still denoted by the same name

29+ 780 — HY(E, pln]).

ord

It factors through e

11.2.5. Norm relation. Continue with the notation and assumptions of § 11.2.4. In order to study
p-adic heights, it will be useful to know that Zl:%p is a norm from some ring class fields of F' of
conductors that are high powers of p.

Let T be the unitary group of the 1-dimensional hermitian space (F, N F/ F,)- We have a map

rec: Gp — FX\AY™ — T(Fp)\T(A>),
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where the first map is the reciprocity law of class field theory and the second map is x — z¢/x
(and the bars denote Zariski closures). For v|p and r > 0, let Kgl =T(ORr,)N1+v"0OF,, let

T, =T\ = T(F)\T(A®)/T(04 ) K, and let
F,=FY/F

be the abelian extension such that Gal(F,/F) = I', under the reciprocity map. We have the

norm map
NFT/F: Zn(XG,K,Fr) — Zn(XGVK).

Lemma 11.2.3. Fiz a place v|p of Fy. For any fP € #(G(AP>®), 0L)kr and any integer r with
max{1, c(K,) — 1} <r < N\, there ezists a cycle Z, = VAS N(fp)(y € I™(Xa,k,F.)o, such that

215 (f7) = Ngp(Z0).

Proof. We may assume fP = eg», and abbreviate Z}éN = ZT N(fp). Let K%, = H(AP>®) N K?
and let Y, := Y, » () . Then by (5.1.8), the map Y 2o X ™% X s X factors through Y,., and

X H,0,p
we can write

ZPN = Hq””” o). T (mo, UN S er) = vol* (Ko ) - (3:1Y3])-T(mo UN S ")

(see (5.1.7) for vol® (K .p))-
Let det: H — T be the determinant map. For a compact open subgroup K C H(A), by

Shimura’s reciprocity law we have an isomorphism of G p-sets
O(YK 7) = T(Fo)\T(A™)/ det K.

Now we have det Kg)o y=1+0"0R , =14+w" O = Kg) where the last identification comes

7’U7

from the natural map F;; C F — S,. Thus we deduce a natural surjection p: mo(Y, ) — I’y
For each v € I';, let Y, vy F C Yr + be the union of connected components in p ~1(v); it arises as
Y,y XF, F for an F,-subvariety

}/7"77 C YT‘,FT'

Then for any g € I';, we have
N o N!—
Zg = vol'(Ku0p) - NE,jp(9:[Yrno]) - T(morUsg ), exc),
which belongs to N, /p(Z2"(Xq, k,F,)z,) since vol®(Kpp) is a p-unit. O
11.3. The distribution and its spectral expansion. From now until the end of the paper,

we suppose that every place v|p of Fy splits in F' and that K, C G(Fp,) is the hyperspecial
subgroup G(OF, ).
11.3.1. Height pairings. Considering the setup of § 10.2.3, we denote by
K T
h: HY(F, M7 ) x HYF, Mo — Tpy 1 (11.3.1)

the pairing induced by the family hx, r: H} (F M,EKOM)®2 — I'p,,1 for K = KPK,,, where

A FF,L — FFO,L
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is the natural surjection. It is well-defined by the projection formula (Lemma 10.2.5). Note that
the conditions of § 10.2.1 for the definition of h (as well as for the definition of the pairing h
from § 1.3.7) are satisfied by Proposition 11.1.4. We also have a pairing (abusively denoted by
the same name)
h: HY(E, M2 ) x HYF, M2,) (11.3.2)

obtained from (11.3.1) by composing with the map induced by (11.1.1) on the second factor.

For a non-archimedean place w of F', we denote by h,, the corresponding local pairings (10.2.5)
on pairs of (limits of) cycles with disjoint supports in Z (Xk r,)}, (if wlp) or Z{\, (XK F,)},
(if w 1 p). For w1 p, this requires a projection formula for w-local heights, which is equivalent to
Lemma 10.2.4 (2).

11.3.2. Definition of the distribution. For S a finite set of non-archimedean places of Fp, denote
by
H(G(A®), D)ytemp C H(G(A%), L) iy
the subalgebra of measures f° = f9%°f, such that f,, € LfS (where fo = (4.1.5)) and
M®T(fSex,) C MES,.
Define first
ij: (%(G(Ap)ﬂ L);(p-temp)Q — PF07L
(f 1) — h(ZE T(fD), 23, T (),

(where the right-hand side uses the pairing (11.3.2)).

(11.3.3)

Definition 11.3.1. For any f? € %”(G(Ap),L)}’(p that can be written as
fP= =Y (11.3.4)
with fF € #(G(AP), L)%, -temp> we define the arithmetic relative-trace distribution by?3
i, (f7) = Ik, (1 £3).
Remark 11.3.2. The definition is independent of the decomposition (11.3.4). Indeed, let KP C
G(AP>®) be such that fP € J(G(AP®))kr, and let S be a finite set of finite places of Fy,

not above p, such that K% := K N G(ASPOO) is a maximal hyperspecial subgroup. Let etlgmp €
H(G(A%®)) s be an element acting as the idempotent projection M¥ — MK _ Then by the

temp*
projection formula (Lemma 10.2.5), for each decomposition (11.3.4) we have

S, (1 F5) = M2 T (), 23 T(f3e™) = h(Z5 T (f7), 25 T (™)),
which shows that _Zg (f7) is well-defined.

Let now J N
oy = [ ™™ - mor UL e, (11.3.5)
v|p

where 1 < r < N!. By the definitions, we have

I, (1, f3) = Am WMZ.T(fY focpN)s 2T (f3 fp.1c,.N))-

23The abuse of notation with respect to (11.3.3) should cause no confusion.
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It is independent of the choice of » < NI

11.3.3. Spectral expansion. Let m € (g(H\G)%S(L) Denote by
hat,: HY(F, Mz?) x HNF,ME) — Tp, 1

the restriction of h. For any fP € 7 (G(AP), L)°, we define

hro( Z2'5 WZAT
Sy (1) = hor (235, T(f7), 3% k,) = Tx o, p)(T(f”)),

(’)ﬂ,Kp

where the pairing (,), x, is the restriction of (,), = (1.3.4) to 7% x 7V*E». Then it is clear that
if fP is as in Definition 11.3.1, we have

I,V = D e, (),

e (H\G)%!

where for a Galois orbit 7 = {77} € %(H\G)O‘fd of isomorphism classes of representations, we

put jﬂ-’Kp = Z/TFU,Kp'

11.4. Decomposition over nonsplit places. We will complete the arithmetic relative-trace
formula by finding a geometric expansion for the distribution #,. Each term in the expansion
will be a sum over all nonsplit finite places of Fy. The goal of this subsection is to show the
preliminary result that £y, has a decomposition as a sum over nonsplit places, by proving some
vanishing results for local height pairings at split (p-adic and non-p-adic) places.

11.4.1. Decomposition over all places. Let v be a non-archimedean place of Fy. We define
N 1 N,
TN IR =3 bl ZRN (1), 2T (1))
wlv

for any f7, f5 € H(G(AP), L)j oy (vespectively 7 (G(AP), L)g  ..q if v|p) such that the two
cycles involved have disjoint supports. Here, the sum ranges over the (one or two) places of F’
above v.

It is then clear from the definitions that for f¥, f2 € J#(G(AP), L)%p_t_ord, we have a decom-
position

S, (1. f3) = lim Y 7y YLD, (11.4.1)

U)(OO
In the rest of this subsection, we show the vanishing of the contribution at split (p-adic and

non-p-adic) places.

Remark 11.4.1. If v { poo, we can more generally define

J 1, f2) =D bl ZT(f1), ZT(f2))

wlv

for f1, fo € H(G(A), L)femp such that the two cycles involved have disjoint supports; then

TN D) = IO foscy v, B oty ) (11.4.2)
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11.4.2. Auziliary Shimura varieties. Let v be a place of Fy and w a place of F' above v. Choose
an “admissible CM type ® (relative to v)” in the sense of [LL21, p.851] and a place u of the reflex
field E above the place w of F such that u is unramified over w. (Note that ® depends on v.)
Recall from §9.1 that, by our assumption, the compact open subgroup K,q is maximal at v. We
then have the auxiliary Shimura variety

u

and its integral model 2] = Mk, 05, from §9.3. We observe that X, is of the form Xp, x5, A
for some finite étale Fy,-algebra A.
We denote by
¥ = F =7, (vol(KH)[MKﬁ])

the OF ,-integral model of the arithmetic diagonal cycle, where j'is as in § 9.3.3.

11.4.3. Local heights at split places. The following lemma will be useful for considerations both
at places above p and away from p. We first need a definition.

Definition 11.4.2. We say that a pair (fi., fo,0) € ,%”(GU)%Q is K,-regular, if f1, has regular
support and f2, = ek, .

If S is a finite set of finite places of Fj and v ¢ S is another finite place of F, we say that a pair
(ff, f5) € #(G(AS),L)S.s is K-regular at v if we can write K% = K%YK, and f° = f;, @ f°
with (f1,0, f2,0) Ky-regular.

Lemma 11.4.3. Let v be a split place of Fy. Let K = [[, K, be an open subgroup of G(A>).
Suppose that f1, fo € 7 (G(A),L)S, satisfy:

— (f1, f2) is Ky -regular support at some finite place v' # v;

— the subgroup K, = K, , X Kn41, satisfies either of the following conditions:
(a) for some labelling {v,v'} = {n,n+1}, the subgroup K, , is mazimal hyperspecial and K,/ ,,
is the principal congruence subgroup of level m € Z>q (cf.§9.2);

(b) for both v =n,n+1, the subgroup K, ,, is Iwahori (that is, Gy, ,-conjugate to the standard

Twahori Iw,, 4, 0).
Then the following statements hold.
(i) The cycles Z.T(f1) and Z.T(f2) have disjoint support (on the generic fiber).

(i1) Abusing notation, we still let T'(f;) denote the (flat) correspondence on the integral model Z,).
Then the cycles Z,.T(f1) and Z,,.T(f2) have disjoint supports in Z...

Proof. Part (i) follows from [RSZ20, Theorem 8.5 (i)]. (The result in loc. cit only treats the
auxiliary Shimura variety attached to é; but it implies the desired result for G.)

For (ii) case (a), the integral model with Drinfeld m-level structure at one factor and with
hyperspecial level (m = 0) at the other factor is regular. The proof of [RSZ20, Theorem 8.5 (ii)]
(only the case fo = ex was considered there) still applies to show that the cycles 2. T(f1) and
Z.!.T(f2) have disjoint supports in Z,/.
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In case (b), the integral model is the resolution given in §9.3 of the moduli scheme and the
Hecke correspondences are obtained by base change and hence remain finite flat. The cycles are
obtained by strict transforms. Hence it suffices to show the disjointness before the resolution,
which again follows from [RSZ20, Theorem 8.5 (ii)]. (Strictly speaking, the result of loc. cit.
concerns the case of Drinfeld m-levels rather than Iwahori level. However, we may pull back the
cycles to the moduli scheme with Drinfeld level for m = 1 and then apply that result.)

O

Proposition 11.4.4. Let v { p be a split place of Fy. Let f1, fa € H(G(A), L)gemp be as in
Lemma 11.4.3. Assume furthermore that either K, is hyperspecial or that T(f{), T'(f5) annihilate
H?(Z! L(n)). Then

I (f1, f2) = 0.

Proof. We show that h,,(Z.T(f1), Z.T(f2)) = 0 for each of the two places w|v. By Lemma 10.2.4
(2), it suffices to show the vanishing of the local height after pull-back to the auxiliary Shimura
variety ShKé(é) over F,. Finally, under our assumption, Proposition 10.3.3 further reduces the
question to the vanishing of the arithmetic intersection pairing on the integral model 2./ over

O This last vanishing follows from Lemma 11.4.3 (7). O
11.4.4. Vanishing at p-adic places.

Proposition 11.4.5. Let v be a place of Fy above p (hence split in F). If n > 1, assume p > 2n.
Let fP = fPx fL € %(G(AP,L)%p_t_Ord, and assume that the pair (f¥, 1) has regular support.
Then

lim 7N (f7) = 0.

N—oo
Proof. Write Z; = Z}%iV.T(ff), Zy = Z}}’iV.T(fg), and let K? be such that fi, fo are right-KP-
invariant. For any finite extension E of F,, denote by \y: EX®L — E*®L the identity map,
and by hx, , =h X m N, the corresponding height pairing. We will show that

hxyp, (Z1,22) € PN!_C@’EU@@"L

for some constant C'; after taking limits, this implies the desired vanishing. Up to multiplying by
a nonzero scalar, we may assume that f? € J#(G(AP), 01)°.

By Lemma 11.2.3, for some constant C’ cancelling the denominators of f;, and for any suffi-
ciently large » < N!, we have Z; = N, /p(Z;,) for some Z;, € p_c/zn(X(lK’Fr)ﬁL. Denote by
F,» the localization of F, at its unique place above w. First, we show that

hX g gy, (21, 225) € OF  ©L. (11.4.4)

By Lemma 10.2.4 (1) (which applies thanks to the observation made after (11.4.3)), it is enough
to show the same result for the corresponding height pairing of arithmetic diagonal cycles on the
auxiliary Shimura variety (11.4.3). This follows from Lemma 11.4.3 (ii), Proposition 10.3.2, and
Remark 10.2.3.

By the integrality results of [Nek95, Proposition II.1.11], we have in fact

WXiepy, (21, 20,)  €p 0% G0, (11.4.5)
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for a constant C that, similarly to [DL24, Proof of Proposition 4.35], can be bounded as follows.
Let T := My ora i, N H* Y Xj 7, Or(n))/(tors), and denote by

NeoH}(Fur, T) = (Im [Trg, 5, 0 Hi(FuwsT) — Hi(Fus, T)] .
s>
Then p" < ¢! = \H}(Fw,r,T)/NOOH}(FwVT,T)]. However ¢ is bounded independently of r:
this follows by the same argument as for [DL24, Lemma 4.37] from the fact that M orq k.1, 8s a
representation of G, , is crystalline, Panchishkin-ordinary, and pure of weight —1 (Proposition
11.1.4). Thus in (11.4.5) we may replace C/' + C’ by a constant C”.
Finally, by Lemma 10.2.4 (1), we have

pC” . h‘XK,Fw (Zl, ZQ) = pCHNFw,T/Fw (hXK,Fw,r(Zl,Fw,r? ZQJ’)) € NFw,T/Fw (ﬁ;’wT@)ﬁL)

By the definition of F,,, and local class field theory, Np, p, (OF ©0L) C prfc///(ﬁ;w@)ﬁL) for
some constant C"”’. This completes the proof. O

11.5. The arithmetic relative-trace formula. The previous subsection shows that, for suit-
able f¥, f¥ we have a decomposition

S, (11D S AN,

vfoo nonsplit

= lim
N—oo

We state a geometric expansion of ¢ [((1; N (in fact, #®)) for inert places v. When F/Fy is

unramified, we then deduce a geometric expansion of Zk , thus completing the corresponding
RTF.

11.5.1. Local arithmetic intersection numbers and geometric expansions at inert places. Let v {
2p be an inert finite place of Fy and let w be the unique place of F' above v. We define for
5 € G (Fo),
fé,v(elﬁ;) = _(6'Nn,vaNn,U) Mw@ww), (11.5.1)

where, in the right hand side, (—, —) denotes the arithmetic intersection number on the unitary
Rapoport-Zink space N, , Xspf O, Npt1, (resp. the small resolution in [ZZh]) if K, is hyper-
special (resp. K, is vertex parahoric), relative to the quadratic field extension F,,/Fy,. Since
Fsv(ex,) only plays an intermediate role, we refer to [MZ] (resp. [ZZh]) for the unexplained
notation in the hyperspecial (resp. parahoric) case.

Recall the matching of global orbits § of (3.5.4), and the characteristic function 1y of those
orbits matching one from a given V' € ¥° from § 7.3.1.

Proposition 11.5.1. Let vt 2p be an inert finite place of Fy. Let f1, fo € 7 (G(A), L)
let f = f1x fy. Suppose that:

o
temp and

(1) (f1, f2) is K-regular at a place different from v;
(2) fio = fon = ek, where K, is a vertex parahoric subgroup of type (t,t) (cf. §9.3);
(3) K, is hyperspecial or T(f1), T(f2) annihilate H*™(Z.!, L(n)).
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Then

IO )= > T Fse(fo)

5B (Fo)

= Z 1y () (V)Jg(y)(fv)/é(v),v(fv)-
'YGB{PS(FO)
Proof. 1t suffices to show the first equality. Similar to the proof of Proposition 11.4.4, by the base
change property of Lemma 10.2.4(2) we have

1

/(U)(flij) = mhu(Z/-T(fl):Z/-T(fQ))7

where h,, denotes the local height on X, over 0 ,. Under our assumption, by Proposition 10.3.3

we have
ha(Z'T(f1), 2T (f2)) = (Z"T(f1), Z"T(f2)) \Nmpg, r, @u)-

Since )\| Fx 18 necessarily unramified and E,/F,, is an unramified extension, we have
A(NmE“/Fw wu) = deg(Eu/Fw))‘(ww)'

In the hyperspecial case, by [RSZ20, Theorem 8.15] (the statement there is for the sum over all
places of E above w, but the proof contains the formula for each place u), we obtain

(Z,T(h), 25T (h) = deg(Xy/Xw) D TE(Y) Isu(fo).

5eBY) (Fy)

The vertex parahoric case is similar and we omit the details. [l

Remark 11.5.2. We could relax condition (2) in the proposition to allow vertex parahoric subgroup
K, of type (t,t+€) with e € {0, 1}. But this implicitly violates the convention in §2.1.3, so that we
would need to renormalize the matching of orbits that appears in the statement of the proposition.

11.5.2. The arithmetic relative-trace formula. We are ready to deduce the following relative-trace
formula for fi,.

Theorem 11.5.3 (Arithmetic relative-trace formula). Suppose that:

— F/Fy is unramified,

—p>2nifn>1,

— all places v|2p of Fy are split in F.

Suppose also that there is a finite set S of places of Fy, not above p or co, and a compact open
subgroup K? =],
— K, is (self-dual) hyperspecial for v ¢ S,

K, satisfying:

— for every split place v € S, K, = K, X Kp41, where either at least one of the factors is
mazximal hyperspecial, or both are Twahori,

— for every inert v € S, K, is a vertex parahoric subgroup of type (t,t) (cf. §9.3),
Fori=1,2,let ff = fF = fisp ® Qy5.fiw € H(G(AP), L) kv ora Satisfy the following properties:

— for every inert v, f1, = fo = €k, ,
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— for two (necessarily split) places v € S, the pair (fiv, fon) is Ky-reqular (in the sense of
Definition 11.4.2);

— for every finite place v € S, T(ffp) annihilates H**(Z.!, L(n)) for some place u of E that is
unramified over v.

Let fP = fP % f2Y € #(G(AP), L)Sp. Then we have a spectral and a geometric expansion

I = Y e ()

we%’(H\G)ggg
= s X WOV S e) 5
B vipoo
nonsplit
where df;’rg,K, = dlfy),r;)i,f(lg(lp) is as in (7.1.3) for K, = G'(OF,,).

Proof. The spectral expansion was noted in § 11.3.3. We establish the geometric expansion. By
(11.4.1), we have
S = lim S 70N L),
vfoo
By Propositions 11.4.4, 11.4.5, only the terms corresponding to nonsplit places v { p contribute.
(We use the ‘second’ place of regular support to apply Proposition 11.4.4 to the ‘first’ one.) By
(11.4.2) and Proposition 11.5.1, we then have

J(f?)= lim Z Z 5(7 (fvp)/é(y o(f )'Jé(fy)(fp,Kp,N*f;;pr,N)-

N—o0
vipoo  yEBL(Fo)

nonsplit

The asserted form of the geometric expansion then follows, via Lemma 3.5.6 and Lemma 5.3.5,

from the definition of dlsfg K- O

Epilogue

12. COMPARISON OF RTFS AND PROOF OF THE MAIN THEOREM

In this concluding section, we compare the arithmetic distribution Zk, with the derivative
asz/) of the analytic distribution, and deduce our main theorem. Throughout this section we
assume:

— F/Fy is unramified,
—p>2nifn>1,

— all places v|2p of Fy are split in F.

12.1. Comparison of relative-trace formulas. The comparison will be based on the following
local result.
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Theorem 12.1.1 ([Zha21,MZ,7Z7h]). Let v be an inert place of Fy and assume that either of the
following conditions on K, C G,, K| C G, hold:

(1) K, is hyperspecial, and K, = G(Op,,);

(2) Ky = Ky X Kpy1, is a vertex parahoric subgroup of type (t,t) (c¢f. §9.3), and K, =
K}, % K}, 1, where K, is the stabilizer in G,(Fo) of both the vertex lattice defining K,

and its dual lattice.

!/

Suppose that v € B, matches an orbit § = 0(y) € Bysay, for the hermitian pair V, with
e(Vy) = =1 (¢f. (1.3.1)). Then
Hswlex,) = 075 0(ex)-

Proof. By the definitions, the identity is equivalent to

d s
—(0- N, N) = 055 (ery) /M @w) = - I5y(exys |- 1%,)/(— loggg,) (12.1.1)
s=0

(where w is the place of F' above v, and the ‘division’ in the second term has the obvious meaning).

In the hyperspecial case, the identity (12.1.1) is the Arithmetic Fundamental Lemma conjecture
proved in [Zha21, MZ]. In the vertex parahoric case, (12.1.1) (an instance of Arithmetic Transfer
conjecture) is recently proved by Z. Zhang [ZZh].

There are two points where the formulation in those works appears different. First, they
consider a version with derivatives of ‘inhomogenous’ orbital integrals; this is verified to be
equivalent to the above homogeonous version as in [RSZ18, Proposition 14.1 (ii)]. Second, their
identity apparently differs from ours by a sign —1: the reason is that their orbital integral contains
a transfer factor defined as in § 2.4 ibid.; under our assumptions on v and v, that transfer factor
/

(in its inhomogeneous version), evaluated at a preimage 7' € Gy, of v, differs from our x,(y")
by —1. [l

We can now make the global comparison.

Theorem 12.1.2 (Comparison of RTFs). Let S, KP =[], Ky, and

vlp
[P e H(G(AP), L)k,
be as in Theorem 11.5.83. Write S = S*P1 11 S™ as a union of sets of split and inert places.
Let K}, :== G'(OFR,,) and let K" =[],
— for everyv ¢ S, K|, = G, (OR,») is hyperspecial;
— for every inert v € S, Kj, = K, , x K\, , and K, is the stabilizer in G},(Fo) of both the

n,v

K|, C G'(AP>®) be a compact open subgroup satisfying:

vertex lattice defining K, , and its dual lattice.
Let
FP = 1P @ fhmoe ® fam € H(G(AP), L)5mrs. qc
be a quasicuspidal Gaussian with weakly regular semisimple support whose factors satisfy the
following properties:
— [P = @, f) with [} = exq;

! .
— [Gpiag Mmatches fgspiog;
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Then Ik, (f'?,1) =0 and
1, (fp) = 0Tk, (f)-

Proof. We first show that fP and f’” match under the assumption. By our conditions and the
Jacquet—Rallis Fundamental lemma (Proposition 3.5.4), £5"P and fS™P match. The theorem of
[ZZh] on transfer at vertex parahoric levels shows that f, and f] match at the places in S, as
well.

It follows that the function f” is incoherent, hence JK;)( f?,1) = 0 by Proposition 7.3.1.

Next we compare the geometric expansions of both sides of the desired equality, given by
Theorem 11.5.3 and Proposition 7.3.1 (3) respectively. By the identity of Theorem 12.1.1, these
are equal term by term. The proof is complete. O

12.2. Test Hecke measures. We find some fP € 5 (G(AP),L)°, f? € #(G(AP), L)° to which
the comparison may be applied, and that isolate a given pair of representations over L.
We will from now admit the following local hypothesis:

Hypothesis 12.2.1. Let v be an inert place of Fy and let m, = 7, W7, 41, be a representation
of Gy such that m,, is either unramified or almost unramified, and m,11, s almost unramified.
Let f, = ek, where K, C G, is a vertex parahoric subgroup of type (t,t) for t = n if m, is
unramified and t = 1 if m, is almost unramified. Then

I, (fo) # 0.

The special case of type (t,t) = (n,n) is proved in [Dan| (note that [Dan] considered the
equivalent problem for the parahoric subgroup of type (0,1)).

Lemma 12.2.2. Let 7w € CK(H\G)%S’“(L) and let IT = BC(7). Assume that:
— for every place v of Fy that is split in F/Fy, at least one of my,, and Tp41,4 is unramified;

— for every place v of Fy that is inert in F/Fy, mpp and Tpi1, are either unramified or almost
unramified, and if Ty, s almost unramified then mp41, 15 also almost unramified.

Then there exist:
— a finite set S of places of Fy, not above p or oo,
oip Ko C G(AP>®) and K'P = Hva K| c G'(AP>),
— Hecke measures f7, f5, f? == fPx f2V ¢ %(G(Ap),L)%p and f'P € %(G’(AP),L)%;){S’ G
such that:

— (S, KP, P f} K'P| ') satisfy the conditions of Theorem 11.5.3 and of Theorem 12.1.2;

« K.
- M®*T(ffek,) C @w’eBC_I(H):H M7

— II'(f"Pek,) = 0 for every I #1I' € € ;
- ®vfpjﬂ'u (fp) = ®v’[plﬂ,v(f/p) # 0.

— open compact subgroups KP =]

Proof. We construct f1, fY, f? as products whose various factors take care of the required

conditions.
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Regularity of the supports. Let S™ = {vi,v_} be a set consisting of two split places of Fy at
which II is an unramified regular principal series (cf. Lemma 4.3.3). We use ‘+’ instead of ‘vy’
as a subscript for the sake of legibility in this paragraph. Let

fe e A(GL, L)

be an element with +-regular support such that Iyy, (fi,1) # 0 as provided by Lemma 4.3.1 (3);
we take any sufficiently small K, such that f} € (G, L)y, . For each v € S™, upon a choice of
a basis of V,,, we have the matching f, 1 € #(Gy, L); by that Lemma, we may arrange that f, ; is
bi-invariant under an Iwahori subgroup K, C G,. We put f, 2 = eg,. Thus f, = fi, 1% f;f 9= fon
still matches f] and has K,-regular support. For i = 1,2, we put

fsrsvi = ®’U€Srsf’u,i7 f/Srs = ®U€Srsf1/)-

Any global Hecke measure with component fg.. has weakly regular semisimple support (Definition
3.3.5) since G, =G/, NG’

reg reg= "
Choices at places of ramification. Let ST be the finite set of places v ¢ S™poo of Fy where at
least one of 7y, ,, Tp41,0 is ramified. Then for every split v € SE we let K, = Ky X Kyt such
that 7/ # 0 and K, , is hyperspecial if 7, , is unramified. Then we pick any f, 1, fv2, fo ==
fo1* fvv’2 € (G, L)k, such that J, (f,) # 0. For every inert v € S®, we let K, be the vertex
parahoric subgroup such that 7%v # 0 and we let f, = eg,. More precisely, there are two cases:

— if m, 4 is unramified and 7,41, is almost unramified, we let K, be a vertex parahoric subgroup
of type (n,n);

— if both m,, and 7,41, are almost unramified, we let K, be a vertex parahoric subgroup of
type (1,1).

We put fgr; = @,cgrfoi and we let fir € (Gyr) match for = for *fk\g/Rg-

Isolation of @ and I1. Now take S = S® U S*™. For v ¢ Sp, we let K,, K! be hyperspecial, and

form K =], K,, K’ =]], K,,. Consider the split Hecke algebras

T =T% = ) #(G., L)k, C H(G(AP, L)5s

v{Sp
split

T =T = (X #(G,, L)k, @1 H(Gly, L)°  C A(G' (A, L)gus,.

v{Sp
split

Let fr1 = fr2 € T be an element acting as the idempotent projection from M;‘?’* onto @wleBC—l(H) Mﬁ,
which exists by Lemma 4.6.2 (for ¥ the finite set of representations occurring in M;?’*). Let
fr € T be an element supported at the finite places and matching fr == fr1* Y.
Let f{; € T" be an element such that II(f{;) = id and that for each ¢: L — C, R(f{}) sends
o (G")K into IT“X, which exists by Proposition 4.3.2; let fi1 € T be a matching element and let
fm2 be the unit of T.

Annihilation of absolute cohomology. For every place v € S, by the vanishing theorem of Propo-
sition 9.4.2 (1) (applied to the maximal ideal m of T corresponding to the eigensystem attached
to 7), there exists fi,3,1 = fv},2 € T which annihilates H*"(2,/, L(n)) (for 2,/ as in § 11.4.2),
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Ky

and acts by a non-zero scalar on the line &) vsp 7,

split

the finite places and matching fr,) = floy,1 * f{vv} .
Assembly. For i = 1,2,(, we define

S
[P = frifni © ®vesfuyi €T [P = il © ©vesfry € T,

viewed naturally as elements in (G (A®P), L)5esps H (G (A5P), L)5esp- Then we define

fP=fsifP,  fP = fLfP

Then it is easy to see that, by construction, fip satisfies the required conditions. To check the

. Let fév} € T be an element supported at

condition on spherical characters, we use

Dupptr, (F7) = Bugsptr, (F%) [T Jm. (f0)-
vES
The product over v € S does not vanish by construction; the first factor is the product of

K*Sp

®@ugspJm, (€xsp) # 0 and of the eigenvalue of f5P acting on the line 7%, which is a non-zero

scalar. 0

12.3. Proof of the main theorem. We first reduce the identity

ha(Za (D), Zpv (¢))) = ep(Mp) ™" - iazp(MH) o, @) (12.3.1)
of Theorem D to the factorization
Hr i, (fF) = iafp(Mn) - Qutp e, (). (12.3.2)

Lemma 12.3.1. Let 7 € %(G)%g, and let I = BC(w), L = Qp(m). The following are equivalent:
(1) For every ¢ € 7, ¢/ € w¥, the identity (12.3.1) holds.

(2) For some ¢ € w, ¢/ € ©¥ such that a(p,d’) # 0, the identity (12.3.1) holds.

(8) For every fP € A (G(A),L)°, the factorization (12.3.2) holds.

(4) For some fP € 7 (G(A),L)° such that @y, Jx,(fP) # 0, the factorization (12.3.2) holds.
Proof. 1t is trivial that (1) implies (2), and (3) implies (4). The two converse implications follow

from multiplicity one and the nonvanishing of «.
We prove that (3) is equivalent to (1). It is clear that (1) is equivalent to

hoZrRZ, v 1 o
Tr(,)7r (1) = 6JD(NIH) . Zagp(MH) : TI"Q)W (1) (12.3.3)

for all 7 € End(w), and equivalently for some 7 such that Tr?)W(T) # 0. Thus it is enough to
show that (12.3.2) is equivalent to (12.3.3) for some such 7.
Choose a factorization (,)r = (, )zr(, )x,. For any N > 1, let f, i, v = (11.3.5) € J(G), L),

let f5 o, N = fp i N * ]\7/7KP,N7 and for ? € {0, V}, let
71—;r])(fp,Kp)
(This does not depend on the integer 1 < r < N! implicit in (11.3.5).) Let

7Tp(f;;;,Kp) = 7Tp(fp,Kp> ° (Wg\o/(fO,p,Kp))v7

= ]\}gnoo 7T;<fp7Kp7N) S End(ﬂp).
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where (—)¥ denotes the transpose with respect to (,)r,. Then by the definition in § 11.3.3, we

have
hoZxRZ_v
Tre) " (@) mp(fxk,) = Fm, () (12.3.4)
On the other hand, it is clear from the definitions that
Tl (7P () mp(Fpxc,)) = @i (FF) - W T, (f 1, ) (12.3.5)

Now by Lemma 3.5.6, f;Kp y Mmatches the function le> kN attached to Ut];” as in Lemma 5.3.5.
bl K b p?
By the definitions and Corollary 5.3.4, we then have

Jim T, (fagv) = im T, (f 0, ) = ep(Min). (12.3.6)

(Recall that e,(Mpr) is the product of the factors e(Il,, 1,) of (5.3.5).) Thus by (12.3.4), (12.3.5),

(12.3.6), the identity (12.3.2) for fP is equivalent to (12.3.3) for 7 = Wp(fp)ﬂp(f}’;Kp). This com-

pletes the proof. O

We may now prove Theorem D based on the comparison of relative-trace formulas in Theorem
12.1.2.

Proof of Theorem D. By Lemma 12.3.1, it suffices to prove

Fntiy () = [02,(Mn) - @y T, () (12.37)

for any fP such that @y, Jr, (f?) # 0.
Let S, K?, fP, f'” be as in Lemma 12.2.2. By construction, ®y,Jx, (f?) # 0, the elements f?
and f’? match (geometrically), and Theorem 12.1.2 is applicable and it gives
Ji,(fp) = 0IK1 ()
By Theorem 11.5.3 and Proposition 7.3.1 (2), we have an equality of spectral expansions
Y. S U= Y 05U,
me¢ (H\G)%d mew (@) ort”

but by construction only the terms corresponding to m and II may be nonzero. We deduce that

fﬂ'va (fp) = iagp(MH) ) ®vaIHv (f/p)’

which is equivalent to the desired factorization (12.3.7) by the (spectral) matching of f? and f’P.
U

Proof of Theorem C. The main implication follows immediately from Theorem D, upon choosing
the unique distinguished 7 such that II = BC(w). The strengthened implication then follows
from [LTX"22] (or [LaSk]| under a different condition), as observed in Remark 1.3.2. O
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