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Abstract. We study the p-adic analogue of the arithmetic Gan–Gross–Prasad (GGP) con-

jectures for unitary groups. Let Π be a hermitian cuspidal automorphic representation of

GLn × GLn+1 over a CM field, which is algebraic of minimal regular weight at infinity. We

first show the rationality of twists of the ratio of L-values of Π appearing in the GGP conjec-

tures. Then, when Π is p-ordinary at a prime p, we construct a cyclotomic p-adic L-function

Lp(MΠ) interpolating those twists. Finally, under some local assumptions, we prove a precise

formula relating the first derivative of Lp(MΠ) to the p-adic heights of Selmer classes arising from

arithmetic diagonal cycles on unitary Shimura varieties. We deduce applications to the p-adic

Beilinson–Bloch–Kato conjecture for the motive attached to Π. All proofs are based on some

relative-trace formulas in p-adic coefficients.
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1. Introduction

The pioneering formulas of Gross–Zagier and Perrin-Riou, [GZ86,PR87], revealed a remarkable

relation between Heegner points and derivatives of complex and p-adic L-functions. They had

immediate applications to the (classical and p-adic) Birch and Swinnerton-Dyer conjectures, soon

strengthened by the Selmer-group bounds proved by Kolyvagin [Kol88].

A “furtive caress”1 between those formulas and one by Waldspurger on central L-values,

[Wal85b], did not escape Gross; and in [Gro04], he blessed it into a representation-theoretic

marriage, which would blossom in [YZZ12] (and later p-adically in [Dis17]).

The seeds for a new generation were sown in a paper by Gan, Gross, and Prasad [GGP12].

Their influential work conjectured a pair of non-vanishing criteria in the context of embeddings of

unitary groups: one for automorphic periods, in terms of Rankin–Selberg L-values (generalizing

[Wal85b]); and one for algebraic cycles in Shimura varieties, in terms of (complex) L-derivatives

(the arithmetic GGP conjecture, generalizing [GZ86]).

The conjecture on automorphic periods was refined to an exact formula by Ichino–Ikeda and N.

Harris [II10,Har14], and recently proved in this form in [BPLZZ21,BPCZ22]. On the other hand,

despite considerable progress (see [Zha] for a review), the arithmetic GGP conjecture remains

open outside of cases where it can be reduced to Heegner points [YZZ12,Xue19].2

The purpose of this work is to formulate and, under some local assumptions, prove a p-adic

variant of the arithmetic GGP conjecture. The result in fact takes the form of a precise formula,

in the spirit of [PR87,Dis17, II10,Har14]. It has immediate applications to the p-adic Beilinson–

Bloch–Kato conjecture for the relevant motives, which can be further strengthened by the Selmer

bounds recently established in [LTX+22,LaSk].

1Words borrowed from [Wei40].
2The analogous conjecture for orthogonal groups is also known for 1-cycles in threefolds [YZZ].
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(Indeed, one advantage of working in p-adic rather than archimedean coefficients is that we

obtain a nonvanishing criterion in Selmer groups, rather than Chow groups: while the p-adic

Abel-Jacobi map from the latter to the former should be injective, this is not known beyond

cycles of codimension one.)

In the rest of this introduction, we state our main results, discuss their history and context,

and give some ideas on the proofs.

In § 1.1, we describe our p-adic L-function (Theorem B), preceded by a rationality result for

twisted Rankin–Selberg L-values (Theorem A) that should be of independent interest.

In § 1.2 we state our applications to the p-adic Beilinson–Bloch–Kato conjecture (Theorem C;

the order of presentation is dictated by ease of exposition rather than logic). In § 1.3 we define

the Gan–Gross–Prasad cycles and state our formula for their p-adic heights (Theorem D).

In § 1.4, we give a sketch of our methods: inspired by the strategy proposed by Jacquet–

Rallis for the Ichino–Ikeda conjecture [JR11], and by one of us [Zha12] for the arithmetic GGP

conjecture (in archimedean coefficients), we construct a p-adic relative-trace formula from which

we extract the p-adic L-function; then, we compare it to another relative-trace formula encoding

the p-adic heights of GGP cycles.

1.1. The p-adic L-function. Let F0 be a number field, and denote by A the adèles of F0, by

DF0 =
∏
v∤∞DF0,v the discriminant of F0 (here DF0,v is the norm of the different ideal of F0,v).

Let F be a quadratic extension of F0, let c ∈ Gal(F/F0) be the nontrivial element, and let

η : F×0 \A× → {±1} be the associated quadratic character. Define a reductive group over F0 by

G′ := (ResF/F0
GLn × ResF/F0

GLn+1)/(GL1 ×GL1),

where GL1 ×GL1 is the split center of G′. Let Π = Πn ⊠ Πn+1 be an (irreducible) automorphic

representation of G′(A). Define3 a Rankin–Selberg and an Asai L-function4 for Π and a character

χ of F×0 \A× by
L(s,Π⊗ χ) := L(s,Πn × (Πn+1 ⊗ χ ◦NmF/F0

))

L(s,Π,As⋆) := L(s,Πn,As
(−1)n)L(s,Πn+1,As

(−1)n+1
).

We say that a cuspidal automorphic representation Πν is hermitian if Π ◦ c ∼= Π∨ and

L(s,Πν ,As
(−1)ν ) is regular at s = 1. We say that Π = Πn ⊠ Πn+1 is hermitian if Πn, Πn+1

are. For such a representation Π, we define

L (s,Πv, χv) := Dn+1
F0,v

n+1∏
i=1

L(i, ηiv) ·
L(s,Πv ⊗ χv)
L(1,Πv,As

⋆)
, (1.1.1)

and

L (s,Π, χ) :=
∏
v∤∞

L (s,Πv, χv).

Here, the abelian factor may be interpreted in terms of L-values of motives of unitary groups

(§ 2.2.1).

3Throughout the introduction (but differently from the rest of the paper) L-functions do not include archimedean
factors.
4See [GGP12, § 7] for the definition of L(s,Πn,As±).
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1.1.1. Rationality of L . Assume from now on that F0 is totally real and F is CM. Let arg(z) :=

z/|z| (a character of C×), let Π◦ν,R be the representation of GLν(C)/GL1(R) induced by the

character argν−1 ⊗ argν−3 ⊗ . . .⊗ arg1−ν of the torus (C×)ν , and define the representation

Π◦∞ =
⊗
v|∞

Π◦R :=
⊗
v|∞

Π◦n,R ⊗Π◦n+1,R

of G′(F0,∞). Let us also denote by 1∞ the trivial representation of G′(F0,∞) over Q.

Let Π = Π∞ ⊗ 1∞ be a representation of G′(A) on a characteristic-zero field L (admitting

embeddings into C). We say that Π is a trivial-weight (algebraic) cuspidal automorphic repre-

sentation if for every ι : L ↪→ C, the representation Πι := ιΠ∞ ⊗ Π◦∞ is an (irreducible) cuspidal

automorphic representation of G′(A). (It is known that every cuspidal automorphic representa-

tion of G′(A) over C such that Π∞ ∼= Π◦∞ arises in this manner for some number field L.) We

say that Π is hermitian if Πι is for some (equivalently, every) ι.

We first prove the following strong rationality property for the values of L . For an ideal

m ⊂ OF0 , let Y (m)/Q be the finite étale scheme of characters of F×0 \A×/F
×
0,∞(Ô×F0

∩ 1+mÔF0).

Let Y := lim−→m
Y (m), the ind-finite scheme over Q of locally constant characters of F×0 \A×/F

×
0,∞.

Theorem A. Let Π be a trivial-weight hermitian cuspidal automorphic representation of G′(A)

defined over a characteristic-zero field L. Then there is an element

L (MΠ, ·) ∈ O(YL). (1.1.2)

such that

L (MΠ, χ) =
L (1/2,Πι, χ)

ε(12 , χ
2)(

n+1
2 )

for all χ ∈ YL(C) with underlying embedding ι : L ↪→ C.

For the notation ‘MΠ’, see Remark 1.2.2.

Remark 1.1.1. For n = 1, Theorem A is a variant of a classical result of Shimura [Shi78]. A

conditional proof of the rationality of L (1/2,Π,1) for a more general class of Π was recently

obtained by Grobner and Lin [GL21, Theorem C]. (In fact, their rationality result is also a

consequence of the Ichino–Ikeda conjecture, but the method of [GL21] is different.) See also

[Rag16] for a related result, and [GHL] for relations to Deligne’s conjecture.

1.1.2. p-adic interpolation. Fix from now on a rational prime p. For v|p a place of F0, let N
◦
v ⊂

G′v := G′(F0,v) be the subgroup of integral unipotent upper-triangular matrices, and let T+
v ⊂ G′v

be the monoid of diagonal matrices such that tN◦v t
−1 ⊂ N◦v . Let Π be a trivial-weight cuspidal

automorphic representation of G′(A) over a finite extension L of Qp. We say that Π is v-

ordinary if Π
N◦

v
v contains a nonzero vector (necessarily unique up to scalar multiple) on which all

the operators Ut,v :=
∑

x∈N◦
v /tN

◦
v t

−1 [xt], for t ∈ T+
v , act by units in OL. We say that Π is ordinary

if it is v-ordinary for all v|p.
For any number field E, denote ΓE := E×\A∞×E /

∏
w∤p O×E,w, and let

Y := SpecZpJΓF0K⊗Zp Qp.

We have a natural map Y (p∞) := lim−→r
Y (pr) ↪→ Y .
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If L′/L is a field extension and S/L is an (ind-) scheme, we denote SL′ := S ×SpecL SpecL′.

Theorem B. Let Π be an ordinary, hermitian, trivial-weight cuspidal automorphic representation

of G′(A) over a finite extension L of Qp. Assume that for each place v|p of F0 that does not split

in F , the representation Πv is unramified.

There exists a unique function

Lp(MΠ) ∈ O(YL)

whose restriction to Y (p∞)L satisfies

Lp(MΠ)(χ) = ep(MΠ⊗χ)L (MΠ, χ) (1.1.3)

where L (MΠ) is as in (1.1.2), and ep(MΠ⊗χ) =
∏
v|p e(Πv, χv) is the product of the explicit local

terms (5.3.5).

Remark 1.1.2. We conjecture that the theorem remains true without the non-ramification condi-

tion at nonsplit p-adic places.

Remark 1.1.3. We say that Π is non-exceptional if ep(MΠ) ̸= 0. By a recent result of Liu and Sun

(Proposition 5.2.6), the factor ep(MΠ⊗χ) is as conjectured by Coates and Perrin-Riou [Coa91];

this implies that if Πv is an irreducible principal series for all v|p, then Π is non-exceptional (see

Remark 5.3.3).

Remark 1.1.4. Januszewski [Jan16] has proven a variant of Theorem B in a more general context,

by the method of modular symbols (see also the substantial improvements in [LiSu]). Our method

is similar locally at p but very different globally (and at archimedean places), see § 1.4.2 below.

Remark 1.1.5. Other authors have studied the variation of the above L-values (and in fact their

‘square roots‘) in anticyclotomic or more general self-dual p-adic families, see [HY, Liu, Dim].

It is of course expected that these values can be interpolated into a function over the entire

ordinary deformation space, that specializes to the functions of these works in self-dual subspaces

and to our Lp(MΠ) in the cyclotomic direction. (The case of ‘two’ abelian variables explicitly

conjectured in [Liu, Hypothesis 7.12] could be achieved by the method of this paper, but we chose

not to address it in order to bound the technical aspects.)

1.2. On the p-adic Beilinson–Bloch–Kato conjectures for Rankin–Selberg motives.

Before moving to discuss our main result, we give its main arithmetic application, which can be

stated without much further background.

Let

Π = Πn ⊠Πn+1

be a hermitian trivial-weight cuspidal automorphic representation of G′(A) over a finite extension

L of Qp. Denote by GF the absolute Galois group of F , by Qp an algebraic closure of L and let

ρΠν ,Qp
: GF → GLν(Qp) be the semisimple representation attached to Πν by the global Langlands

correspondence (as described in [Car12, Theorem 1.1]). Assuming that ε(Π) := ε(1/2,Πιn ×
Πιn+1) = −1 for any (equivalently, all) ι : L ↪→ C, we construct a continuous representation

ρΠ : GF −→ GLn(n+1)(L) (1.2.1)
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whose base-change ρΠ ⊗L Qp is isomorphic, up to semisimplication, to ρΠn,Qp
⊗ ρΠn+1,Qp

(n)

(Remark 11.1.3). It satisfies ρcΠ
∼= ρ∗Π(1), where ρ

c(g) := ρ(c−1gc) for any lift c ∈ GF of c.

The Beilinson–Bloch–Kato (BBK) conjecture relates the dimension of the Bloch–Kato Selmer

group

H1
f (F, ρΠ)

to the order of vanishing of L (s,Πι) at s = 1/2, for any ι : L ↪→ C. Assuming that Π is ordinary,

we can consider a variant in terms of

ordχ=1Lp(MΠ) := sup {r | Lp(MΠ) ∈ mr
1 ⊂ O(YL)},

where m1 is the ideal of functions vanishing at χ = 1. We prove the following.

Theorem C. Let Π be an ordinary, hermitian, trivial-weight cuspidal automorphic representation

of G′(A) over a finite extension L of Qp. Assume that ε(Π) = −1, and that the following further

conditions are satisfied:

− F/F0 is unramified; in particular, F0 ̸= Q;

− all places v|2 are split in F/F0;

− p > 2n if n > 1;

− for every place v|p of F0, we have that v splits in F and Πv is unramified;

− for every place v of F0 that splits in F , at least one of Πn,v and Πn+1,v is unramified;

− for every place v of F0 that is inert in F , each of Πn,v and Πn+1,v is either unramified or

almost unramified (namely, the base change of an almost unramified representation of the

unitary group), and if Πn,v is almost unramified then Πn+1,v is also almost unramified;

− Hypothesis 12.2.1 on the nonvanishing of certain local spherical characters holds true.

Then

ordχ=1Lp(MΠ) = 1 =⇒ dimLH
1
f (F, ρΠ) ≥ 1. (1.2.2)

If moreover p is an admissible prime for Π in the sense of [LTX+22, Definition 8.1.1], then

ordχ=1Lp(MΠ) = 1 =⇒ dimLH
1
f (F, ρΠ) = 1. (1.2.3)

Here a representation of a unitary group U(ν) over a non-archimedean local field is called

almost unramified if it has a non-zero vector fixed by the stabilizer of a vertex lattice of type 1

or ν − 1; see [Liu22] for the case when ν is even. For a comment on the reason for this condition,

see Remark 1.4.2 below.

This result is a consequence of a non-vanishing criterion for certain explicit elements ofH1
f (F, ρΠ)

arising as classes of algebraic cycles, which we describe in the rest of this section. The stronger

(1.2.3) follows from combining that criterion with the Selmer bounds of [LTX+22] (whose admis-

sibility condition is expected to be mild, see ibid. Remark 1.1.5) or [LaSk] (under different and

often milder conditions on p). In particular, in this case we have that H1
f (F, ρΠ) is generated

by the class of an algebraic cycle – a result analogous to the finiteness of the p∞-torsion of the

Tate–Shafarevich group of an elliptic curve.
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Remark 1.2.1. The history of theorems of type (1.2.2) consists of several works for similar 2-

dimensional Galois representations over CM fields (starting with [PR87] and continuing with

[Nek95,Kob13, Shn16,Dis17,Dis23,Dis22]), together with a very recent result by Y. Liu ad one

of us for a family of higher-dimensional representations [DL24, Theorem 1.7]. The result (1.2.3)

appears to be the first one for higher-dimensional representations, ex aequo with the main result

of [Dis] building on [DL24]; previously, only 2-dimensional cases were known, based on general-

izations of [Kol88].

Remark 1.2.2. Our notation (and the definitions going back to (1.1.1)) suggest that one may

think of L (MΠ), Lp(MΠ) as attached to the virtual motive MΠ over F0 whose p-adic realization

is (up to abelian factors)

MΠ,p := (Ind
GF0
GF

ρΠ)⊖As⋆(ρΠ).

Here, As⋆(ρΠ) = As⋆(ρΠn)⊕As⋆(ρΠn+1) with the factors defined by

As±(ρΠν ) : GF0 −→ GL(Lν ⊗L Lν)

GF ∋ g 7−→ ρΠν (g)⊗ ρcΠν
(g),

c 7−→ (x⊗ y 7−→ ±y ⊗ x)

and the sign ⋆ = (−1)ν on the ν-factor.

Then the p-adic BBK conjecture would rather relate ordχ=1Lp(MΠ) with

dimLH
1
f (F0, Ind

GF0
GF

ρΠ)− dimLH
1
f (F0,As

⋆(Π)).

The first term equals dimLH
1
f (F, ρΠ). Under our assumption that Π is hermitian, As⋆(Πν) co-

incides with the adjoint representation defined in the opening paragraphs of [NT] (cf. [GGP12,

Proposition 7.4]). By the results obtained there and in [Tho], under some irreducibility assump-

tions on ρΠν , we have H1
f (F0,As

⋆(ρΠ)) = 0.

Remark 1.2.3. Theorem C and Theorem D below rely on a decomposition of the tempered part of

the cohomology of unitary Shimura varieties (Hypothesis 11.1.2), which is expected to be proven

in a sequel to [KSZ]. (At a more basic level, we also freely use the results of [Mok15,KMSW] on

automorphic representations of unitary groups.)

Remark 1.2.4. Part of Hypothesis 12.2.1 has been proven in [Dan].

In the next subsection we describe, after some preliminaries, the construction of the Selmer

classes of interest and our formula relating those to the derivative of Lp(MΠ) (Theorem D).

1.3. The p-adic arithmetic Gan–Gross–Prasad conjecture. The cycles of interest arise

from Shimura varieties attached to certain unitary group. We start by describing the representation-

theoretic background.

1.3.1. Incoherent unitary groups and their representations. For a place v of F0, denote by Vv
the set of isomorphism classes of pairs Vv = (Vn,v, Vn+1,v) of (non-degenerate) Fv/F0,v-hermitian

spaces over Fv, where Vn,v has rank n and Vn+1,v = Vn,v ⊕ Fve with e a vector of norm 1. Let
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V ◦ be the set of collections V = (Vv)v with Vv ∈ Vv such that Vn,v is positive-definite for all

archimedean places, and for all but finitely many places v, the Hasse–Witt invariant

ϵ(Vv) := ηv((−1)(
n
2) detVn,v) (1.3.1)

equals +1.

We say that V ∈ V ◦ is coherent if there exists a (unique up to isomorphism) pair of F/F0-

hermitian spaces, still denoted V = (Vn, Vn+1), whose v-localization is Vv. This holds if and only

if ϵ(V ) :=
∏
v ϵ(Vv) equals +1. When ϵ(V ) equals −1, we refer to V as an incoherent pair of

F/F0-hermitian spaces. For V ∈ V ◦, we denote by

HVvv := U(Vn,v) ⊂ GVv
v := U(Vn,v)×U(Vn+1,v), (1.3.2)

(where the embedding is diagonal), by HVv
v ⊂ GVvv their F0,v-points. When V is coherent, these

are localizations of unitary groups HV := U(Vn) ↪→ GV := U(Vn)×U(Vn+1) over F0. When V is

incoherent, we still use the notation

HV ⊂ GV

for the collections (1.3.2), which we refer to as incoherent unitary groups over F0, and we denote

GV (AS) =
∏′
v/∈S G

Vv
v .

In § 2.2, for each Vv ∈ Vv, we fix measures dhv on Hv = HVv
v such that (i) if v is finite, dhv is

Q-valued; (ii) if v is archimedean and Vv is positive definite, vol(Hv, dhv) ∈ Q×; (iii) if V ∈ V ◦ is

coherent,
∏
v dhv is the Tamagawa measure on HV (A). We also have measures dgv on Gv = GVvv

with the analogous properties.

Suppose that V ∈ V ◦ is incoherent. If v is a place of F0 non-split in F , we let V (v) ∈ V be

the coherent collection with V (v)w = Vw if w ̸= v, and V (v)v ∈ Vv is the unique element different

from Vv if v is non-archimedean, and the element such that V (v)n,v has signature (n− 1, 1) if v

is archimedean. We let G(v) = GV (v).

Let π◦R be the set of (isomorphism classes of) tempered representations of the real group U(n−
1, 1)× U(n, 1) whose base-change to GLn(C)/R× ×GLn+1(C)/R× is Π◦∞. For a characteristic-

zero field L and an incoherent G = GV , a cuspidal automorphic representation of G(A) over L

trivial at infinity is a representation π = π∞⊗1∞ of G(A) over L, such that for every ι : L ↪→ C,

every v|∞, and some (equivalently, every) π◦v ∈ π◦R, the complex representation of G(v)(A)

πι,v := ιπv ⊗ π◦v

is irreducible, cuspidal and automorphic. If each πι is tempered and admits a cuspidal automor-

phic base-change to G′(A), we say that π is stable; the base-change of πι is necessarily of the

form Πι for a trivial-weight representation Π over L that we call the base-change of π and denote

BC(π).

1.3.2. Arithmetic diagonal cycles. When V is incoherent, we may attach to G = GV a tower of

Shimura varieties (XK)K⊂G(A∞) over F of dimension 2n− 1, and to H = HV a tower of Shimura

varieties (YK′)K′⊂H(A∞) over F of dimension n − 1. They are proper provided that F0 ̸= Q, a

condition that we henceforth assume.
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The embedding ȷ : H(A) → G(A) induces a morphism of Shimura varieties still denoted

by ȷ. Consider the (well-defined) normalized fundamental class [Y ]◦ := limK′ vol(K ′)[YK′ ] ∈
lim←−K′ Ch

0(YK′)Q and the arithmetic diagonal cycle ȷ∗([Y ]◦) ∈ lim←−K Chn(XK)Q (where Chi(Z)Q

denotes the Chow group of codimension-i cycles on Z with rational coefficients). The p-adic

absolute cycle class of ȷ∗([Y ]◦) can be projected to an element

Z ∈ H1
f (F,M

temp)

whereM temp = lim←−K H
2n−1
ét (XK,F ,Qp(n))

temp, and the superscript ‘temp’ refers to the tempered

part of cohomology (see § 11.1.3).

1.3.3. Gan–Gross–Prasad cycles. Let π be a stable,5 cuspidal automorphic representation of

G(A) trivial at infinity, over some finite extension L of Qp; let Π = BC(π). According to

Hypothesis 11.1.2, there is an injective map

π −→ HomQp[GF ](M
temp, ρΠ),

well-defined uniquely up to scalar multiples. We identify π with the image of this map, and define

the Gan–Gross–Prasad functional

Zπ : π −→ H1
f (F, ρΠ)

ϕ 7−→ Zπ(ϕ) := ϕ∗Z.
(1.3.3)

We call elements in its image Gan–Gross–Prasad cycles.

1.3.4. The p-adic arithmetic Gan–Gross–Prasad conjecture. By construction, we have

Zπ ∈ HomHV (A)(π, L)⊗L H1
f (F, ρΠ).

The space HomHV (A)(π, L) is known to be of dimension 0 or 1; in the latter case, π is said to

be distinguished. By the local Gan–Gross–Prasad conjecture proved in [BP16,BP20], for a given

representation Π over L as in Theorem A, there exists a unique (up to isomorphism) pair (V, π)

where V ∈ V ◦ and π is a representation of GV (A) as above that is distinguished. Moreover, π

can be defined over L, and V is incoherent if and only if ε(Π) = −1 (see § 2.5.4).

The following is a p-adic analogue of the arithmetic Gan–Gross–Prasad conjecture [GGP12,

Conjecture 27.1] for unitary groups.

Conjecture 1.3.1. Let Π be a representation as in Theorem B. Assume that ε(Π) = −1 and

that Π is not exceptional. The following conditions are equivalent:

(1) ordχ=1Lp(MΠ) = 1;

(2) for the unique distinguished π with BC(π) = Π, we have

Zπ ̸= 0.

Remark 1.3.2. According to the p-adic BBK conjecture, both conditions are also equivalent to

(3) dimLH
1
f (F, ρΠ) = 1.

5If π is only assumed to be tempered but not stable, we can still define Zπ with values in the Selmer group of a
certain Galois representation (see § 11.2.3).
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The implication (2) =⇒ (3) is [LTX+22, Theorem 1.1.9] or [LaSk, Theorem 1.4] (each under

suitable conditions on p; see remark (1) following [LaSk, Theorem 1.4] for a comparison of the

two sets of conditions).

As a refinement of Conjecture 1.3.1, we prove (under some conditions) a formula that ‘measures’

the product Zπ⊗Zπ∨ in terms of the derivative of Lp(MΠ); in order to state it, we need to define

some pairings.

1.3.5. Dualities. Continue with the setup of § 1.3.3. Fix a non-degenerate pairing

⟨ , ⟩Π : ρΠ ⊗L ρΠ∨ −→ L(1),

and for a compact open subgroup K ⊂ G(A∞), let ⟨ , ⟩K : M temp
K ⊗M temp

K → L(1) be the pairing

induced by Poincaré duality. Then we (well-)define a pairing

( , )π : π ⊗ π∨ −→ L (1.3.4)

by (ϕ, ϕ′)π := vol(K)−1 ϕ ◦ uK(ϕ′∗(1)) for any K ⊂ G(A∞) fixing ϕ, ϕ′. Here, ϕ′∗(1) : ρ∗Π∨(1) →
M temp,∗
K (1) is the transpose, the volume uses the measure

∏
v dgv, and uK : M temp,∗

K (1)→M temp
K

is the isomorphism induced by ⟨ , ⟩K .

1.3.6. Invariant functionals. If π is distinguished, there is a canonical generator

α ∈ HomHV (A)(π, L)⊗L HomHV (A)(π
∨, L)

defined as follows. Pick a factorization ( , )π =
∏
v( , )πv , where each factor is a pairing on πv⊗π∨v .

Then α is defined on factorizable elements ϕ = ⊗v∤∞ϕv, ϕ′ = ⊗v∤∞ϕ′v by the product of absolutely

convergent integrals

ια(ϕ, ϕ
′
) := vol(HV

∞, dh∞) ·
∏
v∤∞

L (1/2, ιΠv)
−1
∫
Hv

ι(π(h)ϕ, ϕ′)π dhv, (1.3.5)

where ι : L ↪→ C is any embedding, vol(HV
∞, dh∞) =

∏
v|∞ vol(HVv

v , dhv) ∈ Q×, and almost all

factors are equal to 1.

1.3.7. p-adic heights and main result. Assume that Π is ordinary. Then ρΠ is Panchishkin-

ordinary in the sense of [Nek93] (recalled in § 10.2.1). By Nekovář’s theory (see [Nek93] or § 10),

the pairing ⟨ , ⟩Π and the natural projection λ : ΓF → ΓF0 induce a height pairing

hπ : H
1
f (F, ρΠ)⊗L H1

f (F, ρΠ∨) −→ ΓF0⊗̂L.

For L ∈ O(Y )L, set

∂L := [L −L (1)] ∈ T ∗1YL = m1/m
2
1 ⊗Qp L = ΓF0⊗̂L.

The following is a p-adic analogue of the refined arithmetic Gan–Gross–Prasad conjecture (cf.

[Xue19, Conjecture 5.1]), in the spirit of the Ichino–Ikeda refinement of the usual Gan–Gross–

Prasad conjecture. The case n = 1 is essentially equivalent to the p-adic Gross–Zagier formula

as in [Dis17].
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Conjecture 1.3.3. Let V ∈ V ◦ be an incoherent pair, and let π be a distinguished, stable,

ordinary, cuspidal automorphic representation of GV (A), trivial at infinity, over a finite extension

L of Qp. Let Π := BC(π) and assume that it is ordinary and non-exceptional. Then for all ϕ ∈ π,
ϕ′ ∈ π∨, we have

hπ(Zπ(ϕ), Zπ∨(ϕ′)) = ep(MΠ)
−1 · 1

4
∂Lp(MΠ) · α(ϕ, ϕ′)

in ΓF0⊗̂L.

Remark 1.3.4. This conjecture implies the direction (1) =⇒ (2) in Conjecture 1.3.1; the converse

implication is reduced to the conjectural non-degeneracy of hπ.

We have the following theorem, confirming the above refined conjecture in certain cases.

Theorem D. Conjecture 1.3.3 holds if we further assume that:

− F/F0 is unramified; in particular, F0 ̸= Q;

− all places v|2 are split in F/F0;

− p > 2n if n > 1;

− for every place v|p of F0, we have that v splits in F and πv is unramified;

− for every finite place v of F0 that splits in F/F0, at least one of πn,v and πn+1,v is unramified;

− for every finite place v of F0 that is inert in F/F0, πn,v and πn+1,v are either unramified or

almost unramified, and if πn,v is almost unramified then πn+1,v is also almost unramified;

− Hypothesis 12.2.1 holds true.

Remark 1.3.5. Besides the p-adic Gross–Zagier results mentioned in Remark 1.2.1, the only other

p-adic height formula in the literature is the recent [DL24, Theorem 1.8]. While our setup and

global approach to the proof are different, a theorem on p-local heights in [DL24] is essential for

us.

1.4. p-adic relative trace formulas and the proofs. Our approach to Theorem D is based

on the comparison of a pair of relative-trace formulas with p-adic coefficients, analogously to the

approach proposed by one of us [Zha12] over archimedean coefficients. In fact, Theorem A and

Theorem B are also proved by constructing rational and p-adic relative-trace formulas. We give

a brief overview; unexplained terminology will be defined in the main body of the paper.

1.4.1. Rationality. Let us first explain the proof of Theorem A. For each χ ∈ Y (C), we have a

Jacquet–Rallis relative-trace distribution

I(−, χ) : H (G′(A),C) −→ C

on the Hecke algebra for G′. For a ‘regular’ f ′ ∈ H (G(A),C), it admits a spectral and a

geometric expansion∑
Π

1

4
L (1/2,Π, χ)

∏
v

IΠv(f
′
v, χv) = I(f ′, χ) =

∑
γ∈B′(F0)

Iγ(f
′, χ), (1.4.1)
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where: Π ranges over isomorphism classes of cuspidal representations of G′(A); the IΠv are local

spherical characters; the variety B′/F0
= H′1\G′/H′2 for certain reductive subgroups H′1,H

′
2 ⊂ G′;

and the Iγ are products of local orbital integrals.

The only possible sources of irrationality in the right-hand side of (1.4.1) are essentially the

archimedean orbital integrals. However, there is a particularly well-behaved class of f ′∞ ∈
H (G′(F0,∞)) (and corresponding f ′ ∈ H (G′(A))), the so-called (rational) Gaussians, whose

orbital integrals are controlled. Building on [BPLZZ21], we are able to show that for Π as in

Theorem A, there exist L-rational Gaussians f ′ annihilating every automorphic representation of

G′(A) but Π. Moreover, we need to show that one can pick f ′ to be ‘regular’ (that is, supported

on suitably regular elements for the group action of H′1 × H′2): this could be quickly done by

invoking the results of [Zha14a, Appendix A], but we do it in a more explicit way as described in

§ 1.4.6. Then the rationality of L (1/2,Π, χ) can be deduced from (1.4.1).

1.4.2. p-adic analytic distribution. We have a p-adic variant of I(−, χ), that we describe at first in
a slightly idealized form. For any ‘convenient’ subgroupK ′p ⊂ G′(F0,p), we construct a distribution

I = IK′
p
: H (G′(Ap))◦K′

p,rs,qc
−→ O(Y )

on a certain space of regularly supported, Qp-rational Gaussian elements of the Hecke algebra

away from p. It admits a spectral and a geometric expansion∑
Π

1

4
Lp(MΠ, χ)

∏
v∤p

IΠv(f
′
v, χv) = I (f ′p, χ) =

∫
B′

rs(F0)
Iγ(f

′p, χ) dIordγ,K′
p,p
, (1.4.2)

where Π ranges over representations as in Theorem B with nontrivial K ′p-invariants; the IΠv ,

Iγ are O(Y )-valued spherical characters and orbital integrals, respectively; and finally, dIord−,K′
p,p

is a certain generalized Radon measure on the rational points of B′rs ⊂ B′, the open subvariety

of regular semisimple orbits. In fact, we construct I from its geometric expansion, and prove

Theorem B by extracting Lp(MΠ) from I .

Remark 1.4.1. This appears to be a new method for constructing p-adic L-functions. Let us

linger on the archimedean input: while previous works relied on the nonvanishing of zeta inte-

grals for explicit cohomological test vectors (as proved by Sun in [Sun17]), we use instead the

‘spectral matching’ property (proved by Beuzart-Plessis [BP21a]), which relates the value of IΠv

on Gaussians with spherical characters of constant Hecke measures on a definite unitary group,

whose computation is trivial.

Under some conditions on K ′p, we can relax the conditions of regularity on f ′p by using the

recent work of Lu [Lu]; then the orbital integrals corresponding to non-semisimple orbits need an

interesting regularization featuring Deligne–Ribet p-adic L-functions.

We note that Urban [Urb11, § 6] has constructed a p-adic Arthur–Selberg trace formula; it

would be interesting to compare or combine our two approaches.

1.4.3. The derivative. For suitable f ′p, we then have a similar expansion for the derivative of I .

We will be especially interested in those f ′p that ‘purely match’ an fp ∈ H (GV (Ap)) for some
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incoherent V , in the following sense. We have a ‘matching of orbits’ map for all places v

δ : Brs(F0,v) −→
⊔

V ′
v∈Vv

HV
′
v (F0,v)\GV ′

v (F0,v)/H
V ′
v (F0,v)

with image the set of regular semisimple orbits on the right hand side. The matching condition

on fp, f ′p is that, defining unitary-group orbital integrals by

Jδ(fv) =

∫
HVv (F0,v)2

fv(h
−1γh′) dhdh′,

we should have Iγ(f
′
v,1) = Jδ(γ)(fv) if δ(γ) belongs to HVv(F0,v)\GVv(F0,v)/H

Vv(F0,v), and

Iγ(f
′
v,1) = 0 otherwise.

For such f ′p, we have I (f ′p,1) = 0 and the ΓF0⊗̂Qp-valued expansions∑
Π

1

4
∂Lp(MΠ)

∏
v∤p

IΠv(f
′
v, χv) = ∂I (f ′p) =

∫
B′

rs(F0)
∂Iγ(f

′) dIordγ,K′
p,p (1.4.3)

for the derivative. Moreover

∂Iγ(f
′p) =

∑
v∤p∞ nonsplit in F

Iγ(f
′vp) ∂Iγ(f

′
v)

with Iγ(f
′vp) = Iγ(f

′vp,1). The v-component of the sum can be nonzero only if γ matches

an orbit δ of HV (v)(Ap)\GV (v)(Ap)/HV (v)(Ap) for the coherent pair V (v) ∈ V ◦ that is locally

isomorphic to V at all places except v.

In practice, unless K ′p is suitably symmetric, we are only able to prove the geometric expansion

in (1.4.2) after specialization at a χ ∈ Y (p∞), and with a generalized Radon measure Iord−,K′
p,p

(χp)

depending on χp; nevertheless we can show that (1.4.3) still holds with Iord−,K′
p,p

:= Iord−,K′
p,p

(1).

1.4.4. Arithmetic distribution. Let V ∈ V ◦ be incoherent, G = GV . For a convenient subgroup

Kp ⊂ G(F0,p), we define another ΓF0⊗̂Qp-valued distribution on a suitable subset of H (G(Ap))

by

JKp(f
p) = h(Zord

Kp
T (fp), Zord

Kp
),

where Zord
Kp

is an ordinary modification of the arithmetic diagonal cycle in levelKp, and h is a limit

of height pairings on the Selmer group of the tempered, ordinary part ofH2n−1(XKpKp,F 0
,Qp(n)).

When the cycles have disjoint support on the generic fiber, the p-adic height pairing admits an

expansion h =
∑

v∤∞ hv into local height pairings. The disjointness is guaranteed if f has regular

support at some place v0.

By results in [DL24,LL21], the local height pairing at a place v away from p is related to the

arithmetic intersection pairing on a regular v-integral model, at least after applying suitable Hecke

correspondences to the cycles, and under some vanishing condition for the absolute cohomology

of the model (upon localizing at a non-Eisenstein ideal). After a base change, for suitable levels

we may use the models constructed in the previous work of Rapoport, Smithling and the second

author [RSZ20, RSZ21]; here, a technical difficulty is to verify the vanishing of cohomology in

the case of non-trivial level structure, as required both in order to treat the ramification of Π in

Theorem D, and for the place v0 of regular support. Once this is settled:
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− for split places away from p, we can show that the local arithmetic intersection numbers vanish,

by refining an argument of [Zha12,RSZ20];

− for inert places v (thus away from p), by results in [Zha12] and [RSZ20], the local arithmetic

intersection numbers admit geometric expansions over the orbits δ for V (v), whose terms are

products of local orbital integrals Jδ(fv′) (v
′ ̸= v) and arithmetic intersection numbers Jδ(fv)

in a certain v-adic Rapoport–Zink space.

On the other hand, the contribution of p-adic places vanishes: this is proved by a variant of an

argument of Perrin-Riou, which in our higher-dimensional case relies on a recent foundational

result of Y. Liu and the first author in [DL24].

We then obtain a spectral and a geometric expansion∑
π

Jπ(f
p) = JKp(f

p) =

∫
B′

rs(F0)

∑
v∤p∞ nonsplit

1V (v)(γ)J
vp
δ(γ)(f

vp)Jδ(γ),v(fv) dI
ord
γ,p,K′

p
,

where: π ranges over equivalence classes of automorphic representations as in Theorem D; the

geometric expansion is pulled back to B′rs via the ‘matching of orbits’ map δ, and 1V (v) is the

indicator function of those orbits matching one on GV (v); and finally, dIordγ,p,K′
p
is as in (1.4.3).

1.4.5. Comparison. Theorem D is eventually deduced from the spectral sides of an equality

JKp(f
p) = ∂IK′

p
(f ′p) (1.4.4)

for suitable matching fp, f ′p.

We prove (1.4.4) by comparing the geometric expansions. By the definitions of local matching

of Hecke elements (which can be globally assembled thanks to the Fundamental Lemma [Yun11,

BP21b]), orbital integrals on either side are the same, thus we are reduced to identities

Jδ(γ),v(fv) = ∂Iγ(f
′
v) (1.4.5)

for inert places v. For the spherical f ′v, fv, the identity (1.4.5) is the Arithmetic Fundamental

Lemma proposed by one of us [Zha12] and then proved in [Zha21, MZ]; for certain f ′v, fv of

maximal parahoric level, (1.4.5) is the arithmetic transfer conjecture recently proved by Z. Zhang

[ZZh].

Remark 1.4.2. We point out the main obstacle to removing the condition of our representations

being almost unramified at inert places from our main theorems. The condition comes from work-

ing with Shimura varieties at “almost self-dual” levels (namely, for vertex-parahoric subgroups

of type 1 or ν − 1). Although Z. Zhang’s result on the arithmetic transfer conjecture [ZZh] holds

in greater generality (at maximal parahoric levels), we can only show the vanishing result for

absolute cohomology of integral models alluded to in § 1.4.4 in almost self-dual levels, see Propo-

sition 9.4.2. The proof of that proposition relies on a refined understanding of the cohomology

of the irreducible components of the special fiber, which currently seems only available at almost

self-dual levels. The generalization to other maximal parahoric levels seems a very interesting yet

challenging question.
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1.4.6. Construction of test Gaussians. In order to deduce Theorem D from the comparison, we

need to pick suitable matching fp, f ′p that annihilate all terms in the spectral expansions but

those corresponding to π, Π; then we may use the comparison in [BP21a,BP21] of the functionals

IΠv with corresponding ones, Jπv , that are related to the local components of α = (1.3.5).

The most challenging requirement for the Gaussian f ′p is that the spherical character⊗v∤p∞IΠv(f
′p)

should not vanish, its non-regular-semisimple orbital integrals should vanish, while at the same

time its level should be controlled in order to allow working with nice integral models on the

arithmetic side. This turns out to be a rather hard semi-local problem, which is solved by an

explicit construction of a pair of elements f ′v,± of Iwahori level (to be used at a pair of split non-

p-adic places), and two explicit local computations: one on the spectral side, which is Proposition

5.2.6 (a result of Liu–Sun); and one on the geometric side, which is part of Proposition 6.1.2,

whose proof occupies the entire § 6. It is curious to note that f ′v,+ also occurs in the construction

of the p-adic relative-trace formula (and in fact, this is how we discovered it).

1.4.7. Organization of the paper. After some preliminaries in § 2, this paper is divided into two

parts and en epilogue. In Part 1, we construct the analytic distribution I and prove the associated

RTF, as well as Theorems A and B. In Part 2, we construct the distribution J and prove the

associated RTF. In the epilogue, we compare the two RTFs to prove Theorems D and C. More

details on the contents of the two parts are provided at the beginning of each.

Acknowledgements. We would like to thank Yifeng Liu for many helpful discussions, and

especially for providing us with the material of § 4.4. We are also grateful to Dongwen Liu

and Binyong Sun and to Weixiao Lu for sharing and discussing with us their respective works

[LiSu,Lu]; to Ryan Chen, Michael Harris, Chao Li, and Eric Urban for their comments on a draft

of the paper; and to SLMath for its hospitality to both of us during the Spring 2023 semester on

“Algebraic cycles, L-values, and Euler systems”, when part of this work was done.

2. Notation and preliminaries

2.1. Basic notation. We set up some notation to be used throughout the paper unless otherwise

noted.

2.1.1. Fields. We denote by F ⊃ F0 a quadratic extension of number fields, as in the introduction,

and by c ∈ Gal(F/F0) the conjugation. We denote by A the adèles of F0. From § 4 on, we will

assume that F0 is totally real and F is CM.

We denote by c the nontrivial automorphism of F/F0, and by

η : F×0 \A
× −→ {±1}

the quadratic character associated with F/F0. We fix an auxiliary element τ ∈ F such that

τ c = −τ , and an extension η′ : F×\A×F → C× of η.

If F ′ is a number field and S is a finite set of places of F ′, we denote by F ′S =
∏
v∈S F

′
v, and

by AS
F ′ =

∏′
v/∈S F

′
v. If F

′′ ⊂ F ′ is a subfield and ℓ is a place of of F ′′, for notational purposes we

identify ℓ with the set of places of F ′ above ℓ.
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2.1.2. L-functions. In the rest of the paper (unlike in the introduction), all global ζ- and L-

functions valued in the complex numbers are complete including the archimedean factors (this

also includes the ratio of L-functions L (1/2,Π, χ)). If LS(s) is a global L-function, we denote

by

LS,∗(s0)

its leading term at s = s0.

2.1.3. Groups. We now recall the groups under consideration in this paper, then discuss local

and global base-change from unitary groups to general linear groups. We denote by Gm =

SpecQ[T±1] the multiplicative group over Q. If G is a (usually, group-) scheme over a global

field F0 and v is a place of F0, we denote Gv := G(F0,v) with its v-adic topology. We also denote

[G] = G(F0)\G(A).

For ∗ = ∅, 0 (where in this type of context, ‘∅’ will always mean ‘no subscript’) and ν ∈ N, let

G′ν,∗ := ResF∗/F0
GLν . We consider

G′ := G′n/G
′
1,0 ×G′n+1/G

′
1,0, (2.1.1)

where G′1,0 is the F0-split center of G
′
ν , and its subgroups

j1 : H
′
1 := G′n ↪→ G′,

where j1(h) := [(diag(h, 1), h)], and

j2 : H
′
2 := G′n,0/G

′
1,0 ×G′n+1,0/G

′
1,0 ↪→ G′,

where j2 is induced by F0 ↪→ F .

For unitary groups, we use the notation HV , GV introduced in § 1.3.1. We denote by V the

set of isomorphism classes of pairs V = (Vn, Vn+1 = Vn ⊕ Fe) of F/F0-hermitian spaces with

(e, e) = 1. When F0 is totally real and F is CM, we denote by V ◦∞ = (V ◦v )v|∞ the pair such that

Vn,v is positive-definite, and by V ◦ ⊂ V the set of (coherent or incoherent) pairs (Vv) such that

Vv = V ◦v for all v|∞. We partition

V ◦ = V ◦,+ ⊔ V ◦,−,

where V ∈ V ◦,ϵ if and only if ϵ(V ) = ϵ.

2.2. Measures. Let F0 be a number field, and let D = |DF0 | be the absolute value of its dis-

criminant. Fixing a nontrivial character ψ : F0\A→ C×, we denote by dx =
∏
v dxv the self-dual

measure on A with respect to ψ; it satisfies vol(F0\A, dx) = 1. For a finite place v, let dv

be a generator of the different ideal of F0,v and let Dv := |dv|−1. Assume for definiteness that

Ker(ψv) = d−1v OF0,v for all finite places v; then we have vol(OF0,v , dxv) = D
−1/2
v . We have

D =
∏
v∤∞Dv, and for a finite set of places S of F0 we define DS :=

∏
v∤S∞Dv.

2.2.1. Tamagawa measures. If G is a reductive group over a local or global field E, we denote by

MG the Artin–Tate motive attached to (the quasi-split inner form of) G by Gross [Gro97]. If E
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is a local field, let

∆G := DdimG/2
v L(M∨G(1)).

Then the abelian term in (1.1.1) (including the factor Dn+1
F0,v

) equals ∆
GVv /∆HVv where HVv , GVv

are is in (1.3.2) (for any Vv ∈ Vv.)

Assume from now on that E is the global field F0. For a finite set S of places of F0, let

∆S
G := (DS)dimG/2 LS,∗(M∨G(1), 0).

Let ω be any non-zero top-degree invariant differential form on G. We denote by

dωgv := |ω|v

its modulus with respect to dxv ([Oes84, §4]), a Haar measure on G(F0,v). We define

d♮gv := ∆G,v dωgv

Then for all finite places v and any open compact subgroupKv ⊂ Gv, we have vol(Kv, d
♮gv) ∈ Q×.

Moreover if Gv is unramified and Kv is hyperspecial, we have vol(Kv, d
♮gv) = 1. The Tamagawa

measure on G is
dg := ∆−1G

∏
v

d♮gv. (2.2.1)

2.2.2. Variants. We define a variant

dgv =

{
d♮gv if v ∤∞

∆−1G d♮gv = ∆∞,−1G dωgv if v =∞
(2.2.2)

so that dg =
∏
v dgv. The ‘rationale’ for this choice is the following.

Lemma 2.2.1. Suppose G∞ is compact. Then vol(G∞, dg∞) is rational.

Proof. We say that two measures µ, µ′ are commensurable if µ = cµ′ for some c ∈ Q×. Let

µ :=
∏
v µv be the measure on G(A) considered in § 9 of [Gro97], to which all citations in this

proof will refer. The measure µ is nonzero by Propositions 9.4, 9.5. For almost all finite v,

µv = dgv; for all finite v, µv gives rational volume to compact open subgroups (equation (5.2)),

hence it is commensurable with dgv; and µ is commensurable with dg (Theorem 9.9). It follows

that dg∞ is commensurable with µ∞, which (again by equation (5.2)), gives rational volume to

G∞. □

We also consider a different measure, for comparison with some of the literature (notably

[Zha14a, § 2]). Let Z be the center of G, let Gad := G/Z; put

ζG,v(1) := D− dimZ/2
v ∆Z,v, ζS,∗G (1) := D− dimZ/2∆S

Z ,

sot that D
dimZ/2
v ζG,v(1)∆Gad,v = ∆G,v. Then we set

d∗gv := ζG,v(1)
1 dτgv, d∗g =

∏
v

d∗gv

so that

dg = ζ∗G,v(1)
−1
∏
v

d∗gv
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and for finite v, dgv = D
dimZ/2
v ∆Gad,vd

∗gv.

2.2.3. Local and incoherent measures. The global measures do not depend on ω, but the local

ones do. We fix the following explicit choices:

− if G = GLν , we take

ω := det(g)−ν ∧i,jdgij .

− if G is a (product of) unitary groups over a local or a global field, we fix ω as in [Zha14b, § 2].

If G is a (product of) incoherent unitary groups, we then get a measure on G(A) by (2.2.1), with

a factorization dg =
∏
v dg as in (2.2.2).

2.3. Hecke algebras. Let G be a reductive group over a number field F0, let v be a place of F0,

and let L be a characteristic-zero field, with L = C if v is archimedean or Gv is not compact.

We denote by S(Gv, L) the space of Schwartz functions on Gv valued in L: when F0,v is non-

archimedean, this is the same as the smooth compactly supported L-valued functions, whereas

when F0,v is archimedean this is defined in [Cas89,AG08]. We denote by H (Gv, L) the space

of Schwartz measures on Gv: those are measures of the form ḟ dg where ḟ ∈ S(Gv, L) and dg is

the Haar measure fixed above. The field L will be omitted when it is unimportant or understood

from context. For an open compact Kv ⊂ Gv, we denote

eKv
:=

1

vol(Kv, dgv)
1Kv

dgv

for any Haar measure dgv; it is an idempotent in H (Gv).

When G′v is the group (2.1.1), we define the standard hyperspecial subgroup K◦v ⊂ G′v to be the

image of GLn(OFv)×GLn+1(OF,v); when G
Vv
v is the product of unramified unitary groups from

(1.3.2), a relative hyperspecial subgroup K◦v ⊂ GVvv is one of the form U(Λv)× U(Λv ⊕ OF,ve) for

some self-dual lattice Λv ⊂ Vn,v. For S a finite set of places of F0, and G denoting either G′ or

GV for some V ∈ V ◦ ∪V ◦,+ V , we consider the Hecke algebra

H (G(AS)) :=
′⊗

v/∈S

H (Gv),

where the restricted tensor product is with respect to

f◦v := eK◦
v

(2.3.1)

for some relative hyperspecial K◦v ⊂ Gv. If K =
∏
vKv ⊂ G(AS) is an open compact subgroup,

we denote eK :=
∏
v eKv .We say that an element f ∈H (G(A∞)) is supported in the set S if we

can write f = fS ⊗
∏
v/∈S∞ f

◦
v for some fS ∈H (GS).

For f ∈ H (Gv), we denote f∨(x) := f(x−1). We denote by ⋆ the convolution operation

f1 ⋆ f2(x) :=
∫
Gv
f1(xg)f2(g

−1), and sometimes omit this symbol is omitted.

2.3.1. Convention. We stipulate that groups and Hecke algebras act on locally symmetric spaces,

Shimura varieties, and their homology and algebraic cycles on the right; on automorphic forms

on the left.
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2.4. Local base-change and distinction. Let v be a place of F0. If v is nonarchimedean, G?

is a reductive group over F0,v, and L is a field admitting embeddings into C, we say that an

absolutely irreducible (that is, π ⊗L L is irreducible) smooth admissible representation π of G?
v

over L is tempered if π ⊗L,ι C is tempered for every ι : L ↪→ C.

Let Vv be the set of isomorphism classes of pairs Vv = (Vn,v, Vn+1,v = Vn,v⊕F0,ve) of hermitian

spaces over Fv/F0,v. Let Temp(G?
v)(L) be the set of Gal(L/L)-orbits of isomorphism classes of

irreducible tempered representations of G?
v over L.

2.4.1. Local base-change. Let v be a place of F0. Thanks to [Mok15,KMSW], we have a local

base-change map BC from complex irreducible admissible representations of GVvv to complex

irreducible admissible representations of G′v, whose definition is recalled in [BP21a, § 2.10]. It

has the following properties:

(1) it restricts to a map

BC: Temp(GVvv )(C) −→ Temp(G′v)(C); (2.4.1)

(2) being defined by a map of L-groups, it is rational in the sense that it yields a map

BC: Temp(GVvv )(L) −→ Temp(G′v)(L)

for any characteristic-zero field L;

(3) when v splits in F , we simply have BC(π) := π ⊠ π∨ if we identify GVvv
∼= G′n,0,v × G′n+1,0,v

for the unique Vv ∈ Vv;

(4) when GVvv = U(n)×U(n+1) over R, the preimage of Π◦R under (2.4.1) consists of the trivial

representation only;

(5) when GVvv = U(n− 1, 1)× U(n, 1) over R, the preimage

π◦R := BC−1(Π◦R) (2.4.2)

consists of the n(n+1) discrete series representations having the Harish-Chandra parameter

{1−ν2 , 3−ν2 , . . . , ν−12 } on the U(ν − 1, 1)-component. (See [LTX+22, Proposition C.3.1].)

If v is non-archimedean and πv, respectively Πv, is a representation of GVvv , respectively G′v, over

a field L admitting embeddings into C, we will write BC(πv) = Πv if BC(ιπv) = ιΠv for every

embedding ι : L ↪→ C.

2.4.2. Hermitian representations. We will say that a tempered representation Πv of G′v is her-

mitian if the space HomH′
2,v
(Πv, η

n
v ⊠ ηn−1v ) is nonzero. By the local Flicker–Rallis conjecture

proved by Matringe, Mok, and others (see [Ana, §3.1] and references therein), a representation

Πv over C is hermitian if and only if it is in the image of base-change for some Vv ∈ Vv.

2.4.3. Distinction and the local Gan–Gross–Prasad conjecture. Let v be a place of F0 and let L be

a field of characteristic zero; we restrict to L = C if v is archimedean and Vv is not definite. We

say that a tempered representation π of GVvv over L is distinguished if the space Hom
HVv

v
(πv, L) is

nonzero, and by the multiplicity-one result of [AGRS10], this space is one-dimensional if nonzero.
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It is clear that distinction is a Gal(L/L)-invariant property. We denote by

Temp(HVv
v \GVv )(L) ⊂ Temp(GVv )(L)

the subset of orbits of distinguished tempered representations.

The following fundamental result is the local Gan–Gross–Prasad conjecture for unitary groups.

Proposition 2.4.1. Let Πv be a hermitian tempered representation of G′v over a characteristic

zero field L; we restrict to L = C if v is archimedean. There exists a unique pair (Vv, πv) with

Vv ∈ Vv and πv ∈ Temp(HVv
v \GVvv )(L) such that Πv = BC(πv).

Proof. If L = C, this is proved in [BP16, BP20]. In general, we may assume that there is an

embedding ι : L ↪→ C and apply the result to ιΠv to obtain a pair (Vv, π
C
v ). By uniqueness, πCv

is isomorphic to its Aut(C/ιL)-conjugates. □

2.5. Automorphic base-change.

2.5.1. Rational spaces of automorphic representations. The following discussion is based on [Clo90,

Théorème 3.1.3]. Let L be a field admitting embeddings into C, and let Π = Π∞ ⊗ 1∞ be an

absolutely irreducible representation of G′(A) over an L-vector space. We say that Π is cusp-

idal automorphic of trivial weight if for every (equivalently, some) embedding ι : L ↪→ C, the

representation Πι := ιΠ∞ ⊗ Π◦∞ is cuspidal and automorphic. Every cuspidal automorphic rep-

resentation ΠC of G′(A) such that ΠC,∞ ∼= Π◦∞ arises as Πι for some Π defined over a number

field; the smallest such number field Q(Πι) =: ιQ(Π∞) depends only on ΠC, and Π is unique up

to Q(Π)-isomorphism.

Denote by C̃ (G′)(L) the set of isomorphism classes of trivial-weight cuspidal automorphic

representations defined over L, and by C (G′)(L) := C̃ (G′)(L)/GL, where we recall that GL :=

Gal(L/L). By [Car12], for every Π ∈ C̃ (G′) and every finite place v, the representation Πv of G′v
is tempered.

Lemma 2.5.1. The natural map

C̃ (G′) −→ C (G′)

is an isomorphism.

Proof. This follows from the above discussion and [Clo90, Proposition 3.1, Théorème 3.1.3]. □

2.5.2. Ramakrishnan’s automorphic Tchebotarev theorem. We will use the following special case

of [Ram, Theorem A].

Proposition 2.5.2. Let Π, Π′ be two cuspidal automorphic representations of GLn(AF ). Assume

that Πw ∼= Π′w for all but finitely many primes w of F split over F0. Then Π ∼= Π′.

2.5.3. Base change. Let V ∈ V or, if F0 is totally real and F is CM, let V ∈ V ∪V ◦,+ V ◦. Let

G = GV , H = HV . For a field L admitting embeddings into C, denote by

C̃ (G)(L) ⊃ C̃ (H\G)(L)
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the set of isomorphism classes of tempered6 cuspidal automorphic representations of G(A) that

are trivial at infinity, and its subset of representations that are H(A)-distinguished. We also put

C (G)(L) := C̃ (G)(L)/GL ⊃ C (H\G)(L) := C̃ (H\G)(L)/GL.

We will view C (G′), C (G) and C (H\G) as ind-finite schemes over Q.

Definition 2.5.3. Let V ∈ V , and let G = GV . Let π be a (complex) automorphic representation

of G(A) which is tempered everywhere, and let Π be an automoprhic representation of G′(A).

We say that Π is a weak automorphic base-change of π, and write Π ∼= BC(π), if for all but

finitely many places v of F0 split in F , we have Πv ∼= BC(πv) for the local base-change of (2.4.1).

We say that Π is a strong automorphic base-change of π if Πv ∼= BC(πv) for all places v.

Remark 2.5.4. By Proposition 2.5.2, a weak automorphic base-change of π is unique up to iso-

morphism if it exists, which justifies the notation. Moreover by [Mok15,KMSW], if Π is a weak

automorphic base-change of π, then Π is a strong base-change of π. From now we will simply

write the (automorphic) base-change without adjectives.

Suppose now that F0 is totally real and F is CM. Let V ∈ V ◦, let G = GV , and let L be a

characteristic-zero field. Let π be a cuspidal automorphic representation of G(A) over L which

is trivial at infinity, and let Π be a trivial-weight cuspidal automorphic representation of G′(A)

over L. We say that Π is the cuspidal automorphic base-change of π, and write

Π ∼= BC(π),

if for every ι : L ↪→ C and every finite place v, we have ιΠv ∼= BC(ιπv). We say that π is stable

if it admits a cuspidal automorphic base-change over L; we denote by

C̃ (G)(L)st ⊂ C̃ (G)(L), C (G)(L)st ⊂ C (G)(L)

the subsets consisting of (orbits of) isomorphism classes of representations that are stable.

Note that by the definitions and the rationality of local base-change maps observed in § 2.4.1,

the stability condition is Galois-invariant, so that the above definition makes sense.

2.5.4. Hermitian automorphic representations as the image of base-change.

Proposition 2.5.5. Let Π be a cuspidal automorphic representation of G′(A) with Π∞ ∼= Π◦∞.

The following are equivalent:

(1) Π is hermitian;

(2) for every V ∈ V such that GV is quasi-split at all places, there exists a cuspidal automorphic

representation π′ of GV (A) such that Π ∼= BC(π′);

(3) for some V ∈ V ◦, there exists a cuspidal automorphic representation π of GV (A) over C,

trivial at infinity and tempered everywhere, such that Π∞ ⊗ 1∞ ∼= BC(π).

(4) there exists a unique pair (V, π) with V ∈ V ◦ and π an HV (A)-distinguished cuspidal auto-

morphic representation π of GV (A) over C, trivial at infinity and tempered everywhere, such

that Π∞ ⊗ 1∞ ∼= BC◦(π).

6That is, tempered at all finite places.
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Proof. That (1) implies (2) is the automorphic descent of [GRS11]. Assume (2) holds for the

representation π′ of GV ′
(A), and let V ∈ V ◦ agree with V ′ at all finite places. If V ∈ V ◦,+, let

V ′′ = V and let π′′ = π′; if V ∈ V ◦,−, let v be an archimedean place of F0, let V
′′ = V (v), and

let π′′ = π′v ⊗ π◦v for any π◦v ∈ π◦R = (2.4.2), a representation of GV ′′
(A). Then Πv = BC(π′′v ) for

all v, so that by [LTX+22, Proposition C.3.1.1 (1)], π′′ is automorphic with base-change Π. Let

π = π′′∞⊗ 1∞, which is a representation of GV (A) over C trivial at infinity. Then by definition,

BC(π) = Π∞ ⊗ 1∞, so that (3) holds. The implication (3) ⇒ (1) follows from [Mok15,KMSW]

together with the special cases of base-change for real groups stated in § 2.4.1 (4)-(5); a simpler

alternative proof, when Π is supercuspidal at some split place, is given in [BPLZZ21, Theorem

4.12 (2)].

Suppose now that (1) and (3) hold. By Proposition 2.4.1 and [LTX+22, Proposition C.3.1.1

(1)], we can modify the pair (V, π) of part (3) locally at finitely many places so that the resulting

representation satisfies the properties of (4). □

Corollary 2.5.6. There is a sub-ind-scheme

C (G′)her ⊂ C (G′)

parametrising those trivial-weight cuspidal automorphic representation of Π of G′(A) that are

hermitian. Moreover, the base-change map gives an isomorphism of Q-ind-schemes

BC:
⊔

V ∈V ◦

C (HV \GV )st −→ C (G′)her. (2.5.1)

Proof. This follows from the equivalence (1)⇔ (4) in Proposition 2.5.5. □

Remark 2.5.7. For ϵ ∈ {±}, let C (G′)her,ϵ ⊂ C (G′)her be the subset of those representations with

ϵ(Π) := ε(Πn ×Πn+1, 1/2) = ϵ. By [GGP12, § 26, discussion of Question (1)], we have

C (G′)her,ϵ = BC

( ⊔
V ∈V ◦,ϵ

C (HV \GV )st

)
.

Remark 2.5.8. Similarly to the above, for a characteristic-zero field L we may define the no-

tions of discrete (rather than tempered cuspidal), trivial-at-infinity automorphic representation

of GV (A) over L, and of isobaric (rather than cuspidal) trivial-weight automoprhic representation

of G′(A) over L; Proposition 2.5.2 remains true with ‘cuspidal’ replaced by ‘isobaric’. Denote the

corresponding sets of isomorphism classes by C ♯(GV )(L), C ♯(G′)(L). By the variant of Shin’s

result in [Gol14, Theorem A.1] stated in [LTX+22, Proposition 3.2.8], we have a base-change map

BC: C ♯(GV )(L)→ C ♯(G′)(L).

2.6. Relative traces.

Definition 2.6.1. Let L be a normed field. Suppose given data D = (Π1,Π2;ϑ, β, T ) consisting

of:

− L-vector spaces Π1, Π2;

− a bilinear form ϑ : Π1 ⊗Π2 → L;

− a bilinear form β : Π1 ⊗Π2 → Γ, where Γ is a finite-dimensional L-vector space;
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− a map T : Π1 → Π1,

satisfying:

− for i = 1, 2 we can write Πi = lim−→λ∈ΛΠi,λ as a filtered direct limit of finite-dimensional L-vector

spaces and injective maps, in such a way that:

− for every λ ∈ Λ, ϑ|Π1,λ⊗Π2,λ
is a perfect pairing.

Let us say that a basis {ϕ} of Π1 is admissible if there is a presentation Π1 = lim−→λ∈ΛΠ1,λ with

the above properties, such that {ϕ} ∩ Π1,λ is a basis of Π1,λ for all λ ∈ Λ; if this is the case we

denote by {ϕ∨} the basis of Π2 whose restriction to Π2,λ is the ϑ-dual basis of {ϕ} ∩Π1,λ.

We define the trace of T relative to β, ϑ to be

Trβϑ(T ) :=
∑
ϕ

β(Tϕ, ϕ∨), (2.6.1)

provided the sum is absolutely convergent and is independent of the choice of an admissible basis

{ϕ} of Π1.

Remark 2.6.2. If Γ = L and β = ϑ, we recover the usual notion of trace. In the examples of

interest to us:

− when L is not C, the sum (2.6.1) will have only finitely many nonzero terms;

− we will have β = h ◦ (P1 ⊠ P2) for some linear functionals Pi : Πi → Si valued in an L-vector

space Si, and some bilinear form h : S1 ⊗ S2 → Γ. (In fact, in the first part of the paper we

will only consider S1 = S2 = Γ = L, and h equal to the multiplication map.)

2.6.1. Relations between different relative traces. We give a preliminary definition. In the situa-

tion of Definition 2.6.1, let α2 ∈ EndL(Π2). Let µ : Λ→ Λ be a strictly increasing function with

cofinal image such that α2(Π2,λ) ⊂ Π2,µ(λ). We define the ϑ-transpose of α2 to be the unique

αϑ2 ∈ EndL(Π1) whose restriction to Π1,µ(λ) is the transpose of α2|Π2,λ
for the restriction of ϑ.

Lemma 2.6.3. Let D = (Π1,Π2;ϑ, β, T ) and D′ = (Π′1,Π
′
2;ϑ
′, β′, T ′) be data as in Definition

2.6.1. In each of the following, suppose that all the data in D, D′ are equal except for the indicated

differences.

(1) Suppose that β′ = β ◦ (1⊠ α2) for some α2 ∈ EndL(Π2). Then

Trβϑ(T ) = Trβ
′

ϑ′(T
′αϑ2 ),

where αϑ2 ∈ EndL(Π1) is the ϑ-transpose of α2.

(2) Suppose that ϑ′ = ϑ ◦ (α1 ⊠ id) and T ′ = Tα1 for some L-isomorphism α1 : Π
′
1 → Π1. Then

Trβϑ(T ) = Trβ
′

ϑ′(T
′).

(3) Suppose that Π′i ⊂ Πi are all direct summands, that ϑ′ := ϑ|Π′
1⊗Π′

2
is a perfect pairing (in the

sense that it satisfies the condition of Definition 2.6.1), and that T (Π1) ⊂ Π′1. If β
′ = β|Π′

1⊗Π′
2

and T ′ = T|Π′
1
, then

Trβϑ(T ) = Trβ
′

ϑ′(T
′).

The proof is elementary linear algebra.
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Part 1. p-adic L-functions and the analytic relative-trace formula

We study Rankin–Selberg L-functions and the related Jacquet–Rallis relative-trace formulas

in a sequence of contexts. In § 3, we review the theory in complex coefficients. In § 4, we

construct a Jacquet–Rallis RTF in rational coefficients and at the same time prove Theorem A

on the rationality of twisted Rankin–Selberg L-values. The construction relies in particular on

the existence of suitable Gaussians, obtained from a refinement of the results of [BPLZZ21]. In

§ 7, we construct an RTF in p-adic coefficients and at the same time prove Theorem B on the

existence of p-adic L-functions. The construction relies on some local theory and in particular

on a suitable family of explicit test Hecke measures at p-adic places: the theory is developed

on the spectral side in § 5 (whose centerpiece is an explicit calculation of Liu–Sun) and on the

geometric side in § 6 (whose centerpiece is a new explicit calculation of orbital integrals for the

aforementioned test Hecke measures).

3. Jacquet–Rallis relative-trace formulas

We consider the traces of Hecke operators relative to two period functionals and the Petersson

inner product on automorphic forms for G′, and compare (the resulting local terms) with a parallel

relative-trace distribution for G. The substance of this section is not new, rather it recalls some

related work done by previous authors, particularly [JR11,Zha14b,BPLZZ21]. We omit detailed

discussions of convergence issues, for which we refer to [Zha14b] or [BP21, Appendix A].

3.1. Period functionals and the distribution. Let A (G′) be the space of automorphic forms

on G′(A), and let Acusp(G
′) be its cuspidal subspace. We endow Acusp(G

′) with the bilinear

Petersson product

ϑ(ϕ1, ϕ2) :=

∫
[G′]

ϕ1(g)ϕ2(g) dg.

3.1.1. Period functionals. We define two functionals on Acusp(G
′(F0)\G′(A)).

For χ ∈ Y (C), the (χ-twisted) Rankin–Selberg period is the functional

P1,χ(ϕ) :=

∫
[H′

1]
ϕ(h1)χ(h1) dh1.

where χ(h1) := χ(NF/F0
deth1),

The Flicker–Rallis period is the functional

P2(ϕ) :=

∫
[H′

2]
ϕ(h2)η(h2) dh2,

where η(h2) := η(det(hn)
n+1 det(hn+1)

n) if h2 = ([hn], [hn+1]).

3.1.2. Relative-trace distribution. We say that f ′ ∈ H (G′(A)) is quasicuspidal if R(f ′) sends

A (G′) to Acusp(G
′) (cf. [BPLZZ21, Definition 3.2]), and we denote by H (G′(A))qc the space of

quasicuspidal Hecke measures.
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Definition 3.1.1. We define a relative-trace distribution on H (G(A))qc × Y (C) by

I(f ′, χ) := C · TrP1,χ⊗P2

ϑ (R(f ′)),

where the constant

C :=
∆G

∆2
H

∆H′
1
∆H′

2

∆G′
(3.1.1)

is motivated by rationality considerations.

We note that the above definition does fit within the setup of Definition 2.6.1: we may write

Acusp(G
′) = lim−→

(K,a)

Acusp(G
′)K,a=0

as K varies among compact open subgroups of G′(A∞) and a among finite-codimension ideals

in the center of the universal enveloping algebra of LieG′∞. The relative trace is well-defined by

(the proof of) [Zha14a, Theorem 2.3]. (See also [BPCZ22, Proposition 2.8.4.1] for a more general

result in a framework similar to ours.)

In the next two subsections we discuss the two expansions of I: a spectral expansion, in terms

of automorphic representations, and a geometric expansion, in terms of orbits (double-cosets).

3.2. Spectral expansion. Let Π be a cuspidal automorphic representation of G′(A), which by

multiplicity one we may and do identify with a subspace of Acusp(G
′). We define a distribution

on H (G′(A)) by

IΠ(f
′, χ) := C · TrP1,Π,χ⊗P2,Π∨

ϑΠ
(Π(f ′)),

where we use subscripts to indicate the restriction of period functionals and Petersson product

to Π, Π∨, Π⊗Π∨.

We define some local periods, in order to factorize IΠ.

3.2.1. Whittaker models and rational structures. Let ψ : F0\A → C× be a nontrivial character,

and let

ψF := ψ(
1

2
TrF/F0

(·)) : F\AF −→ C×.

We inflate ψF to a character of Nn(AF0) by ψF,n(u) = ψF (
∑n−1

i=1 ui,i+1). Let Πν be an automor-

phic representation of Gν(A). Its ψ-Whittaker model Wψ(Πν) is the image of the map

W : Π −→ C∞(Nν(A)\GLν(A), ψF,ν)

ϕ 7−→Wϕ(g) :=

∫
Nν(A)

ϕ(ug)ψF,ν(u) du.
(3.2.1)

The ψ-Whittaker model of Π = Πn ⊠ Πn+1 is Wψ(Π) = Wψ(Πn) ⊠ Wψ(Πn+1); it has a G′(A)-

factorization Wψ(Π) =
⊗

v Wψv(Πv).

We now consider rational structures, along the lines of [RS08, § 3.2]. Let v be a finite place

of F0 with underlying rational prime ℓ, and suppose that Πv is a smooth irreducible admissible

representation of G′v over a subfield L ⊂ C. For σ ∈ Aut(C/L), let aσ ∈ Z×ℓ be its image under

the composition

Aut(C/L) −→ Gal(L(µℓ∞)/L) −→ Z×ℓ
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of the restriction and the cyclotomic character. Let tσ,ν := diag(aν−1σ , . . . , 1) and let tσ :=

(tσ,n, tσ,n+1) ∈ G′v. Then we may define an action of Aut(C/L) on Wψv(Πv ⊗L C) by

W σ(g) := σ(W (t−1σ g)); (3.2.2)

we will denote by Wψv(Πv) the space of Aut(C/L)-invariants; it is an L[G′v]-module satisfying

Wψv(Πv)⊗L C ∼= Wψv(Πv ⊗L C) (see [RS08, Lemma 3.2]).

3.2.2. Factorizations of the periods and Petersson product. For the following factorization results,

see [Zha14b, § 3] and references therein. Let ϵ′ν(τ) := diag(τν+ϵ−1, τν+ϵ−2, . . . , τ ϵ−1) ∈ GLν(Fv),

where ϵ ∈ {0, 1} has the same parity as ν.

For W =Wn ⊗Wn+1 ∈ Wψ,v(Πv), define
7

P1,Πv ,χv(W ) :=
ε(12 , χ

2
v, ψv)

(n+1
2 )

L(1/2,Πv ⊗ χv)

∫
Nn(Fv)\GLn(Fv)

W (j1(h1))χv(h1) d
♮h1,

P2,Πv(W ) :=
ε(12 , ηv, ψv)

(n+1
2 )

L(1,Πv,As
−⋆)

P ♯2,Πn,v
(Wn)P

♯
2,Πn+1,v

(Wn+1),

P ♯2,Πν,v
(Wν) :=

∫
Nν−1(F0,v)\GLν−1(F0,v)

Wν

((
ϵ′ν−1(τ)h2,ν−1

1

))
ηv(deth2,ν−1)

ν−1 d♮h2,ν−1.

(3.2.3)

where L(1,Πv,As
−⋆) =

∏n+1
ν=n L(1,Πν,v,As

(−1)ν−1
).

For W ∈ Wψv(Πv), W
∨ ∈ Wψv

(Π∨v ), define

ϑΠv(W,W
∨) := L(1,Πv×Π∨v )−1

n+1∏
ν=n

∫
Nν−1(F )\GLν−1(F )

Wν

((
gν−1

1

))
W∨ν

((
gν−1

1

))
d♮gν−1.

Remark 3.2.1. With our normalizations, when all the data are unramified and W (1) =W∨(1) =

1, we have

P1,Πv ,χv(W ) = P2,Πv(W ) = ϑΠv(W,W
∨) = 1.

Moreover, the three functionals are rational in the following sense. If Πv is defined over a subfield

L ⊂ C, by (3.2.2) and a change of variable we see that for every σ ∈ Aut(C/L) we have

P1,Πv ,χσ
v
(W σ) = σP1,Πv ,χv(W ), P2,Πv(W

σ) = σP2,Πv(W ), ϑΠv(W
σ,W∨,σ) = σϑΠv(W,W

∨).

We may now state the factorization (see [Zha14b, §3] and § 3.2.4 below): for any ϕ ∈ Π

with factorizable ψ-Whittaker function W = ⊗vWv ∈ Wψ(Π), and ϕ∨ ∈ Π∨ with factorizable

7Our definition of P2,v differs form the one of [Zha14b] by the factor ε( 1
2
, η, ψ)(

n+1
2 ), cf. § 3.5.1 below.
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ψ-Whittaker function W∨ = ⊗vW∨v ∈ Wψ(Π
∨), we have

P1,Π,χ(ϕ) =
L(1/2,Π⊗ χ)

∆
H′

1
· ε(12 , χ2, ψ)(

n+1
2 )

∏
v

P1,Πv ,χv(Wv)

P2,Π(ϕ
∨) =

n(n+ 1)L∗(1,Π,As−⋆)

∆H′
2

∏
v

P2,Πv(W
∨
v )

ϑΠ(ϕ, ϕ
∨) =

4n(n+ 1)L∗(1,Π×Π∨)

∆G′

∏
v

ϑΠv(Wv,W
∨
v ),

(3.2.4)

where 4 is the Tamagawa number of G′. In the factorization of P2, we have used that ε(12 , η, ψ) =

1.

3.2.3. Local spherical character. We define a character

IΠv
(f ′v, χv) = IΠv(f

′
v, χv, ψv) = Tr

P1,Πv,χv⊗P2,Π∨
v

ϑΠv
(R(f ′v))

on H (G′v). This is the same as in [Zha14b], except for Petersson inner product on G rather than

on Gad, and our normalization of measures (so we have the same factors ∆H′ad
i,v
).

3.2.4. Comparison with the normalization of [Zha14b]. Let

G̃′ := G′n ×G′n+1,

and let us identify representations of G′v with representations of G̃′v whose central character is

trivial on (F×0,v)
2. In [Zha14b], one considers a distribution ĨΠv

on S(G̃′v) (denoted there by I♮Πv
),

and a global distribution ĨΠ on S(G̃′(A)) (denoted there by IΠ).
8 If f = ⊗vfv ∈ H (G′v) and

ḟ = ⊗vḟv ∈ S(G̃′v) are related by (3.3.14), then

IΠv
(fv, χv) =

∆
H′ad

1 ,v
∆

H′ad
2 ,v

∆
Gad,v

·
(
ε(12 , ηv, ψv)ε(

1
2 , χ

2
v, ψv)

)(n+1
2 ) · ĨΠv

(ḟv, χv),

IΠ(f, χ) =
1

vol([ZG′ ], d∗z)

ζ∗G′(1)

ζ∗
H′

1
(1)ζ∗

H′
2
(1)

ĨΠ(ḟ , χ) =
1

4

1

ζ∗
H′

1
(1)ζ∗

H′
2
(1)

ĨΠ(ḟ , χ),

(3.2.5)

where the factor vol([ZG′ ], d∗z) = 4L(1, η)2 = 4ζ∗G′(1) accounts for the fact that the Petersson

product in [Zha14b] is defined via integration on [G′ad] = [G̃′ad] and not [G′].

3.2.5. Factorization of the spherical character. Define

L (1/2,Π, χ) :=
∆G

∆H

L(1/2,Π⊗ χ)
L(1,Π,As⋆)

,

which agrees with the definition made in the introduction as noted in § 2.2.1. We use the analogous

notation relative to the constituents Πv, χv for v a finite place of F0 or v =∞.

8Strictly speaking only χv = 1v is considered in [Zha14b], but the definition remains valid in our more general
case too. When this is again the case in the rest of the paper, we will simply cite [Zha14b] without repeating this
remark.
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Proposition 3.2.2. For all f ′ = ⊗vf ′v ∈H (G′(A)), there is a factorization

IΠ(f
′, χ) =

1

4

L (1/2,Π, χ)

∆H · ε(12 , χ
2)(

n+1
2 )

∏
v

IΠ,v(f
′
v, χv)

Proof. Using (3.2.5), the factorization in [Zha14b, Proposition 3.6] is equivalent to

IΠ(f
′, χ) = C

1

4

∆G′

∆H′
1
∆H′

2

· ε(12 , χ
2)−(

n+1
2 ) · L(1/2,Π⊗ χ)

L(1,Π,As⋆)
·
∏
v

IΠv
(f ′v, χv).

By the definition of C in (3.1.1) and of L , this is equivalent to the asserted formula. (Equivalently,

the factorization follows from (3.2.4).) □

We will state the spectral expansion I =
∑

Π IΠ as part of Proposition 3.3.6 below.

3.3. Geometric expansion. The distribution I also admits an expansion as a sum of orbital

integrals, which we review.

3.3.1. Orbit varieties. Let

B′ := H′1\G′/H′2
be the categorical quotient, which is an affine variety over F0, cf. [Zha14a]. Let

S := {γ ∈ G′n+1 | γγ = 1n}.

The maps

g = (gn, gn+1) 7−→ g⋆ := g−1n gn+1, gn+1 7−→ gn+1g
c,−1
n+1 (3.3.1)

induce maps and isomorphisms

s : G̃′ −→ G′n+1/G
′
n+1,0

∼= S, B′ ∼= G′n,0\G′n+1/G
′
n+1,0

∼= G′n,0\S.

The second map in (3.3.1) also yields a bijection on F ′-points G′n+1(F
′)/G′n+1,0(F

′)→ S(F ′) for

any field F ′ ⊃ F0.

Representing a point of B′ by a matrix in S given in (n, 1) × (n, 1) block decomposition, the

invariant map
inv : B′ −→ ResF/F0

A2n+1(
A b

c d

)
7−→ ((Tr(∧iA))ni=1, (cA

j−1b)nj=1, d)
(3.3.2)

gives an embedding into affine space.

3.3.2. Regular, plus-regular, and semisimple orbits. We define three (quasi-)invariant functions

on S (hence on G̃′) by

D+(s) := det(etn+1, e
t
n+1s, . . . , e

t
n+1s

n)

D−(s) := det(en+1, sen+1, . . . , s
nen+1)

D(s) := det((etn+1s
i+jen+1)0≤i,j≤n) = D+D−(s),

(3.3.3)
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where en+1 = (0, . . . , 0, 1)t ∈ Fn+1. We denote by G̃′rs ⊂ G̃′reg± ⊂ G̃′ the open subschemes

defined, respectively, by D ̸= 0 and D± ̸= 0, and by

G′rs ⊂ G′reg± ⊂ G′

the respective images in G′; thus G′rs = G′reg+ ∩ G′reg− . The function D descends to B′ and we

denote by B′rs its non-vanishing locus, whose preimage in G′ is G′rs.

Remark 3.3.1. The involution g⋄ := gc,−1,t on G̃′ satisfies D±(s(g⋄)) = D∓(s(g)), and it descends

to G′; in particular, it swaps G′reg+ and G′reg− .

Let F ′ ⊃ F0 be a field. An H′1(F
′)×H′2(F

′)-orbit in G′(F ′) is said to be regular if its stabilizer

is trivial; semisimple if the orbit is Zariski-closed.

The regular semisimple orbits in G′(F ′) are in bijection with B′rs(F
′), and the preimage in

G′(F ′) of any γ ∈ B′rs(F
′) consists of a single orbit. The preimage of a general γ ∈ B′(F ′)

contains finitely many regular orbits (but possibly infinitely many orbits), of which exactly one

belongs to G′reg+(F
′) and exactly one belongs to G′reg−(F

′) (these two coincide precisely when

γ ∈ B′rs(F
′)). We will call the elements in G′reg+ (respectively G′reg−) plus-regular (respectively

minus-regular). We refer to [Lu, § 2.4] for more details.

3.3.3. Local orbital integrals. Let v a place of F0, and let γ′ ∈ G′reg±,v. Then for all χv : F
×
0,v → C×,

we define the orbital integral

I♯γ′(f
′
v, χv) :=

∫
H′

1,v

∫
H′

2,v

f ′v(h
−1
1,vγ

′h2,v)χv(h1,v)η(h2,v)
d♮h1,vd

♮h2,v
d♮gv

, (3.3.4)

where we recall that f ′v/d
♮gv is a function. If γ′ ∈ G′rs,v or f ′v is supported in the regular locus of

G′v, the integral is absolutely convergent. In general, Lu proved that the integral is convergent

when χ is the product of a unitary character and | · |s for ±Re(s) < −1 [Lu, Lemma 5.14], and

gave the following regularization.

Proposition 3.3.2 ([Lu, Prop. 5.12]). Let R±v,0 be the set of functions, on the space of smooth

characters of F×0,v, of the form

χv 7−→
m∏
j=1

L(±1∓ j, (χvηv)∓j ◦NF ′
0/F0

), (3.3.5)

for varying integers m ≥ 1 and finite field extensions F ′0/F0; and let R±v be the set of finite

products of functions in R±v,0.

Let γ′ ∈ G′reg±,v. Then one can define an element

Lγ′ ∈ R±v ,

such that the following hold.

(1) Lγ′ only depends on the H1,v ×H ′2,v-orbit of γ′, and it equals 1 if and only if γ′ ∈ G′rs,v,

(2) For unramified data (the precise meaning is given in [Lu, Prop. 5.12 (4)]), we have

I♯γ′(f
′
v, χv) = Lγ′(χv). (3.3.6)
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(3) Define a normalized orbital integral by

Iγ′(f
′
v, χv) :=

I♯γ′(f
′
v, χv)

Lγ′(χv)
. (3.3.7)

Then for every fixed character χ◦v of F×0,v:

(a) if v is archimedean, the function s 7→ Iγ′(f
′
v, χ
◦
v| · |s) extends to an entire function on C;

(b) if v is non-archimedean, the function

χ 7−→ Iγ′(f
′
v, χ
◦
vχ)

on the space of unramified characters of F×0,v is a polynomial in χ(ϖv), whose coefficients

are rational over the field of rationality of f ′ and χ0.

Remark 3.3.3. The work of Lu, [Lu], treats all regular orbits, and all the results of the present

paper involving plus-regular orbital integrals could in principle be extended to general regular

orbits as well. Nevertheless, for our purposes in the general construction of the p-adic relative-

trace formula, we will only need to consider plus-regular orbital integrals. For this reason, we will

restrict our attention to plus-regular orbits, which introduces some simplifications. (In fact, for

the applications in the proofs of our main theorems, we will not need to consider any regularized

divergent orbital integrals; however we consider the more general p-adic relative-trace formula to

be of independent interest.)

Let v be a place of F0, and let γ′ ∈ G′reg+,v. For h1 ∈ H
′
1,v, h

′
2 ∈ H ′2,v, we have Ih1γ′h2(−, χv) =

χv(h1)ηv(h2)Iγ′(−, χv). We then add a renormalization factor to the orbital integral so that,

when χv = 1, it only depends on the orbit of γ′. Let η′ : F×\A×F → C× be a character such that

η′|A× = η. With the notation γ′⋆ and s = s(γ′) as in (3.3.1), we define a multiple of the invariant

D+
v (s) by

κv(γ
′) := η′

(
det(γ′⋆)

ϵ det s−(n+ϵ)/2 det(etn+1, e
t
n+1s, . . . , e

t
n+1s

n)
)

(3.3.8)

where ϵ := 0 if n is even, ϵ := 1 if n is odd. This equals the transfer factor denoted by Ωv in

[Zha14b, (4.12)-(4.13)] (cf. § 3.5.3 below), and it satisfies

κv(h1γ
′h2, χv) = ηv(h2)κv(γ

′, χv),

and ∏
v

κv(γ
′) = 1 (3.3.9)

for all γ′ ∈ G′reg+(F0). We also record the following rationality property.

Lemma 3.3.4. Let γ′ ∈ G′v,reg+. Then κv(γ
′) is a square root of ηv(−1)−(

n+1
2 ).

Proof. With notation as above (but dropping the apex from γ′⋆ for lightness), write n = 2m + ϵ

and let

a := det(etn+1, . . . , e
t
n+1s

n) det s−(m+ϵ) det(γ⋆)
ϵ = det(etn+1s

−m−ϵ, . . . , etn+1s
m) det γϵ⋆,

which satisfies κv(γ
′,1) = η′v(a). Using s

c = s−1 and γc⋆ = s−1γ⋆, we find

ac = (−1)(
n+1
2 ) det(etn+1s

−m−ϵ, . . . , etn+1s
m) det γ⋆ = (−1)(

n+1
2 )a
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where (−1)(
n+1
2 ) is the sign of the longest permutation on n+ 1 elements. The assertion of the

lemma follows. □

We now define, for γ ∈ B′v,

Lγ(χv) := Lγ′(χv)

I♯γ(f
′
v, χv) := κv(γ

′) I♯γ′(f
′
v, χv)

Iγ(f
′
v, χv) := κv(γ

′) Iγ′(f
′
v, χv).

(3.3.10)

for any γ′ in the unique plus-regular orbit above γ. When χv = 1, it is straightforward to

check the right hand side is independent of the choice of γ′; in general, our notation is somewhat

abusive, but the ambiguity can be cancelled out in the global context as discussed next.

3.3.4. Global orbital integrals. Let R+
0 be the set of functions on Hecke characters of F0 of the

form

χ 7−→
m∏
j=1

L(1− j, (χη)−j ◦NF ′
0/F0

), (3.3.11)

for varying integers m ≥ 1 and finite field extensions F ′0/F0, and let R+ be the set of finite

product of functions in R+
0 .

For any γ ∈ B′(F0), by [Lu, §6] we can define an element Lγ =
∏
v Lγv in R. For any

f ′ := ⊗vf ′v ∈H (G′(A)), and any character χ ∈ Y (C), we put

Iγ(f
′, χ) := C

∆G′

∆H1∆H′
2

Lγ(χ)
∏
v

Iγ(f
′
v, χv) =

∆G

∆2
H

Lγ(χ)
∏
v

Iγ(f
′
v, χv), (3.3.12)

where all but finitely many factors equal 1 (the finite set of exceptions depends on γ); we take the

orbital integrals in the product to be defined as in (3.3.10) by means of a common rational plus-

regular lift γ′ ∈ G′(F0) of γ, which ensures that the product is well-defined. When γ ∈ B′rs(F0),

it is clear that we have

Iγ(f
′, χ) := C ·

∫
H′

1(A)

∫
H′

2(A)
f ′(h−11 γ′h2)χ(h1)η(h2)

dh1dh2
dg

.

In fact, this last formula makes sense for any locally constant function χ : F×0 \A× → C.

3.3.5. Comparison with the normalization of [Zha14b]. In [Zha14b, §4], one considers the distri-

bution on Hecke functions (and not measures) on G̃′rs,v, defined by

Ĩγ′(ḟ
′
v, χv) :=

∫
H1,v

∫
H2,v

ḟ ′v(h
−1
1,vγ

′h2,v)χ(h1,v)η(h2,v)
d∗h1,vd

∗h2,v
d∗g

(and denoted there by O(γ, f ′)), and the global analogue

Ĩγ′(ḟ
′, χ) :=

∏
v

Ĩγ′(ḟ
′
v, χv).



GAN–GROSS–PRASAD CYCLES AND DERIVATIVES OF p-ADIC L-FUNCTIONS 33

Let p: G̃′v → G′v be the projection, and let

p∗ : S(G̃′v) −→ S(G′v)

ḟ ′ 7−→

(
g = [g̃] 7−→

∫
F×,2
0,v

ḟ ′(zg̃) d∗z

)
.

(3.3.13)

Suppose that f ′ = ⊗vf ′v ∈H (G′(A)) and ḟ ′ = ⊗vḟ ′v ∈ S(G̃′(A)) are related by

f ′v = p∗(ḟ
′
v) d
∗gv. (3.3.14)

Then

Iγ(f
′
v, χv) = κv(γ

′)
∆

H′ad
1 ,v

∆H′ad
2 ,v

∆G′ad,v
Ĩγ′(ḟ

′
v, χv),

Iγ(f
′, χ) = C

ζ∗G′(1)

ζ∗
H′

1
(1)ζ∗

H′
2
(1)

∏
v

Ĩγ′(ḟ
′
v, χ).

(3.3.15)

We will also denote by

p∗ : H (G̃v) −→H (Gv) (3.3.16)

the pushforward map of Hecke measures.

3.3.6. Relative-trace formula for I. We describe the spectral and geometric expansions of I. For

S a finite set of places of F0 and ? ∈ {rs, reg±}, an f ′S ∈ H (G′(AS)) is said to have ?-support

if it is in the span of those ⊗v/∈Sf ′v such that for some place v, f ′v is supported on G′?,v. We

introduce a weaker notion.

Definition 3.3.5. We say that f ′S ∈ H (G′(AS)) has weakly ?-support if it belongs to the

subspace spanned by those pure tensors ⊗v/∈Sf ′v such that for every γ′ ∈ G′(F0)−G′?(F0), there

is some v /∈ S such that f ′v vanishes on the H1,v ×H2,v-orbit of γ
′.

Proposition 3.3.6. Let f ′ ∈H (G′(A)) be quasicuspidal with weakly plus-regular support. Then

for every character χ ∈ Y (C), we have∑
Π

IΠ(f
′, χ) = I(f ′, χ) =

∑
γ∈B′(F0)

Iγ(f
′, χ). (3.3.17)

where both sums are absolutely convergent, the first one running over the cuspidal hermitian

automorphic representations of G′(A).

Proof. For the spectral expansion, see [BPLZZ21, Prop. 4.1] (where it is assumed that χ = 1,

but the proof extends to the general case). The geometric expansion is [Lu, Theorems 3.1, 6.1];

the definition of the summands in loc. cit. contains extra terms corresponding to regular but

non-plus-regular orbits, but those vanish by our assumption on f ′. □

3.4. Relative traces for unitary groups. We review the Jacquet–Rallis RTF for unitary

groups.

3.4.1. Orbit spaces. Let v be a finite place of F0 or v =∞, and recall from § 2.1.3 the set Vv of

pairs of hermitian spaces. For V ∈ Vv, let

Bv,V := HV
v \GVv /HV

v , (3.4.1)
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which is isomorphic to the quotient of U(Vn+1) by the adjoint action of U(Vn) via the map

[(gn, gn+1)] 7→ [gng
−1
n+1]. Differently from the linear case, Bv,V is a subset (open for the v-adic

topology if v is non-archimedean) of the set of F0,v-points of B
V
v := HVv \GV

v /H
V
v . Similar to § 3.3.2,

we say that g ∈ GVv is regular (for the HV
v × HV

v -action) if its stabilizer is trivial; semisimple

if its orbit is closed. We denote by GVrs,v ⊂ GVv the (Zariski-open) subset of regular semisimple

elements and by BV
rs,v its image in BV

v . When v =∞ is archimedean and V∞ = V ◦∞ is the positive

definite pair, every orbit is regular semisimple, and we denote B◦∞ := B∞,V ◦
∞ .

Consider now the global case, and let V ∈ V . We similarly define GV
rs ⊂ GV to be the sub-

group-scheme of those g with closed orbit and trivial stabilizers for the HV × HV -action. For

uniformity of notation, we denote by

Brs(F0)V ⊂ BVrs(F0) (3.4.2)

the image of GV
rs(F0).

3.4.2. Local distributions. Let δ ∈ Brs,v,V and let δ′ ∈ GVrs,v be a preimage of δ. We define a local

orbital-integral distribution Jδ,v = JVδ,v on the Hecke algebra of Gv = GVv by

Jδ,v(fv) :=

∫
Hv

∫
Hv

fv(x
−1δ′y)

d♮xd♮y

d♮g
. (3.4.3)

For πv a representation of Gv = GVv , we define a spherical character Jπv = JVπv on H (Gv) by

Jπv(fv) := L (1/2,BC(πv))
−1
∫
Hv

Trπv(πv(h)πv(f)) d
♮h. (3.4.4)

By our choices of measures, for all finite v, if fv is L-valued (for some subfield L ⊂ C) then so

are Jδ,v(fv), Jπv(fv).

3.4.3. Comparison with the normalization of [Zha14b]. Let fv ∈ H (Gv) and ḟv ∈ S(Gv) be

related by

fv = ḟvd
∗g. (3.4.5)

(1) Let J̃πv be the spherical character on S(Gv) defined in [Zha14b, (1.8)] (using the measure

d∗hv on Hv as in § 4 ibid.), and denoted there by J ♮πv . Then

Jπv(fv) = D1/2
v ∆Had

v
J̃πv(ḟv), (3.4.6)

(2) Let J̃δ be the orbital integral distribution on S(Gv) defined in [Zha14b, (4.2)], and denoted

there by O(δ, ·). Then

Jδ(fv) =
(∆Had,v)

2

∆Gad,v

J̃δ(ḟv). (3.4.7)

3.4.4. Global relative-trace formula. Let now V ∈ V be coherent, and let G = GV . Let ϑ : Acusp(G)⊗
Acusp(G) → C be the Petersson inner product (with respect to the Tamagawa measure on [G]),
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and consider the H-period

P = P V : Acusp(G) −→ C

ϕ 7−→
∫
[H]
ϕ(h) dh

(3.4.8)

We define the following distributions on (subspaces of) H (G(A)):

− let H (G(A))qc ⊂ H (G(A)) be the quasicuspidal subspace (defined as in §3.1.2). For f ∈
H (G(A))qc, we define

J(f) := TrP⊗Pϑ (R(f));

− let π be a cuspidal automorphic representation of G(A). For f ∈H (G(A)), we define

Jπ(f) := TrPπ⊗Pπ
ϑπ

(π(f));

− let δ ∈ Brs(F0). For f = ⊗vfv ∈H (G(A)), we define

Jδ(f) :=
∆G

(∆H)2

∏
v

Jδ,v(fv) =
∏
v∤∞

Jδ,v(fv) · J◦δ,∞(f∞). (3.4.9)

Analogously to Proposition 3.3.6, we have the spectral and geometric expansions ([BP21,

Proposition A.2.1]) ∑
π

Jπ(f) = J(f) =
∑

δ∈Brs(F0)

Jδ(f),

valid whenever f ∈ H (G(A)) is quasicuspidal with weakly regular semisimple support (in the

analogous sense as to Definition 3.3.5), where the second sum runs over cuspidal representations

of G(A).

However, unlike the factorization

IΠ(f
′, χ) =

1

4

L (1/2,Π, χ)

∆H · ε(
1
2 , χ

2)(
n+1
2 )

∏
v

IΠ,v(f
′
v, χv)

of Proposition 3.2.2, the analogous factorization

Jπ =
1

4∆H

L (1/2,Π,1)
∏
v

Jπv

for a stable cuspidal tempered representation π of G(A) is highly nontrivial, and equivalent to the

Ichino–Ikeda conjecture for unitary groups [Zha14b, Conjecture 1.1], whose proof is completed

in [BPLZZ21]. The proof, which we briefly review in § 4.6 below (for expository purposes), goes

through a comparison of local orbital integrals Iγ,v and Jδ,v and of local spherical characters IΠv

and Iπ. We first review the main results on the local comparison, which are equally important

in the arithmetic setting.

3.5. Comparison of the local distributions.

3.5.1. Spectral matching. Let v be a place of F0. For V ∈ Vv and πVv ∈ Temp(GVv ), define a

spectral transfer factor

κ(πVv ) = κ(πVv , ψv, τ) := η′v((−1)n+1τ)(
n+1
2 ) · ηv(disc(Vn))n · ωπV

v
(−1); (3.5.1)
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this is the same as in [Zha14b, Conjecture 4.4] with the correction of [BP21a, Remark 5.52], up

to a factor ε(12 , ηv, ψ)
(n+1

2 ) .9

Let S be a finite set of places of F0. Denote VS :=
∏
v∈S Vv; for V = (Vv)v∈S ∈ VS , denote

Temp((HV
S )\GVS ) =

∏
v∈S Temp((HVv

v )\GVvv ); for πVS ∈ Temp(GVS ), set κ(π
V
S ) :=

∏
v∈S κ(πv) and

JπS := ⊗v∈SJπv . For ΠS ∈ Temp(G′S) :=
∏
v∈S Temp(G′v), let IΠS

:= ⊗v∈SIΠv .

Definition 3.5.1. We say that Hecke measures f ′S ∈ H (G′S) and (fVS )V ∈VS
∈
∏
V ∈VS

H (GVS )

match spectrally if for all V ∈ VS and all πVS ∈ Temp(HV
S \GVS ), we have

I
BC(πV

S )
(f ′S ,1) = κ(πVS )JπS (f

V
S ). (3.5.2)

3.5.2. Geometric matching. Let us first recall the matching of orbits for G′ and G; for the details,

see [Zha12, § 2.1]. Let V ∈ Vv. Orbits γ ∈ B′rs,v and δ ∈ Brs,v,V are said to match if a lift

γ′ ∈ Sv ⊂ GLn+1(Fv) of γ and a lift δ′ ∈ U(Vn+1) ⊂ GLn+1(Fv) of δ are conjugate for the adjoint

action of GLn(Fv). (This notion is independent of the choices of the lifts and of the basis of

Vn+1 giving the embedding U(Vn+1) ⊂ GLn+1(F ).) The matching relation defines a bijection (an

isomorphism of F0,v-manifolds if v is non-archimedean)

δ : B′rs,v
∼=
⊔
V ∈Vv

Brs,v,V . (3.5.3)

If S is a finite set of places of F0, by taking products we obtain a matching bijection

δ : B′rs,S
∼=
⊔
V ∈VS

Brs,S,V .

where B′rs,S :=
∏
v∈S B

′
rs,v, Brs,S,V :=

∏
v∈S Brs,v,Vv .

For the number field F0 and for V ∈ V , with the notation of (3.4.2) we have an analogous

bijection

δ : B′rs(F0) ∼=
⊔
V ∈V

Brs(F0)V . (3.5.4)

compatible with (3.5.3)

Definition 3.5.2. Let S be a finite set of places of F0. We say that Hecke measures f ′S ∈H (G′v)

and (fVS )V ∈
∏
V ∈VS

H (GVS ) match geometrically if

Iγ,S(f
′
S ,1S) = Jδ,S(f

V
S ) (3.5.5)

whenever γ ∈ B′rs,S and δ ∈ Brs,S,V match.

3.5.3. Comparison with the normalization of [Zha14b]. Let v be a place of F0. Suppose that f ′v
is related to ḟ ′v as in (3.3.14) and fv is related to ḟv as in (3.4.5). Let

cv :=
∆H′ad

1 ,v∆H′ad
2 ,v

∆G′ad,v
·
∆Gad,v

∆2
Had,v

. (3.5.6)

9To compare the last factor in (3.5.1) with [Zha14b], recall that ωΠv (z) = ωπv (z/z
c), so that ωπv (−1) = ωΠv (τ).

The absence of the factor ε( 1
2
, ηv, ψv)(

n+1
2 ), which cancels out its presence in our local Flicker–Rallis period P2,Πv ,

is helpful in Lemma 4.1.1.
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(1) By (3.2.5), (3.4.6), the Hecke measures f ′v and (fVv ) match spectrally if and only if cvḟ
′
v and

(ḟVv ) match spectrally in the sense ([Zha14b, Conjecture 4.4 and last equation on p. 566])

that

ĨΠv
(cvḟ

′
v) = κ(πVv )

D
− dimG/2
v ∆G,v

D
− dimH/2
v ζH,v(1)∆H,v

· J̃πv(ḟ
V
v ).

(2) By (3.3.15) and (3.4.7), the Hecke measures f ′v and (fVv ) match geometrically if and only if

cvḟ
′ and (ḟVv ) match geometrically in the sense of [Zha14b, (4.14)], namely

κv(γ
′)−1 Ĩγ′(cvḟ

′,1) = J̃δ(ḟv)

for all matching pairs of orbits (γ, δ).

3.5.4. Main results on the local comparisons. Each of the following is a deep result.

Proposition 3.5.3 (Equivalence of spectral and geometric matching). Let S be a finite set of

places of F0. The pairs f ′S ∈ H (G′S) and (fVS ) ∈
∏
V ∈VS

H (GVS ) match spectrally if and only if

they match geometrically.

Proof. The proof of [BPLZZ21, Lemma 4.9], based on [BP21a, BP21], applies. (As noted in

[BPLZZ21, Remark 4.10], in general this relies on [Mok15,KMSW].) Note that by § 3.5.3, the

comparisons of matchings in loc. cit., whose conventions are inherited from [Zha14b], are com-

patible with ours. □

From now on we will simply say that f ′S and (fVS ) match when they match spectrally and

geometrically. For a fixed V ∈ VS , we say that f ′S purely matches fVS if it matches (fVS , (0
V ′
)V ′ ̸=V ).

Proposition 3.5.4 (Fundamental Lemma [Yun11,BP21b]). Let v be a finite place of F0 that is

unramified in F , let V ∈ Vv be the unramified pair of hermitian spaces, and recall the unit Hecke

measures from (2.3.1).

The unit Hecke measure f ′◦v on G′v purely matches the unit measure f◦v on GVv .

Proposition 3.5.5 (Existence of matching [Zha14a, Theorem 2.6]). Let v be a finite place of F0.

For every f ′ ∈H (G′v), a matching (fV ) ∈
∏
V ∈Vv

exists; conversely, for every (fV ) ∈
∏
V ∈Vv

, a

matching f ′ ∈H (G′v) exists.

A matching result for archimedean places will be proved in § 4.3.2. We will also need to note

the following (relatively easy) fact.

Lemma 3.5.6 ([Zha14a, Proposition 2.5]). Let v = ww be a split place of Fv, and identify

Gv ∼= G′n,0 ×G′n+1,0. Then f ′v = p∗(f
′
w ⊗ f ′w) ∈H (G′v) matches fv := fw ⋆ f

∨
w ∈H (Gv).

4. Rationality

This section is dedicated to establishing the rationality of our L-values, Theorem A from the

introduction (Theorem 4.2.1 below), and a rational relative-trace formula (Proposition 4.2.2).

From now on, we assume that F0 is totally real and F is CM. In §4.1 we deal with the archimedean

computations using the Gaussian test function. In §4.2 we state the rationality theorem and the

rational relative-trace formula, and prove some easy parts. In §4.3 we study the existence of
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suitable Hecke measures: the non-archimedean components rely on later results from §§ 5-6; the

archimedean component is proved in §4.4 using an argument provided by Yifeng Liu, refining

the technique of isolating cuspidal representations in [BPLZZ21]. In §4.5, we finish the proof of

Proposition 4.2.2 and Theorem 4.2.1. In §4.6 we recall an outline of the proof of (a special case

of) the Ichino–Ikeda–Harris conjecture. Logically this is not needed for this paper, but it will

make the proof of our main Theorem D in § 12 easier to understand.

4.0.1. Notation. For a locally compact and totally disconnected group G with a fixed Haar mea-

sure dg, from now on we denote by H (G) the sheaf of smooth compactly supported OSpecQ-

multiples of dg; we will write H (G,R) := H (G)(R). (Thus the object denoted by H (G) in the

previous section will henceforth be denoted by H (G,C)).

4.1. Archimedean theory. We define some rational variant of the archimedean distributions

of the previous section. Denote G◦∞ := G
V ◦
∞∞ , H◦∞ := H

V ◦
∞∞ , B◦∞ := B∞,V ◦

∞ .

4.1.1. A product of transfer factors. Let

κ(1∞) :=
∏
v|∞

κ(1v)

be the product of (3.5.1) for the trivial representation of the positive-definite group G◦∞.

Lemma 4.1.1. For each γ′ ∈ G′reg+(F0,∞), we have κ∞(γ′)κ(1∞) ∈ {±1}.

Proof. By Lemma 3.3.4, the first factor is a square root of (−1)−(
n+1
2 )[F0:Q]; so are η′∞(τ)(

n+1
2 )

and, hence, the second factor.

□

4.1.2. Distributions on H (G′∞,C). For any tempered representation Π∞ of G′∞ and any γ ∈ B′∞,

we define

I◦Π∞(f∞, χ∞) :=
1

κ(1∞)∆H

L (1/2,Π∞, χ∞) Iπ∞(f∞, χ∞),

I◦γ(f
′
∞, χ∞) :=

∆G

∆2
H

Lγ(χ∞)Iγ(f
′
∞, χ∞).

(4.1.1)

Then the factorizations of Proposition 3.2.2 and of (3.3.12) are equivalent to

κ(1∞)−1IΠ(f
′, χ) =

1

4

L∞(1/2,Π, χ)

ε(12 , χ
2)(

n+1
2 )

∏
v∤∞

IΠv(f
′
v, χv) · I◦Π∞(f∞, χ∞),

Iγ(f
′, χ) = L∞γ (χ)

∏
v∤∞

Iγ(f
′
v, χv) · I◦γ(f ′∞, χ∞).

(4.1.2)

4.1.3. Distributions and special elements in H (G◦∞,C). For any V ∈ V∞ =
∏
v|∞ Vv, every

representation πV∞ of GV∞, and every δ ∈ B∞,V (note that GV∞ is compact and hence every orbit

is semisimple), we define variants of JπV
∞

and Jδ,∞ by



GAN–GROSS–PRASAD CYCLES AND DERIVATIVES OF p-ADIC L-FUNCTIONS 39

J◦π∞(f∞) :=

∫
HV

∞

Trπ∞(π∞(h)πv(f∞)) dh =
1

∆H

L (1/2,BC(π∞)) · Jπ∞(f∞),

J◦δ,∞(f∞) :=

∫
HV

∞

∫
HV

∞

fv(x
−1δ′y)

dxdy

dg
=

∆G

∆2
H

Jδ,∞(f∞).

(4.1.3)

Then the matching relations (3.5.2) and, respectively, (3.5.5) for S = {v|∞} are equivalent to

I◦
BC(πV

∞)
(f ′∞) =

κ(πV∞)

κ(1∞)
J◦
πV
∞
(f∞)

I◦γ,∞(f ′∞,1∞) = J◦δ,∞(fV∞).

(4.1.4)

Lemma 4.1.2. Let

f◦∞ := vol(G◦∞, dg)
−1dg ∈H (G◦∞,Q). (4.1.5)

Then:

(1) for all π∞ ∈ Temp(G◦∞), we have

J◦π∞(f◦∞) =

{
vol(H◦∞) := vol(H◦∞, dh∞) if π∞ ∼= 1

0 otherwise;
(4.1.6)

(2) for all δ ∈ G◦∞, we have

J◦δ (f
◦
∞) = vol(B◦∞)−1 :=

vol(H◦∞, dh∞)2

vol(G◦∞, dg∞)
.

Moreover, both of the above values are rational.

Proof. The calculation is immediate. The rationality follows from Lemma 2.2.1. □

4.1.4. Gaussians. Let f◦∞ = (4.1.5) be the standard Hecke measure on G◦∞ = GV◦∞ . For each

characteristic-zero field L, we put H (G◦∞, L)
◦ := Lf◦∞.

For L a subfield of C, we denote by

H (G′∞, L)
• ⊂H (G′∞,C)

the preimage of Lf∞ ⊂H (G◦∞, L)
◦ under pure matching. By Proposition 4.1.3 below, the pure

matching map

tr : H (G′∞, L)
• −→H (G◦∞, L)

◦

is surjective (here tr stands for “(smooth) transfer”). We put

H (G′∞, L)
◦ := H (G′∞, L)

•/Ker(tr),

we extend the definition to any characteristic-zero field L by H (G′∞, L)
◦ := H (G′∞,Q)◦ ⊗Q L,

and we extend the notion of matching by linearity. Elements of H (G′∞, L)
◦ are called L-rational

Gaussians. If L can be embedded into C, we also refer to an f ′∞ ∈ H (G′∞, L)
• as a Gaussian;

we say that f ′∞ is nontrivial if its image in H (G′∞, L)
◦ is nonzero.

If S is a finite set of non-archimedean places of F0, we put

H (G′S∞, L)
◦ := H (G′S , L)⊗LH (G′∞, L)

◦, H (G′(AS), L)◦ := H (G′(AS∞), L)⊗LH (G′∞, L)
◦,
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and refer to the elements of those spaces as Gaussians too.

Proposition 4.1.3 (Existence of Gaussians). The space H (G′∞,Q)◦ is nonzero.

Proof. This follows from [BPLZZ21, Proposition 4.11]. □

Lemma 4.1.4. Let f ′ be a Gaussian matching of f◦∞ = (4.1.5). Then for any γ ∈ B′ matching

an element from B◦∞, we have I◦γ(f
′,1) ∈ Q.

Proof. We recall from (4.1.1)

I◦γ(f
′,1) :=

∆G

∆2
H

Lγ(1)Iγ(f
′,1), where

from (3.3.10),

Iγ(f
′,1) = κ(γ′) Iγ′(f

′,1) = κ(γ′)
I♯γ′(f

′, χ)

Lγ′(χ)
.

Here γ′ is any plus-regular element above γ ∈ B′, and κ(γ′) is the local transfer factor.

Recall also the orbital integral J◦δ in the unitary side (4.1.3). It follows immediately that the

lemma holds If γ is regular semisimple, the lemma follows immediately from the rationality of

J◦δ (f
◦
∞) (Lemma 4.1.2 (2)) and the matching relation (4.1.4). Though the matching relation is

defined only using regular semisimple orbits, the definition implies non-trivial relations for non-

regular-semisimple orbital integrals. We record the result of Lu [Lu, Thm. 7.9, Remark 7.10]

comparing the local orbital integrals. Let f ′ ∈ H (G′∞,C) purely match an f ∈ H (G◦∞,C). If

γ ∈ B′, then
Lγ(1)

−1I◦γ(f
′,1) =

∑
δ

cδJ
◦
δ (f), (4.1.7)

where the sum runs over all semisimple orbits in the compact group G◦∞ with image γ ∈ B′, and

cδ =
∏

W∈W (γ)

cW ,

where the set W (γ) and the constants cW will be recalled next. The set W (γ) is a finite set of

positive definite C/R-Hermitian spaces W defined in loc. cit., and it can be described as follows:

the stabilizer of any semisimple δ matching γ is isomorphic to the product of the compact unitary

groups U(W ) for W ∈ W (γ). For W of dimension n′, by [Lu, §7.4 on the Lie algebra, and (7.15)

and Remark 7.10 on the group] we have

cW = vol♮(U(n′,R))−1
n′∏
i=1

ε(1− i, ηiC/R, ψ)
−1 · ε(1/2, ηC/R, ψ)n

′(n′+1)/2

× ηC/R(disc(V ′))n
′+1. (4.1.8)

Here vol♮(U(n′,R)) is the volume of the compact unitary group U(n′,R) for the normalized

measure d♮g of § 2.2.1, which is the measure in [Lu, §7.0.1] (for a suitable differential ω). The

formula for the constant cW differs slightly from [Lu] due to a few different conventions between

ours and those in loc. cit.:

− the factor
∆G

∆2
H
appears on both the GL and the unitary side, and hence our notion of matching

is equivalent to that of [Lu];
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− Theorem 7.15 in [Lu] is expressed in terms of the normalized orbital integral, and this results

into the factor Lγ(1)
−1 on the left hand side of (4.1.7);

− when defining Iγ(f
′,1), we only consider the plus-regular element γ′ with image γ ∈ B′ and

our notation has already included the transfer factor (our transfer factor is the plus-transfer

factor in [Lu]);

− our orbital integral in the unitary side is taken over the full group H◦∞ ×H◦∞, whereas in loc.

cit. the integral is taken over the quotient of the full group by the stabilizer: this results into

the volume factor in (4.1.8);

− In [Lu, (7.15)] the additional factor disappears because our choice of γ′ above γ is plus-regular

and the formula in [Lu, Thm. 7.9] simplifies to [Lu, Remark 7.10, (7.16)].

The factors in the second line in (4.1.8) are signs, hence lie in Q×. By definition, the L-factor

Lγ(1) is the product

Lγ(1) =
∏

W∈W (γ)

dimW∏
i=1

L(1− i, ηiC/R).

Therefore, to show that I◦γ(f
′,1) ∈ Q, from (4.1.7) and (4.1.8) it suffices to show that for all

n′ ≥ 1, the product

vol♮(U(n′,R))−1
n′∏
i=1

L(1− i, ηiC/R)
n′∏
i=1

ε(1− i, ηiC/R, ψ)
−1 · ε(1/2, ηC/R, ψ)n

′(n′+1)/2 (4.1.9)

lies in Q×.

By Tate’s thesis (e.g. [Tat79, §3.2]), the standard choice of ψ(x) = e2πix gives

ε(s, ηaC/R, ψ) = ia ∈ C

for all s ∈ C and a ∈ {0, 1}. In particular, we have

ε(1/2, ηC/R, ψ)
n′(n′+1)/2 = in

′(n′+1)/2.

and
n′∏
i=1

ε(1− i, ηiC/R, ψ)
−1 = i−⌊

n′+1
2
⌋

We note that n′(n′ + 1)/2 ≡ ⌊(n′ + 1)/2⌋ mod 2, and hence

ε(1− i, ηiC/R, ψ)
−1 · ε(1/2, ηC/R, ψ)n

′(n′+1)/2 = ±1. (4.1.10)

Next we note for a ∈ {0, 1},

L(s, ηaC/R) = L(s+ a,1) = π−(s+a)/2Γ((s+ a)/2)

and we have its special values

L(1− i, ηiC/R) =

 π−(1−i)/2Γ((1− i)/2), i ≥ 0 even,

π−(1−i+1)/2Γ((1− i+ 1)/2), i ≥ 0 odd.
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In both cases we have

L(1− i, ηiC/R) ∈ π
⌊i/2⌋ ·Q×, i ≥ 1. (4.1.11)

Similarly,

L(i, ηiC/R) ∈ π
−⌊(i+1)/2⌋ ·Q×, i ≥ 1. (4.1.12)

We compute the volume vol♮(U(n′,R)) of the compact unitary group. Denote by vol(U(n′,R))

the volume under the unnormalized measure dωg of § 2.2.1, then

vol♮(U(n′,R)) =
n′∏
i=1

L(i, ηiC/R) · vol(U(n′,R))

=
n′∏
i=1

L(i, ηiC/R)
n′∏
i=1

vol(S2i−1)

(by (4.1.12)) ∈
i∏
i=1

π−⌊(i+1)/2⌋πi ·Q×

=
i∏
i=1

π⌊i/2⌋ ·Q×

where vol(S2i−1) is the usual volume of the unit sphere of dimension 2i− 1. Combining this with

(4.1.11), we have

vol♮(U(n′,R))−1
n′∏
i=1

L(1− i, ηiC/R) ∈ Q×. (4.1.13)

Therefore the rationality of (4.1.9) follows from (4.1.10) and (4.1.13), and the lemma follows from

this and the rationality of J◦δ (f
◦
∞) (Lemma 4.1.2 (2)). □

4.2. Rationality statements. We state the main results of this section, whose proofs will be

completed in § 4.5.

4.2.1. Rationality of L-values. The following is Theorem A from the introduction.

Theorem 4.2.1. Let L be a number field and let Π be a trivial-weight hermitian cuspidal auto-

morphic representation of G′(A) defined over L. There is a function

L (MΠ, ·) ∈ O(YL)

such that for each χ ∈ YL(C) with underlying embedding ι : L ↪→ C,

L (MΠ, χ) =
L∞(1/2,Πι, χ)

ε(12 , χ
2)(

n+1
2 )

.

4.2.2. Special Hecke algebras. Let L be a field that is embeddable in C, let S be a finite set of

finite places of F0, and let ? ∈ {rs, reg+, ∅}. We denote by

H (G′(AS), L)◦KS ,?,qc
⊂H (G′(AS), L)◦
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the space of Gaussian measures f ′S with weakly ?-support (Definition 3.3.5; there is no condition

if ? = ∅) such that for every ι : L ↪→ C, some preimage f ′S,ιeKS
∈ H (G′(A), ιL)• of ιf ′SeKS

is

quasicuspidal.

If Π ∈ C (G′)(L) and χ ∈ Y (L), we say that a Hecke measure f ′S ∈H (G′(AS), L)◦ is adapted

to (Π, χ,KS) if (⊗v/∈SIΠv)(f
′S , χS) ̸= 0 and for every ι : L ↪→ C, some preimage f ′S,ιeKS

∈
H (G′(A), ιL)• of ιf ′SeKS

sends A (G′) into (the image in A (G′) of) Π. We denote by

H (G′(AS), L)◦KS ,?,Π,χ

the space of Gaussians with weakly ?-support that are adapted to (Π, χ,KS). When χ = 1 we

omit it from the notation.

4.2.3. Rational relative-trace formula. We introduce a variant of the distribution I and its ex-

pansions. From now on, we change the notation for the distributions I? of the previous section

by appending a superscript ‘C’, thus writing IC? in place of I?; we also write LC
? for the abelian

complex L-functions attached to orbits.

We introduce some further notation. For a finite place v of F0 and an ideal m ⊂ OF0,v , let

Yv(m) = SpecQ[F×0,v/(O
×
F0,v
∩ 1+mOF0,v)], viewed as the space of characters of the group within

square brackets. Let Yv := lim−→r
Yv(v

r). For the sake of uniformity, we will denote H (G′v, L)
◦ :=

H (G′v, L) if v ∤∞, and Y∞ := SpecQ.

In the rest of the paper, unless otherwise noted all products ‘
∏
v’ run over the union of the

set of finite places v of F0 and {v = ∞}. If H is a Hecke algebra over a field L and Y is an

ind-scheme over L, an L-linear functional D : H → O(Y ) will be called a distribution.

Proposition 4.2.2. Let L be a field that can be embedded in C. There exist:

(1) for each finite place v of F0 and for v = ∞, and for each tempered irreducible admissible

representation Πv of G′v over L, a distribution

IΠv : H (G′v, L)
◦ −→ O(Yv,L)

characterized by

IΠv(f
′
v, χv) =

 ICιΠv
(ιf ′v, χv) if v ∤∞

I◦,CΠ∞
(f ′∞, χv) if v =∞

for each χv ∈ Yv,L(C) with underlying embedding ι : L ↪→ C;

(2) for each representation Π ∈ C (G′)her over L as in Theorem 4.2.1, a distribution

IΠ : H (G′(A), L)◦ −→ O(YL)

defined on factorizable elements f ′ = ⊗v∤∞f ′v ⊗ f ′∞ by

IΠ(f
′, χ) =

1

4
L (MΠ, χ) ·

∏
v

IΠv(f
′
v, χv). (4.2.1)

(3) for each finite place v of F0 and for v =∞, and each γ ∈ B′v, a distribution

Iγ,v : H (G′v, L)
◦ −→ O(Yv,L[

√
−1])
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characterized by

Iγ,v(f
′
v, χv) =

 ICγ,v(ιf
′
v, χv) if v ∤∞

I◦,Cγ,v (ιf ′v, χv) if v =∞

for each χv ∈ Yv,L[√−1](C) with underlying embedding ι : L[
√
−1] ↪→ C.

(4) for each γ ∈ B′(F0)
◦ := B′(F0) ∩B′◦∞,

(a) an element Lγ ∈ O(Y ), characterized by Lγ(χ) = L∞,Cγ (χ) (the L-function without

archimedean local L-factors) for every χ ∈ Y (C);

(b) a distribution

Iγ = κ(1∞)−1 · Lγ ·
∏
v

Iγ,v : H (G′(A), L)◦ −→ O(YL)

where the product is locally finite.

(5) a distribution

I : H (G′(A), L)◦reg+,qc −→ O(YL)

admitting the spectral and geometric expansions∑
Π∈C (G′)her

IΠ = I =
∑

γ∈B′(F0)

Iγ

where both sums are locally finite.

Remark 4.2.3. It should be possible to interpret the rational distribution I as the inner product of

analogues of P1,χ, P2 in the rational Betti homology (in complementary degrees) of the symmetric

space for G′.

We prove Proposition 4.2.2 (1)-(4); the proof of part (5) is deferred to § 4.5.

Proof of Proposition 4.2.2 (1)-(4). We need to show the existence of various distributions.

Archimedean distributions. Suppose that f ′∞ is an L-rational Gaussian matching f∞ = cf◦∞ ∈
H (G◦∞, L). Then by Lemma 4.1.2, Lemma 4.1.4, and (4.1.4), we may define

IΠ∞(f ′∞,1) :=

 c vol(H◦∞) if Π∞ ∼= Π◦∞

0 otherwise,

Iγ(f
′
∞) :=

 cI◦γ(f
′◦,1) if γ ∈ B′◦∞,

0 otherwise,

for any Gaussian f ′◦ matching f◦, where the orbital integral is rational by Lemma 4.1.4.

Orbital integrals. Suppose v is non-archimedean. Then part (3) of Proposition 4.2.2 follows from

Proposition 3.3.2 (3b) together with Lemma 3.3.4.

Part (4a) is a well-known rationality theorem of Klingen and Siegel [Sie70]. Part (4b) then

follows from part (3) and Proposition 3.3.2 (2), together with (3.3.9) and Lemma 4.1.1 for the

elimination of
√
−1 from the field of rationality.
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Local spherical character. It suffices to show that P1,Πv ,χv(Wv), P2,Πv(W
′
v) and ϑΠv(Wv,W

′
v) are

polynomials, with L-coefficients, in the values of Wv and χv. The rationality in Wv is observed

in Remark 3.2.1. Then we only need to consider the function χv 7→ P1,Πv ,χv(Wv). Let Y
′
v be the

ind-finite scheme over L of smooth characters of O×F0,v
; then χ 7→ χv|O×

F,0,v
gives an exact sequence

of ind-group-schemes 1 → Y ◦v → Yv → Y ′v → 1 where Y ◦v
∼= Gm,L parametrizes unramified

characters of F×0,v. Thus locally we may reduce to proving the desired result when χv is restricted

to Y ◦v at the cost of replacing Πv by (one of locally finitely many) ramified twists. In this case,

that P1,Πv is a polynomial in Y ◦v and the values of Wv is one of the main results of [JPSS83],

whose proof considers unramified characters of the form | · |sv but goes through in our context. □

4.3. Test Hecke measures. We now give some key results asserting the existence of suitable

Hecke measures.

4.3.1. Test measures at finite places. Let v be a finite place of F0 and let L be a field that can be

embedded into C. A character ξ′ = ξ′1 ⊠ · · ·⊠ ξ′ν : (F
×
w )ν → C× is called regular if the characters

ξ′i are pairwise distinct. A regular principal series representation of G′v is a representation Πv =

Πn,v ⊠ Πn+1,v such that for ν = n, n + 1, all places w|v, and any ι : L ↪→ C× the representation

Πν,w := Πν,v|GLν(Fw) is unitarily induced from a regular character of the diagonal torus.

Proposition 4.3.1. Let Πv be a hermitian (§ 2.4.1) tempered representation of G′v over L, and

let χv be a smooth character of F×0,v with values in some finitely generated extension L′ of L. For

? ∈ {∅, reg±}, denote by

H (G′v, L)?,Πv ,χv

the set of those f ′v ∈H (G′v, L) that are supported in G′?,v, and satisfy IΠv(f
′
v, χv) ̸= 0.

(1) We have H (G′v, L)Πv ,χv ̸= ∅.

(2) If Πv and χv are unramified, then f ′◦v ∈H (G′v, L)Πv ,χv .

(3) If v splits in F and Πv is a regular principal series, for every choice of sign ± there exists

f ′± ∈H (G′v, L)reg±,Πv ,χv
.

whose matching f± ∈ H (Gv, L) is invariant under a deeper Iwahori subgroup. If moreover

Πv is unramified, we can take f ′± to match an f± ∈ H (Gv, L) that is bi-invariant under an

Iwahori subgroup.

The proof of part (3) relies on some explicit results from later sections. (In fact, see § 5.1.4 for

a definition of Iwahori subgroups.)

Proof. We omit all subscripts v.

(1) Let K ⊂ G′ be an open compact subgroup. The restriction of IΠ(·, χ) to H (G′)K is the inner

product, for the natural pairing, of the elements

P1,Π,χ|ΠK ◦Π(·) ∈ ΠK,∨ ⊗L L′, P2|Π∨,K ∈ (Π∨,K)∨ ∼= ΠK .

Now if K is sufficiently small, both P1,Π,χ|ΠK and P2|Π∨,K are nonzero – the former by the

theory of [JPSS83], the latter because Π, hence Π∨, is hermitian. Since ΠK is irreducible as
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an H (G′, L)K-module, there exists an f ′L′ ∈ H (G′, L′)K such that P1,Π,χ|ΠK ◦ Π(f ′L′) and

P2|Π∨,K do not pair to zero. Fix an embedding ι : L′ ↪→ C. If ι(L) is not contained in R,

then it is dense in C, and any f ′ ∈H (G′, L)K that is sufficiently close to f ′L′ in the topology

induced from C by ι will also have the desired nonvanishing property. If ι(L) is contained

in R, note that one of Re ιf ′L′ , Im ιf ′L′ has the nonvanishing property, and then so does any

sufficiently close f ′ ∈H (G′, L)K (for the topology induced from R by ι).

(2) This follows from Remark 3.2.1.

(3) This will be proved at the end of § 6.1 based on an explicit construction from § 5.3.4.

□

4.3.2. Test Gaussians. For a pure tensor f ′S∞ = f ′Sf
′
∞ ∈H (G′S∞, L)

◦, we define f ′ιS∞ := ιf ′Sf
′ι
∞,

and extend this definition to all of H (G′S∞, L)
◦ by linearity.

Proposition 4.3.2. Let Π be a trivial-weight hermitian cuspidal automorphic representation of

G′(A) over a field L admitting embeddings into C, let K =
∏
v∤∞Kv ⊂ G′(A∞) be an open

compact subgroup such that ΠK ̸= 0, and let P be a finite set of non-archimedean places of F0

containing all those for which Kv is not maximal.

There exist a finite set S of split non-archimedean places of F0 disjoint from P , and Gaussians

(f ′ιS∞)ι ∈
∏

ι : L↪→C

H (G′S∞, ιL)
•
KS
, f ′S∞ ∈H (G′S∞, L)

◦
KS

such that for every ι : L ↪→ C:

(1) the image of f ′ιS∞ in H (G′S∞, ιL)
◦
KS

equals ιf ′S∞;

(2) IΠι
S∞

(f ′ιS∞, χS∞) ̸= 0 for every unramified character χS∞ : F×0,SF
×
0,∞/F

×
0,∞ → C×;

(3) R(f ′ιS∞) maps A (G′)K into (Πι)K . (In particular, for any f ′S∞ ∈ H (G′, ιL)KS , the Hecke

measure f ′S∞f ′ιS∞ is quasicuspidal.)

The proof will be given in § 4.4.

Lemma 4.3.3. Let Π be a representation in C . There exist infinitely many places v of F0 that

are split in F such that Πv is an unramified regular principal series.

Proof. This follows from the similar observation about Πν made in the proof of [CH13, Proposition

3.2.5]. □

Corollary 4.3.4. Let Π be a trivial-weight hermitian cuspidal automorphic representation of

G′(A) over a field L admitting embeddings into C, and let χ ∈ YL. Let P be a finite set of

nonarchimedean places of F0 and let KP ⊂ G′P be a compact open subgroup such that ΠKP
P ̸= 0.

For ? ∈ {reg+, reg−, rs}, there exist L-rational Gaussians f ′P? ∈ H (G′(AP ), L)◦KP ,?,Π,χ
with

weakly ?-support that are adapted to (Π, χ,KP ) (in the sense of § 4.2.2).

Proof. In fact we construct an f ′P that has at the same time plus-regular support (at one place)

and minus-regular support (at another place), hence weakly semisimple regular support since

G′rs = G′reg+ ∩ G′reg− . (The construction can of course be simplified if only one of those two

properties is desired.) Let R be the set of all finite places of F0 at which Π or χ is ramified. Let
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v+, v− be two distinct finite places of F0, split in F , not in P ∪ R, such that Πv± is a regular

principal series and χv± is unramified. Let f ′±,v± be as in Proposition 4.3.1 (3), and for v ∈ R
let f ′v be as in Lemma 4.3.1 (1). Let f ′S∞ be as given by Proposition 4.3.2 for the set of places

P ′ = P ∪ R ∪ {v+, v−}, and any level K that is maximal away from P ′ and sufficiently small at

the places in R ∪ {v+, v−}. Then

f ′P = f ′+,v+f
′
−,v−f

′
S∞

∏
v∤PS∞

f ′◦v

is as desired. □

4.4. Isolation of cuspidal representations via Gaussians. In this subsection, we prove

Proposition 4.3.2.

We will refine the arguments of [BPLZZ21], of which the reader is invited to open a copy.

Briefly, in order to construct the desired f ′S∞ we will start from a Gaussian f ′1,S′∞ constructed

in a simple way as a pure tensor, and then correct f ′1,S′∞ by acting on it by a carefully chosen

multiplier of the Hecke algebra for G′(A).

The substance of this subsection was generously provided to us by Yifeng Liu. Of course, any

defects in the following pages are to be attributed to the authors only.

4.4.1. Archimedean multipliers annihilating non-strongly typical cuspidal data. We momentarily

consider the more general situation of [BPLZZ21, § 3.2]. Consider a connected reductive algebraic

group G over a number field F0. We freely adopt notation from [BPLZZ21, § 3], up to cosmetic

modifications to adapt to our conventions (for instance, in loc. cit. the algebraic group is denoted

by G rather than G). Take a unitary automorphic character ω : Z(A)→ C×. We fix

− a subset P of primes of F0 containing SG, and a character

ξ = (ξ∞, ξ
P∞) : Z(g)×H sph(G(AP∞)) −→ C,

where the second factor is the spherical Hecke algebra with respect to some choices of hyper-

special levels away from P (thus ξ is a P -character for G in the sense of [BPLZZ21, Definition

3.3]);

− a finite set S of primes of F satisfying SG ⊆ S ⊆ P ;
− a subgroup K ⊆ K∞0 of finite index of the form K = KS ×

∏
v ̸∈SK0,v.

The following definition is modified from [BPLZZ21, Definition 3.11]; the set C(M, ω)♡, con-

sisting of classes of cuspidal automorphic representations of M(A), is defined ibid. p. 550.

Definition 4.4.1. Let M ⊂ G be a standard Levi subgroup. We say that a σ ∈ C(M, ω)♡

is strongly ξ∞-typical if γM(ξσ∞) ⊆ γM(ξ∞). We denote by C(M, ω)♡ξ∞! the subset of C(M, ω)♡

consisting of strongly ξ∞-typical elements.

It is clear that the set C(M, ω)♡ξ∞! of strongly ξ∞-typical elements is a subset of C(M, ω)♡ξ∞ ,

the set of ξ∞-typical elements defined in loc. cit. The following lemma slightly strengthens

[BPLZZ21, Lemma 3.14], whose notation we simplify by putting

M∞ :=M♯
θ(h
′∗
C)

W
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for the Weyl-fixed elements of the space of holomorphic functions from [BPLZZ21, Definition 2.8].

We fix an element µ0∞ and a finite set T of KG
0,∞-types as described after [BPLZZ21, Definition

3.11].

Lemma 4.4.2. For every standard Levi subgroup M ⊂ G, there exists an element

µM∞ ∈M∞

satisfying:

− µM∞(ξ∞) ̸= 0,

− for every open compact KM ⊂ M(A∞) and every finite set TM of KM
0,∞-types satisfying the

conditions following [BPLZZ21, Definition 3.11] with respect to (µ0∞,T), for every non-strongly

typical

σ ∈ C(M, ω;KM,TM)♡ − C(M, ω)♡ξ∞!

and every s ∈ a∗M,C, we have

µM∞(ξGσs,∞) = 0.

Here, ξGσs,∞ is the infinitesimal character of IndGPM
(σs,∞).

Proof. By Definition 4.4.1, it is easy to see that for each element σ ∈ C(M, ω;KM,TM)♡ −
C(M, ω)♡ξ∞!, there exists a W-invariant polynomial function νσ on h∗C satisfying νσ(ξ∞) ̸= 0 and

νσ(ξ
G
σs,∞) = 0 for every s ∈ a∗M,C. By [BPLZZ21, Lemma 3.14], we have an element νM∞ ∈

M♯
θ(h
∗
C)

W satisfying the similar property but with C(M, ω)♡ξ∞! replaced by C(M, ω)♡ξ∞ . Now by

[BPLZZ21, Lemma 3.13], the set

C′ := C(M, ω;KM,TM)♡ ∩
(
C(M, ω)♡ξ∞ − C(M, ω)♡ξ∞!

)
is finite. Thus, we may take

µM∞ := νM∞ ·
∏
σ∈C′

νσ.

□

The following is a direct analogue of [BPLZZ21, Proposition 3.15] in terms of Lemma 4.4.2;

the background is the Langlands decomposition

L2(G(F0)\G(A), ω) =
⊕̂

(M,σ)∈D(G,ω)♡
L2
(M,σ)(G(F0)\G(A), ω)

of (3.1) ibid. in terms of a set D(G, ω)♡ of classes of cuspidal data.

Proposition 4.4.3. There exists µ∞ ∈M∞ such that

− µ∞(ξ∞) = 1;

− for every cuspidal datum (M, σ) for G′ that does not belong to D(G, ω,K,T)♡ξ∞! and for every

f ∈ H (G(A),C)K , the endomorphism R(µ∞ ⋆ f) of L2(G(F0)\G(A)/K, ω) annihilates the

subspace L2
(M,σ)(G(F0)\G(A)/K, ω).

4.4.2. Multipliers annihilating strongly typical cuspidal data for a proper Levi subgroup. We now

specialize back to the setup of Proposition 4.3.2. We denote by ξ◦∞ the infinitesimal character of
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Π◦∞. We still freely use terminology and notation from [BPLZZ21, § 3] where not in conflict with

ours.

Lemma 4.4.4. Let (M, σ) ∈ C(M, 1) satisfy

ξG
′

σ,∞ = ξ◦∞.

Then for every finite place v at which σv is unramified, the Satake parameters of σv are algebraic.

Proof. We start with some preliminaries. If Mν is a Levi subgroup of GLν/F of type (a1, . . . , ar),

put ψMν
:= ⊠r

i=1| det |
ν−ai

2 . If σν is a representation of Mν(A), denote σ♮ν := σν⊗ψMν . We extend

the definitions to the case of Levi subgroups of G′ in the obvious way. For M a Levi subgroup of

G′ and σ a cuspidal automorphic representation of M(A), let ⊞ be the isobaric sum introduced

(for general linear groups) in [Clo90, p. 85], and let ⊞T be the twisted version ⊞Tσ := ⊞σ♮ of

[Clo90, Définition 1.9]. The operation ⊞T preserves fields of rationality and induces the direct

sum operation on infinity types [Clo90, Lemme 3.9 (ii)].

Let a◦∞ be the infinity type associated with ξ◦∞, which is regular ([Clo90, Définition 3.12]).

Since any direct summand of a◦∞ is also regular, it follows that σ♮ is regular algebraic. Thus by

[Clo90, Théorème 3.13], it is defined over a number field. It follows that its algebraic twist σ has

algebraic Satake parameters. □

For a characteristic-zero field L, define Tspl,P
L ⊂ H (G′(Ap∞), L)∏

v∤pK
◦
v
to be the spherical

Hecke algebra of elements supported at a set of places of F0 split in F and disjoint from P . If

L is a subfield of C, defineM∞,L to be the L-linear subspace ofM∞ consisting of those µ such

that µ(ξ◦∞) ∈ L. We put

Mspl,P
L := H spl,P

L ⊗LM∞,L,

which is stable under multiplication and preserves H (G′(A), L)◦K . We have a surjective map

[−]◦ :Mspl,P
L −→ T′spl,PL

µ 7−→ [µ]◦

given by the evaluation at ξ◦∞. It is clear that the action of Mspl,P
L on H (G′(A), L)◦ factors

through [−]◦.
We denote by CK ⊂ C the subset consisting of those Π′ with Π′K ̸= 0.

Lemma 4.4.5. Let Π′ ∈ CK(C) and let (M, σ) be a strongly ξ◦∞-typical cuspidal datum for G′

with

M ̸= G′.

Denote by Q the algebraic closure of Q in C.

There exists an element µ ∈Mspl,P

Q
satisfying:

− for every f ′ ∈ S(G′(A),C)K , the endomorphism R(µ⋆f ′) of L2(G′(F0)\G′(A)/K) annihilates

the subspace L2
(M,σ)(G

′(F0)\G′(A)/K);

− µ(ξPΠ′) = 1.
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Proof. We refine the argument in the proof of [BPLZZ21, Proposition 3.17].10 Denote by L′ ⊂ Q

the field of definition of Π′. Note that the subspace a∗M ⊆ h′∗ has a natural model a∗M,Q ⊆ h′∗Q
over Q. We fix a rational splitting map ℓ : h′∗Q → a∗M,Q and an element α ∈ ξ◦∞. By Ramakrish-

nan’s Proposition 2.5.2, for every w ∈ W′, there is a finite place v[w] /∈ P of F0, split in F , such

that ξG
′

σsw,v[w]
̸= ξv[w] where sw := ℓ(wα)− ℓ(α) ∈ a∗M,Q.

This allows us to choose an element νw ∈H (G′v[w], L
′)K′

v[w]
such that

νw(ξv[w]) ̸= νw(ξ
G′
σsw,v[w]

).

By the process in the proof of [BPLZZ21, Proposition 3.17], it suffices to show that for every

w′ ∈ W′, the value νw(ξ
G′
σsw′ ,v[w]

) is algebraic. By Lemma 4.4.4, the Satake parameters of σw′,v[w]

are algebraic numbers. Since sw′ ∈ a∗M,Q, it follows that the Satake parameters of σsw′ ,v[w] are all

algebraic numbers as well, which implies that νw(ξ
G′
σsw′ ,v[w]

) is algebraic. □

We now extend the result to a finite set of cuspidal data and descend it to Q. For µ ∈Mspl,P

Q

and τ ∈ Gal(Q/Q), we denote by τ.µ ∈Mspl,P

Q
a chosen lift of τ([µ]◦).

Proposition 4.4.6. Let D be a finite set of strongly ξ◦∞-typical cuspidal data for G′ such that

M ̸= G′

for every (M,σ) ∈ D. Then there exists a collection

(µιD)ι ∈
∏

ι : L↪→C

Mspl,P
ιL

satisfying:

(1) for every f ′ ∈ S(G′(A),C)K , every ι : L ↪→ C, and every (M,σ) ∈ D, the endomorphism

R(µ ⋆ f ′ι) of L2(G′(F0)\G′(A)/K) annihilates the subspace L2
(M,σ)(G

′(F0)\G′(A)/K);

(2) there exists a [µD]
◦ ∈ T′spl,PL such that [µιD]

◦ = ι[µD]
◦ for every ι : L ↪→ C;

(3) µιD(ξ
P
Πι) = 1 for every ι : L ↪→ C.

Proof. We denote the elements of D simply by σ in order to lighten the notation. For each

ι : L ↪→ C and each σ ∈ D, let µσ,ι be as provided by Lemma 4.4.5 applied to σ and Πι. Let L′

be a Galois extension of Q in C containing ιL and the fields of definition of µσ,ι for every σ ∈ D

and every ι : L ↪→ C. Now take the collection

µιD :=
∏

τ∈Gal(L′/Q)

∏
σ∈D

τ.µσ,τ−1ι.

We verify that it satisfies the desiderata. The first one is enforced by the factors with τ = 1.

For the second one, by Galois theory we need to check that for each τ ′ ∈ Gal(L′/Q), we have

τ ′.µιD = µτ
′ι

D : indeed, by a change of variables

τ ′([µιD]
◦) =

∏
τ∈Gal(L′/Q)

∏
σ∈D

τ ′τ([µσ,τ−1ι]
◦) =

∏
τ∈Gal(L′/Q)

∏
σ∈D

τ([µσ,τ−1τ ′ι]
◦) = [µτ

′ι
D ]◦.

10With respect to the notation of loc. cit., we omit the central character ω, which in our setup is necessarily trivial.
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For the third property, it suffices to note that by construction we have

τ.µσ,τ−1ι(ξ
P
Πι) = τ(µσ,τ−1ι(ξ

P
Πτ−1ι)) = 1

for each τ and σ. □

4.4.3. Proof of Proposition 4.3.2. Let f ′1,∞ ∈ H (G′∞,Q)• be a nontrivial rational Gaussian,

which exists by Proposition 4.1.3. By Proposition 2.5.2, we can find a finite set S1 of split places

of F0, disjoint from P and the ramification set of Π, and an

f ′1,S1
∈H (GS1 , L)KS1

,

such that Π(f1,S1) ̸= 0 and Π′(f1,S1) = 0 for every Π′ ∈ CK,L − Π. For each ι : L ↪→ C, let

f ′ι1 = ιf ′1,S1
⊗ f ′1,∞ ⊗⊗v/∈S1∞f

◦
v .

Let µ∞ and D = D(G, ω,K,T)♡ξ∞! be as provided by Proposition 4.4.3; the set D is finite and

it consists of of strongly ξ◦∞-typical cuspidal data for G′. Let (µιD)ι, [µD]
◦ be as provided by

Proposition 4.4.6 for D. Let

(f ′ι) := µιD ⋆ µ∞ ⋆ f ′ι1 , f ′ := [µD]
◦ ⋆ [µ∞]◦ ⋆ f ′1

By construction, there is a set of split places S ⊃ S1 disjoint from P such that for ? = ι, ∅, we
have f ′? = f ′?S∞ ⊗⊗v/∈Sf◦v for some

f ′ιS∞, f ′S∞

that satisfy the desired properties. The proof is complete.

4.5. Proofs of the rationality statements. We will prove Proposition 4.2.2 (5) (recall that

the other parts were proved at the end of § 4.2) and, as an interlude, Theorem 4.2.1.

4.5.1. Global distribution. The global orbital-integral distributions Iγ of part (4) are well-defined

and we may define the distribution I of part (5) by its asserted geometric expansion:

I :=
∑

γ∈B′(F0)

Iγ .

We show the sum is locally finite. We may assume that f ′ factors as f ′ = f ′∞⊗f ′∞. By definition,

the sum is supported in B′(F0) ∩ B′◦∞. The invariant map (3.3.2) sends B′ isomorphically to an

closed subvariety of the affine space ResF/F0
A2n+1. Let Ω∞ ⊂ (A∞F )2n+1 be the image of the

support of f ′∞ ∈ H (G′(A∞)), which is compact. Let Ω∞ ⊂ F 2n+1
∞ be the image of B′◦∞. By

definition, this is contained in the image of the positive-definite unitary group G◦∞ under the

invariant map, which is compact. Therefore the support of the sum is in bijection with a subset

of the set F 2n+1 ∩Ω∞Ω∞; as the first intersecting set is discrete and the second one is compact,

the intersection is finite.

By construction, I has the geometric expansion asserted in part (5); by Prop. 3.3.6, it satisfies

I(f ′, χ) = κ(1∞)−1IC(f ′ι, χ) (4.5.1)

for any χ ∈ YL(C) with underlying embedding ι : L ↪→ C, and any f ′ι ∈ H (G′(A),C)•reg+,qc
mapping to ιf ′.
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Remark 4.5.1. By linearity, we may extend the distributions I, IΠ, Iγ to distributions (de-

fined over Q or, for IΠ, the field of definition of Π) on the space of locally constant functions

ℓ : F×0 \A×/F
×
0,∞ → L, in such a way that for every γ′ ∈ G′rs(F0) with image γ ∈ B′rs(F0) and

every f ′∞ ⊗ f ′∞ ∈H (G(A), L)◦, we have

Iγ(f
′, ℓ) =

Iγ(f
′
∞)

κ(1∞)κ∞(γ′,1)

∫
H1(A∞)

∫
H2(A∞)

f ′∞(h−11 γ′h2)ℓ(h1)η(h2)
d♮h1d

♮h2
d♮g

,

where d♮x :=
∏
v∤∞ d

♮xv, and the integral reduces to a finite sum.

4.5.2. L-function. We are now ready to prove the rationality of L .

Proof of Theorem 4.2.1 (= Theorem A). For χ ∈ Y , consider the set H (G′(A∞), L)◦reg+Π,χ of

Gaussians with weakly plus-regular support that are adapted to (Π, χ) in the sense of § 4.2.2. It

is non-empty by Corollary 4.3.4. For any χ ∈ YL and f ′ ∈H (G′(A∞), L)◦rs,Π,χ, we define

L (MΠ, ·)f ′ :=
4 · I(f ′, ·)

(⊗vIΠv)(f
′
v, ·)

away from the zeros of the denominator. Then for any χ ∈ YL(C) with underlying ι : L ↪→ C and

any f ′ι as in § 4.2.2, we have

L (MΠ, χ)f ′ =
4 · ICΠι(f ′ι, χ)

κ(1∞)(⊗v∤∞ICΠι
v
⊗ I◦,CΠ◦

∞
)(f ′ι, χ)

=
L∞(1/2,Πι, χ)

ε(12 , χ
2)(

n+1
2 )

where the first equality is (4.5.1), and the second one is (4.1.2). Thus the functions L (MΠ, ·)f ′
glue to the desired L (MΠ, ·).

□

4.5.3. Spectral expansion. We define

IΠ :=
1

4
L (MΠ) ·

∏
v

IΠv

Then the spectral expansion of part (5) of Proposition 4.2.2 follows from the definition, Proposi-

tion 3.3.6, and (4.5.1). This completes the proof of the proposition.

4.6. On the Ichino–Ikeda conjecture. For expository purposes, we recall an outline of the

proof of the following special case of the Ichino–Ikeda–Harris conjecture (in its most general form,

the conjecture is now [BPCZ22, Theorem 1.1.6.1]), paying special attention to the rationality.

The basic architecture of the proof of Theorem D in § 12 will be similar.

Let V ∈ V ◦,+ be a coherent pair, let H = HV ⊂ G = GV , and let A (G)◦ := Q[G(F0\G(A)/G(F0,∞)],

which is equipped with the Petersson product with respect to the measure dg. Let π be a cuspidal

automorphic representation of GV (A), trivial at infinity, over a number field L. Upon choosing an

embedding in Hom(π,A (G)◦L) (which is an L-line by [KMSW], see [LTX+22, Proposition C.3.1

(2)]) we have an H-period

Pπ : π −→ L (4.6.1)
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defined as in (3.4.8) (where the integration reduces to a finite sum). The unique embedding

π∨ ↪→ A (G)◦L that intertwines the natural duality π × π∨ → L with the Petersson product gives

rise to the analogous period Pπ∨ : π∨ → L.

Theorem 4.6.1. Assume that π is stable and cuspidal, and let Π := BC(π). Then for all ϕ ∈ π,
ϕ′ ∈ π∨, we have

Pπ(ϕ)Pπ∨(ϕ′) =
1

4
L (MΠ, 0) · α(ϕ, ϕ′).

We need a lemma to isolate π within the discrete automorphic spectrum.

Lemma 4.6.2. Let L be a characteristic-zero field and let V ∈ V ◦. Let Σ be a finite set of

isomorphism classes of discrete irreducible automorphic representations of GV (A) over L, trivial

at infinity (Remark 2.5.8). Let π ∈ Σ and assume that π = π ⊗L L for some representation π

over L. Let P be a finite set of places of F0 containing all places at which π is ramified. Then

there is a finite set S of split places of F0, disjoint from P , a hyperspecial subgroup KS ⊂ GVS ,

and an fS ∈H (GVS , L)KS
, such that

π(fS) = idπ, π′(fS) = 0 for all π′ ∈ Σ with BC(π′) ̸= BC(π).

Proof. We view L ↪→ C by fixing any embedding. By Remark 2.5.8, we have a set Σ′ =

{BC(π′) | π′ ∈ Σ} of isomorphism classes of isobaric, trivial-weight automorphic representa-

tions of G′(A) over L; moreover BC(π) descends to a representation Π := BC(π) over L. By

Proposition 2.5.2 and Remark 2.5.8, there are a finite set of split places S disjoint from P ,

and an f ′S ∈ H (G′S , L)K′
S
(for K ′S = G′(OF0,S

)), satisfying Π(f ′S) = id and Π′(f ′S) = 0 for all

Π′ ∈ Σ′ − BC(π). Then the fS ∈H (GVS , L) matching f ′S satisfies the desiderata. □

Proof of Theorem 4.6.1. (For more details on the argument, see the proof of Theorem D in § 12.)

The formula extends by bilinearity to any τ ∈ π⊗ π∨, and by multiplicity one if suffices to prove

it for any τ not annihilated by α.

By Corollary 4.3.4 (with χ = 1 and P = ∅) and Lemma 4.6.2 (with P a set of places such that

the Gaussian produced by Corollary 4.3.4 is spherical away from P∞), together with the explicit

matching at split place of Lemma 3.5.6, we may construct matching Gaussians f ′ ∈H (G′(A), L)◦

and f ∈ H (G(A), L)◦ with weakly regular semisimple support that are adapted to Π = BC(π)

and, respectively, π. Then for all v and matching γ ∈ B′rs(F0,v), δ ∈ Brs(F0,v),

Iγ(f
′
v) = Jδ(fv)

so that by (3.3.12) and (3.4.3),

Jπ(f) = J(f) =
∑

δ∈Brs(F0)◦

Jδ(f) =
∑

γ∈B′
rs(F0)

Iγ(f
′) = I(f ′) = IΠ(f

′),

where B′rs(F0)
◦ = B′rs(F0)∩B′(F0)

◦. By the factorization of IΠ in Proposition 3.2.2 and the local

spectral matching (together with the fact that
∏
v κ(π

V
v ) = 1), we have

Jπ(f) = IΠ(f
′) =

1

4∆H
L (1/2,Π) · ⊗vJC

πv(f) =
1

4
L (MΠ,1) · ⊗v∤∞JπvJ

◦
π∞(f),
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where we have used the definitions of J◦π∞ in (4.1.3)and of L (MΠ) in Theorem 4.2.1. This is

equivalent to the desired formula for τ = π(f). □

5. p-adic spherical characters

This section and the next one contain the local results needed, at p-adic places, in order to

develop the p-adic relative-trace formula; in particular, the construction of a suitable family of

Hecke measures. Remarkably, suitable members of these families can be used at any (split) place

as the regular local test measures needed to prove the results of § 4.3.

Throughout this section, we fix a non-archimedean place v of F0 and work in a local situation,

dropping all subscripts v. We denote by O the ring of integers of the étale F0-algebra F , by O0 the

ring of integers of F0, by ϖ ∈ O0 a chosen uniformizer, and we let q0 := |O0/ϖO0|, q := |O/ϖO|.

5.1. Group-theoretic preliminaries. We introduce some notation and the group-theoretic

foundations for the construction of the p-adic distribution.

5.1.1. Notation. If v splits in F , we fix an isomorphism F ∼= F0 × F0 and we expand our list of

groups to include

G̃′0 := G′n,0 ×G′n+1,0, H ′1,0 := G′n,0,

so that G̃′ = G̃′0 × G̃′0 and H ′1 = H ′1,0 ×H ′1,0. We may then write elements of G′ = G̃′/(F×0 )2 as

[g1; g2] with gi ∈ G̃′0.
We will denote all conjugation actions by

xg := g−1xg.

Convention. Throughout this section, for ν ∈ {n, n + 1, ∅} and ∗ ∈ {∅, 0} we will define various

subgroups and elements□ν,∗ ofG
′
ν,∗ (or G̃

′
0 for this ‘pair’ of subscripts). Unless otherwise specified,

we will define □ν,∗ in a way that makes sense for ν = n, n+1, and tacitly stipulate that □∗ is the

product of □n,∗ and □n+1,∗, if ∗ = 0, or its image via G̃′ → G′ if ∗ = ∅. For the sake of uniformity,

we introduce the notation

Ġ′0 := G̃′0, Ġ′ := G′.

5.1.2. Some subgroups. The lattice Oν
∗ ⊂ Fn∗ induces an integral model for G′ν,∗ over O0, still

denoted by G′ν,∗. Let Tν,∗ ⊂ G′ν,∗ denote the diagonal torus, and let Wν,∗ be the associated Weyl

group, identified with the permutation matrices in G′ν,∗. We denote by

wν,∗ ∈Wν,∗

the antidiagonal matrix (wν,∗)ij = δi,ν+1−j .

5.1.3. On the torus in G′ν,∗. We denote by Nν,∗ ⊂ G′ν,∗ the set of upper-triangular unipotent

matrices and by

N◦ν,∗ := Nν,∗ ∩G′ν,∗(O0).
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Let T+
ν,∗ ⊂ Tν,∗ be the sub-monoid consisting of those t such that N◦,tν,∗ := (N◦ν,∗)

t ⊂ N◦ν,∗, and

T++
ν,∗ ⊂ T+

ν,∗ the multiplicative subset ot those t such that⋂
r≥1

N◦,t
r

ν,∗ = {1}.

Concretely, T+
ν,∗ (respectively T

++
ν,∗ ) consists of matrices diag(t1, . . . , tν) with ti ∈ F×∗ and v(ti/ti+1) ≥

0 (respectively > 0) for all 1 ≤ i ≤ ν − 1.

The group Tν,∗ is equipped with the involution

ι : t 7−→ w−1ν,∗t
−1wν,∗,

which preserves T+
ν,∗ and T

++
ν,∗ . We still denote by ι the resulting involution on Qp[Tν,∗].

We identify Zν with the space of cocharacters of Tν,∗ via

λ 7−→ [x 7−→ xλ := diag(xλ1 , . . . , xλν )] ∈ Tν,0 ⊂ Tν,∗,

where the inclusion is diagonal.

We fix the elements

tν,∗ := ϖ(ν−1,...,0) ∈ T++
ν,∗ , zν,∗ = ϖν−11ν ∈ G′ν,∗. (5.1.1)

Then

tιν,∗ = z−1ν,∗tν,∗, tν,∗t
ι
ν,∗ = ϖ2ρν

where ρν ∈ Zν denotes half the sum of positive roots (with respect to Nν,∗); concretely,

ρν :=
1

2
(ν − 1, ν − 3, . . . , 1− ν) ∈ 1

2
Zν .

5.1.4. Iwahori and deeper Iwahori subgroups. The standard Iwahori subgroup

Iwν,∗ ⊂ G′ν,∗

is the set of matrices in G′ν,∗(O0) whose reduction modulo ϖ belongs to the image of the upper-

triangular matrices in G′ν,∗(O0). An Iwahori subgroup of G′ν,∗ is one of the form Iwgν,∗ for some

g ∈ G′ν,∗. A deeper Iwahori subgroup of G′ν,∗ is an open subgroup K ⊂ G′ν,∗ satisfying K ⊂ Iwgν,∗

for some g ∈ G′ν,∗. It is said to be semistandard if N◦ν,∗ ⊂ K ⊂ Iwgν,∗ for some g ∈ NG′
ν,∗(Tν,∗),

the normalizer of Tν,∗ in G
′
ν,∗; it is said to be standard if K ⊂ Iwν,∗ and K ∩Nν,∗ = N◦ν,∗.

For r ∈ Z− {0}, we define three families of subgroups

K
[r]
ν,∗ ⊂ K⟨r⟩ν,∗ ⊂ K(r)

ν,∗ (5.1.2)

of G′ν,∗(O0) by

K
(r)
ν,∗ := G′ν,∗(O0) ∩ t−rν,∗G′ν,∗(O0)t

r
ν,∗,

K
⟨r⟩
ν,∗ := {g ∈ K(r)

ν,∗ | gii ∈ 1 +ϖ|r|−1O∗, 1 ≤ i ≤ ν}

K
[r]
ν,∗ := {g ∈ K(r)

ν,∗ | gii ∈ 1 +ϖ|r|O∗, 1 ≤ i ≤ ν}.
They are standard deeper Iwahori subgroups whenever r ≥ 1.
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For r ≥ 1, we say that a standard deeper Iwahori Kν,∗ has level ≤ r if

Kν,∗ ⊃ K⟨r⟩ν,∗ .

5.1.5. Iwahori–Weyl symmetries. For c ≥ 1, define

w∗,ν,c := wν,∗t
c
ν,∗ ∈ NG′

ν,∗(Tν,∗) ⊂ G
′
ν,∗.

Let K ⊂ G′ν,∗ be a semistandard deeper Iwahori subgroup. We say that K is symmetric if

Kwν,∗,c = K for some c ≥ 1 such that K
⟨c⟩
∗ ⊂ K. If v splits in F and ∗ = ∅, we say that K is

conjugate-symmetric of depth c = c(K) ≥ 1 if K = K0×K
wν,0,c

0 for some standard deeper Iwahori

subgroup K0 ⊂ G′ν,0 containing K
⟨c⟩
ν,0.

Remark 5.1.1. For r ≥ 1, the subgroups K
[r]
ν,∗ ⊂ K

⟨r⟩
ν,∗ ⊂ K

(r)
ν,∗ ⊂ G′ν,∗ are all symmetric, whereas

for ν ≥ 3 Iwahori subgroups are not symmetric. On the other hand, conjugate-symmetric deeper

Iwahori subgroups of G′ν are obviously abundant.

5.1.6. Iwahori–Hecke algebras and the operators Ut. Let K ⊂ G′ν,∗ be a semistandard deeper

Iwahori subgroup. Define sheaves of OSpecQp-algebras by

H †,+
K,∗ := C∞c (K\KT+

ν,∗K/K,OSpecQp) dg ⊂ HK,∗ := C∞c (Kν\G′ν,∗/Kν ,OSpecQp) dg.

The involution ι extends to H †,+
K,∗ by linearity. For x ∈ G′ν,∗ and a semistandard deeper Iwahori

subgroup K ′ ⊂ K, we define

[KxK] := vol(K, dg)−11KxK dg

in HK,∗. The map

OSpecQp [T
+
∗ /T∗ ∩K] −→H †,+

K,∗

[t] 7−→ Ut,K := [KtK].
(5.1.3)

is an OSpecQp-algebra isomorphism. We define

H †
K,∗ := H †,+

K,∗ [(U
−1
t,K)t∈T+ ] ∼= OSpecQp [T∗/T∗ ∩K].

For ? = +, ∅, we define H †,?
ν,∗ := lim←−K H †,?

K,∗, where the limit runs over the standard deeper

Iwahori subgroups and the transition maps are ⋆eK : H †,+
K′,∗ → H †,+

K,∗ . By Lemma 5.1.2 below,

the limit Ut := limUt,K ∈H †,?
ν,∗ is well-defined. Concretely, if we denote

N
◦,(r)
ν∗ := trν,∗N

◦
ν,∗t
−r
ν,∗

we have

Utν,∗ =
∑

x∈N◦
ν,∗/N

◦,(1)
ν,∗

xtν,∗

as operators on the N◦ν,∗-fixed points of any smooth G′ν,∗-module.

5.1.7. Multiplication rules in Iwahori–Hecke algebras. We have the following basic result.

Lemma 5.1.2. Let K ⊂ G′ν,∗ be a deeper Iwahori subgroup, and define ℓK : K\G′ν,∗/K → N by

q
ℓK(g)
∗ := |KgK/K| = |K/K ∩ gKg−1|. Then:
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(1) We have KgKg′K = Kgg′K in HK if and only if ℓK(gg′) = ℓK(g) + ℓK(g′).

(2) Assume that K is standard. Then for all t′ ∈ T+
ν,∗,

ℓK(t′wν,∗) = ℓK(t′) + ℓK(wν,∗), ℓK(wν,∗t
′−1) = ℓK(wν,∗) + ℓK(t′−1).

(3) Assume that K is standard, and let K ′ ⊂ K be a standard deeper Iwahori subgroup. Then

for all t′ ∈ T+
ν,∗,

Kt′wK ′ = Kt′wK, eK ⋆ [K ′t′wK ′] = [Kt′wK].

If moreover K is of level ≤ c and t′t−cν,∗ ∈ T+
ν,∗, then

K ′t′K = Kt′K, [K ′t′K ′] ⋆ eK = [Kt′K].

(4) For all g ∈ G′ν,∗, we have

eK ⋆ geK = q
−ℓK(g)
∗ [KgK].

Proof. Part (1) is well-known, see [How85, Ch. 2]. Consider the first equality of part (2), and

drop all subscripts. By part (1), it is equivalent to prove Kt′KwK = Kt′wK. Since the quotient

K\Kt′K is represented by lower-triangular matrices in K, it suffices to show that for such a

matrix k, we have t′kw ∈ Kt′wK; fact, since K ⊃ N◦ we even have kw ∈ wK. The second

equation follows from taking inverses in the identity Kt′KwK = Kt′wK.

Consider now part (3); we only prove the equalities as sets, from which the ones in Hecke

algebras can be easily obtained. For the first equality, It suffices to prove that for any lower-

triangular k ∈ K we have t′wk ∈ Kt′w, which is clear since t′wkw−1t′−1 ∈ N◦ ⊂ K. For the

second one, it suffices to prove that for any lower-triangular kt′ ∈ Kt′ we have kt′ ∈ t′K. In fact,

by the assumptions we have t′−1tk ∈ K(c) ∩K ⊂ K. Part (4) follows from the definitions. □

5.1.8. Twisting matrices. Let u ∈ (O×F,p)
n; we will take u = (1, . . . , 1)t to fix ideas in computa-

tions. Then we define the twisting matrices11

mn,∗ := 1n, mn+1,∗ :=

(
wn u

1

)
, (5.1.4)

and for r ≥ 1 we let

mν,∗,r := mν,∗t
r
ν,∗

5.1.9. Subgroups of H ′1. Recall that by the convention introduced at the beginning ot this sub-

section, □∗ denotes the (image of the) product of □n,∗ and □n+1,∗ in Ġ
′
∗. For r ∈ Z>0, let

K
(r)
H,∗ := m∗K

(−r)
∗ m−1∗ ∩G′n,∗(O0)

= m∗K
[−r]
∗ m−1∗ ∩G′n,∗(O0) ⊂ G′n,∗(O0) ⊂ H ′1,∗,

(5.1.5)

where the intersections are with respect to the usual diagonal embedding H ′1,∗ ↪→ Ġ′∗.

11For their history, see [Jan] and references therein.
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Remark 5.1.3. A simple computation shows that K
(r)
H,∗ consists of the matrices h satisfying hij ∈ ϖr|i−j|O∗∑n

j=1 hij ∈ 1 +ϖirO∗
(5.1.6)

for all 1 ≤ i, j ≤ n. This description also shows the equality in (5.1.5). We may then compute

that

vol◦(KH,∗) := q
d(n)s
∗ vol(K

(s)
H,∗) =

n∏
i=1

1− q−1∗
1− q−i∗

(5.1.7)

is a rational number independent of s ≥ 1, and a p-unit.

We record the following easily checked property, for a later use: for all r ≥ 1, we have

m−1∗,rK
(r)
H,∗m∗,r ⊂ K

(2r)
∗ ∩K [r]

∗ ⊂ K⟨r+1⟩
∗ . (5.1.8)

5.1.10. Twisting identity. We come to the key result of this subsection, which refines [Jan, Lemma

5.2] in the spirit of [Loe21, Lemma 4.4.1].

Lemma 5.1.4 (Twisting identity). Let r ≥ 1 and let K ⊂ Ġ′∗ be a subgroup containing K
⟨r+1⟩
∗ .

For all x ∈ N◦∗ , there exists hx ∈ K(r)
H,∗ such that

m∗,rxtK = hxm∗,r+1K (5.1.9)

Moreover, the map

N
◦,(1)
∗ \N◦∗ −→ K

(r+1)
H,∗ \K

(r)
H,∗

[x] 7−→ [hx]

is well-defined and a group isomorphism.

Proof. We omit the subscript ‘∗’ from the notation. It suffices to take K = K⟨r+1⟩. Consider the

diagram

K
(r+1)
H \K(r)

H
α−→ K⟨−r−1⟩\K [−r] β←− N◦,(r+1)\N◦,(r) γ←− N◦,(1)\N◦

where α : h 7→ m−1hm, β is induced by the inclusion N◦,(r) ⊂ K [−r], and γ is the isomorphism

x 7→ trxt−r. All four quotients have cardinality qd(n) where d(n) = (5.1.11), and by (5.1.5), α is

well-defined and injective. Hence all three maps are isomorphisms, and the second statement of

the lemma is proved with [hx] = α−1 ◦ β ◦ γ([x]). The first statement is then easily verified using

t−r−1K⟨−r−1⟩tr+1 = K⟨r+1⟩. □

Corollary 5.1.5. Let r ≥ 1, and let K∗ = K
⟨r+1⟩
∗ ⊂ Ġ′∗. For all s ≥ r, we have the identities

m∗,sUt∗,K∗ =
∑

h∈K(s+1)
H,∗ \K

(s)
H,∗

hm∗,s+1eK∗ in Cc(Ġ
′
∗/K∗),

q
sd(n)
∗ ·m∗,sU−st∗,K∗

= q
(s+1)d(n)
∗ ·

avg∑
h∈K(s+1)

H,∗ \K
(s)
H,∗

hm∗,s+1U
−(s+1)
t∗,K∗

in Cc(Ġ
′
∗/K∗)⊗H †,+

K∗
H †
K∗
,

(5.1.10)

where
∑avg denotes average.
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5.1.11. Volumes. The volumes of K
(r)
ν,∗ and K

(r)
H,∗ are constant multiples of q

−c(ν)r
∗ , respectively

q
−d(n)r
∗ , where

c(ν) :=
1

6
(ν − 1)ν(ν + 1)

d(n) :=
n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1) = c(n) + c(n+ 1).

(5.1.11)

5.2. p-adic periods. Let Πν,∗ be a tempered representation of G′ν,∗ over a field L of characteristic

zero. Denote by Bν,∗ ⊂ G′ν,∗ the upper-triangular Borel and by δBν,∗ : Tν,∗ → Q× its modulus

character.

5.2.1. Finite-slope subspace. Let

Π†ν,∗ ⊂ ΠN
◦

ν,∗ ,

be the subspace where T+
ν,∗ acts invertibly. It has a structure of H †

ν,∗(L)-module, and it is

isomorphic as L[Tν,∗]-module to the twisted Jacquet module δBν,∗ ⊗ (Πν,∗)Nν,∗ of Πν,∗ (see e.g.

[Eme06, Proposition 4.3.4]).

We define c(Π†) to be the minimal c ∈ Z≥1 such that Π†ν,∗ ⊂ ΠKν,∗ for some deeper Iwahori

subgroup K of level ≤ c.
Denote by T̂ the dual torus (as a scheme over L). For a subgroup K ⊂ G′ containing N◦,

let ΠK,† be the image of ΠK in Π† under the Ut-eigen-projection, for any sufficiently positive t.

Then there are decompositions into generalized H †
K-eigenspaces

ΠK,†
L

=
⊕

ξ∈T̂L(L)

ΠK,†
L

[ξ],

and similarly Π†
L
=
⊕

Π†
L
[ξ].

If Π is a subquotient of a regular principal series (as defined in § 4.3.1) and ξ is a character

ot T̂ occurring in Π†
L
, then by [Jan, Proposition 1.3 (ii)] (or its proof, applied to Πn, Πn+1), any

Whittaker model of ΠL(ξ) contains a unique vector

Wξ (5.2.1)

satisfying Wξ(1) = 1 and UtW = ξ(t)W for all t ∈ T+.

5.2.2. Ordinary representations. Suppose for this paragraph only that L is a finite extension of

Qp, with algebraic closure denoted Qp.

Definition 5.2.1. Let N◦ ⊂ K ⊂ G′. We say that the tempered representation Π is K-ordinary

(with respect to Π◦∞) if there is a character ξ◦ ∈ T̂L(Qp) occurring in ΠK,† (that is, such that

ΠK,†[ξ◦] ̸= 0) satisfying

|ξ◦(t′)| = 1

for all t′ ∈ T+ and the absolute value on Qp.
12 We say that Π is ordinary if it is K-ordinary for

sufficiently small K ⊃ N◦.

12This definition is adapted to the local components of automorphic representations of trivial weight at infinity; in
general it would need to be modified, see [Hid98].
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We call a character ξ◦ as above an ordinary refinement of Π. By the following proposition, an

ordinary refinement is unique and defined over the field of definition of Π. We will then denote

Πord := ΠQp
[ξ◦] ∩Π.

Proposition 5.2.2. Let Π be an ordinary tempered representation of G′ over L. Then Π is a

subquotient of a regular principal series, the space Π† is TL-semisimple, and every ξ ∈ T̂L(Qp)

occurring in Π†
Qp

satisfies dimQp
Π†

Qp
[ξ] = 1 and is defined over L. Moreover the ordinary

refinement ξ◦ is unique.

Proof. This is essentially [Hid98, Corollary 8.3]. We recall the argument, working overQp without

signalling this in the notation. Let WG′ be the Weyl group of G′. Recall form § 5.2.1 that

Π† ∼= δB ⊗ ΠN , the δB-twisted Jacquet module of Π. By Frobenius reciprocity, ξ occurs in

Π† if and only if Π embeds into the normalized induction IndGB(ξ̃) where ξ̃ := δ
−1/2
B ξ. Now

IndG
′

B (ξ̃) ∼= IndG
′

B (ξ̃w) for all w ∈ WG′ . If ξ◦|T+ is valued in units, then the stabilizer of ξ̃◦ in WG′

is trivial, therefore its orbit consists of |WG′ | distinct characters ξ̃, and IndG
′

B (ξ̃) is regular. By

[BZ76, Theorem 5.21], we have dimΠN ≤ |WG′ |, hence all the characters ξ occur with multiplicity

one. The rationality assertion follows from the fact that the Gal(Qp/L)-action on the set of

occurring ξ preserves valuations. □

Denote by

eord : ΠN
◦ −→ Πord

the H †-eigenprojector, and let eordK := eordeK . Thus Π is K-ordinary if eordK Π = Πord.

Lemma 5.2.3. Suppose that Π is ordinary and unramified, and let K := G′(OF0) ⊂ G′. Then

eordK Π = Πord.

Proof. With notation as in the proof of Proposition 5.2.2, let ϕw be a generator of the line

Π†[ξ◦.w], where we define ξ.w by ξ̃.w = ξ̃w. Write a nonzero spherical vector ϕK ∈ ΠK as

ϕK =
∑
w∈WG

cwϕw (5.2.2)

with cw ∈ L. Then we need to show c1 ̸= 0. Now by [Cas80, Lemma 3.9], the expansion of

[Cas80, Lemma 3.8] (where χ = ξ̃◦) is of the form (5.2.2), and there one has (see Theorem 3.1

ibid.) that c1 = 1.

□

5.2.3. p-adic Rankin–Selberg period. Let χ ∈ YL. We define a functional on Π† by

P †1,Π,χ := lim
s→∞

P †1,Π,χ,s, P †1,Π,χ,s := qd(n)sP1,Π,χ ◦msU
−s
t : Π† −→ L(χ). (5.2.3)

Let c(χ) to be the conductor of χ in the usual sense: c(χ) = 0 if χ is unramified and otherwise

c(χ) is the minimal c ∈ Z≥1 such that χ|1+ϖcO0
= 1.

Lemma 5.2.4. The sequence in the limit (5.2.3) stabilizes as soon as s ≥ s0 := max{1, c(Π†)−
1, c(χ)}.
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Proof. In the definition of P †1,Π,χ,s(W ) in § 3.2.2, we may first integrate over K
(s0)
H ; observing that

χ is (detK
(s0)
H )-invariant, the lemma results from (5.1.10). □

5.2.4. p-adic pairing. We define a (non-degenerate) pairing

ϑ†Π := lim
r→∞

ϑ†Π,r, ϑ†Π,t(·, ·) := qd(n)ϑΠ(wrU
−r
t ·, ·) : Π† ×Π∨,† −→ L.

It is easy to show, using the symmetry of K⟨c⟩, that the sequence in the limit stabilizes as soon

as r ≥ c(Π†).

Remark 5.2.5. For all t′ ∈ T+ the ϑ†Π-adjoint of Ut′ is Ut′ι . Thus for every character ξ, the

pairing ϑ†Π yields a perfect pairing on Π†[ξ]× Π∨,†[ξι] and moreover, for all r ≥ c(Π†) and every

semistandard deeper Iwahori subgroup K ⊂ G′, a perfect pairing on ΠK,†[ξ]×Π∨,K
wr ,†[ξι].

5.2.5. p-adic Flicker–Rallis period. Suppose that v splits in F and that Πν is in the image of

the local base change map (2.4.1); in other words, we may write Πν ∼= Πν,0 ⊠ Π∨ν,0 for some

representation Πν of G̃0. We define

P †2,Π := lim
r→∞

P2,Π,r, P2,Π,r := q
d(n)r
0 P2 ◦ [1;w0,r]U

−r
[1;t0]

: Π† −→ L.

The sequence in the limit stabilizes as soon as r ≥ c(Π†).

5.2.6. p-adic Rankin–Selberg periods at Ut-eigenvectors. Identify Πn+1 (respectively Πn) with its

ψ- (respectively ψ-) Whittaker model, and Π with their product. Suppose that Π is a subquotient

of a regular principal series.

Let ξ ∈ T̂ be a character occurring in Π†
L
; by the argument in the proof of Proposition 5.2.2,

we have dimL(ξ)Π
†
L(ξ)Π

†[ξ] = 1. We denote by Wξ ∈ ΠL(ξ) the element of (5.2.1).

Define

e(Π, ξ, χ) := P †1,Π,χ(Wξ) ∈ L(ξ, χ). (5.2.4)

Liu and Sun have recently proved an explicit formula for this term. Write ξ̃ = ξ̃n⊠ ξ̃n+1, and for

1 ≤ i ≤ ν, let ξ̃ν,i : F× → L(ξ)× be the restriction of ξ̃ν to the ith component of Tν = (F×)ν/F×0 .

For any character ξ′ of F×v and any place w|v of F , denote by ξ′w := ξ|F×
w
; denote byNw : F

×
w → F×0

the norm map. Finally, we denote by

γ(s, ξ′F,w, ψF,w)
−1 := L(s, ξ′w)/ε(s, ξ

′
w, ψF,w)L(1− s, ξ′−1w )

the inverse Deligne–Langlands γ-factor of a character of ξ′w : F
×
w → C×. If

| · |1/2ξ′k, | · |1/2ξ′′k : F×w ↪→ L′× ⊂ C

(for 1 ≤ k ≤ N) are characters with
∏N
k=1 | · |1/2ξ′k =

∏N
k=1 | · |1/2ξ′′k , then it is easy to see

that
∏N
k=1 γ(1/2, ξ

′
k, ψF,w)/γ(1/2, ξ

′′
k , ψF,w) belongs to L

′. Thus the following expression gives an

element of L(ξ, χ) (unless some division by zero has occurred).

Define

ê(Π, ξ, χ) :=
ε(12 , χ

2, ψ)(
n+1
2 )

L(12 ,Π⊗ χ)
∏

i+j≤n

∏
w|v

γ(
1

2
, χ ◦Nw · ξ̃n,i,wξ̃n+1,j,w, ψF,w)

−1.
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Proposition 5.2.6. We have

e(Π, ξ, χ) = ±ê(Π, ξ, χ).

Proof. This is equivalent to the identity of [LiSu, Proposition 11.18], where the sign ± is explicit.

□

The key consequences for us will be Propositions 5.3.6 and Remark 5.3.3 below, both derived

from the following lemma. We temporarily restore the notation of the rest of the paper.

Lemma 5.2.7. Suppose that Πv is a regular irreducible principal series that is the local component

of a representation Π as in Theorem A. For every character ξv of Tv occurring in Π†v and every

finite-order character χv of F×0,v, we have

ê(Πv, ξv, χv) ∈ L(Π, ξ, χ)×.

Proof. By [Car14, Theorem 1.1], for each place w of F , the semisimple Weil–Deligne representa-

tion attached to ρΠ|GFw
(cf. (1.2.1)) is

rΠ,w =
⊕

1≤i≤n,1≤j≤n+1

| · |1/2ξ̃n,i,wξ̃n+1,j,w,

and it is strictly pure of some weight that is independent of w (here we identify a character of F×w
with its correspondent on the Weil group of Fw via class field theory). By considering det rΠ,w

at an inert place w we then see that the weight must be −1. Thus for each (i, j), the character

| · |1/2ξ̃n,i,wξ̃n+1,j,w is either ramified (so that its γ-factor is an ε-factor, hence nonzero), or it is

an unramified character whose value at a uniformizer of Fw is a Weil qw-number of weight −1,
which again implies the nonvanishing of each term in the γ-factors of Hypothesis 5.2.6. □

5.3. p-adic spherical characters. We go back to the notation of the rest of this section.We

say that a subgroup K ⊂ G′ is convenient if either K = G′(O0), or v splits in F and K is a

conjugate-symmetric deeper Iwahori as defined in § 5.1.5 (henceforth: a CSDI).

5.3.1. Finite-slope spherical character. Let K ⊂ G′ be a convenient subgroup. We define a

distribution

I†Π,K ∈ O(H †
L × Yv)

by

I†Π,K(f †, χ) :=


Tr

P †
1,Π,χ⊗P2,Π

ϑΠ
(Π(f †eK)) if K = G′(O0),

Tr
P †
1,Π,χ⊗P

†
2,Π

ϑ†Π
(Π(f †eK)) if K is a CSDI.

Remark 5.3.1. The second definition is the ‘correct’ one from the p-adic point of view. The first

one is made because, first, in the arithmetic side the geometry will compel us to work at spherical

level; and second, we have not investigated the analogue of the notion of ‘conjugate-symmetric’

in the nonsplit case.
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5.3.2. Eigen-decomposition. Suppose that Π is a subquotient of a regular principal series, and

denote by ΞK(Π) the set of characters of T occurring in ΠK,†.

− If K = G′(OF0) and Π is an unramified principal series, let W0 ∈ ΠK , W
(∨)
0 ∈ Π(∨),K be

generators normalized by W
(∨)
0 (1) = 1, write W0 =

∑
ξ λξWξ, and let

cK(Π, ξ) := λξP2,Π(W
∨
0 )/ϑΠ(W0,W

∨
0 ) = λξ. (5.3.1)

where the second equality follows from Remark 3.2.1. By the same proof as for Lemma 5.2.3,

we have λξ ̸= 0 for all ξ ∈ ΞIw(Π). (An explicit formula for λξ could be obtained from

combining the formulas cited in that proof with the Casselman–Shalika formula [CS80] and

the formulas [Ree93, Proposition 3.1] for Whittaker Ut-eigenfunctions.)

− If K is a conjugate-symmetric deeper Iwahori, define

cK(Π, ξ) := c(Π, ξ) :=
P †2,Π(Wξι)

ϑ†Π(Wξ,Wξι)
∈ L(ξ). (5.3.2)

Here, the denominator is nonvanishing since Ut is ϑ-adjoint to Utι . Similarly, the numerator

is nonvanishing if and only if Πv is hermitian.

Then, in either case, by the definitions we have a decomposition

I†Π,K(f †, χ) =
∑

ξ∈ΞK(Π)

I†Π,K,ξ(f
†, χ) (5.3.3)

where

I†Π,K,ξ(f
†, χ) := ξ(f †)cK(Π, ξ)e(Π, ξ, χ). (5.3.4)

5.3.3. Ordinary spherical character. Suppose for this paragraph only that L is a finite extension

of Qp and that there is an OL-lattice ΠOL
⊂ Π that is stable under H †. Then we have Hida’s

description

eord = lim
N→∞

UN !
t

for the action of the ordinary projector on Π.

Remark 5.3.2. The above assumption holds whenever Π is a local component of a global rep-

resentation in CL. Indeed, representations in CL can be realised in the Betti cohomology of

the locally symmetric space attached to G′, and the cohomology with coefficients in OL gives a

natural integral structure stable under the Hecke operators; see [Hid98] for more details.

For any convenient K ⊂ G′, we then define

IordΠ,K(χ) := lim
N→∞

I†Π,K(UN !
t , χ).

If Π is ordinary, we denote
e(Π, χ) := e(Π, ξ◦, χ) ∈ L(χ),

cK(Π) := cK(Π, ξ◦) ∈ L×
(5.3.5)

where the right-hand sides are defined in (5.2.4), (5.3.1), (5.3.2).

Remark 5.3.3. If Πv, χv are as in Lemma 5.2.7 and moreover Πv is ordinary, it follows from that

lemma and Proposition 5.2.6 that e(Πv, χv) and cKv(Π) are nonzero.
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Corollary 5.3.4. Suppose that Π admits an OL-stable lattice. Then for every χ ∈ YL and every

convenient K ⊂ G′, we have

IordΠ,K(χ) =

 cK(Π)e(Π, χ) if Π is K-ordinary

0 otherwise.

Proof. This follows from (5.3.4). □

5.3.4. Relation to the character IΠ. Let Π be a tempered irreducible representation of G′, let

χ : F×0 → L× be a smooth character, let K ⊂ G′ be a convenient subgroup, and let s ≥ 1. We

say that s is sufficiently positive for χ (respectively for K) if s ≥ max{1, c(χ)} (respectively K
contains a deeper Iwahori of level c with13 s ≥ 2c). We say that f † ∈ H † is sufficiently positive

for Π (respectively for s0, for χ, for K) if f †Π ⊂ Π† (respectively if U−st f † belongs to H †,+ for

s = s0 or some s that is sufficiently positive for χ, respectively for K).

It is clear that if f † is in the span of {Ut | t ∈ T++} and s and Π are given, then some power

of f † is sufficiently positive for both s and Π.

Lemma 5.3.5. For every s that is sufficiently positive for K and χ and every f † that is sufficiently

positive for s and Π, we have

I†Π,K(f †, χ) = IΠ(f
′, χ)

where

f ′ = f ′K,s :=

{
qd(n)s ·msU

−s
t f †eK if K = G(O0), (5.3.6a)

q
d(n)(2s−c)
0 ·msU

−s
t f †eKU

c
[t0;1]

[w−10,c ; 1] if K is a CSDI of depth c. (5.3.6b)

Proof. The first case is clear. Consider the second case, dropping the subscripts Π andK from the

notation. Let Π†,K := wcΠ
†,K , and let ϑ| : Π†,K⊗Π∨,†,K → L be the restriction of ϑ : Π⊗Π∨ → L,

which is still a perfect pairing. By Lemma 2.6.3 (using, in order, part (1), part (2), and part (1)

together with part (3)),

I†(f †) = q
d(n)c
0 Tr

P †
1⊗P2[1;w0,c]

ϑ†
(Π(f †eKU

−c
[1;tι0]

))

= q
−d(n)c
0 Tr

P †
1⊗P2[1;w0,c]
ϑ|

(Π(f †eKU
c
[t0;t0/tι0]

w−1c ))

= q
d(n)(2s−c)
0 TrP1⊗P2

ϑ (Π(msU
−s
t f †eKU

c
[t0;z0]

w−1c [1;w−10,c ])) = I(f ′),

where f ′ is as asserted. □

5.3.5. A non-vanishing result. Unlike the rest of this section, the following result is not used for

the p-local theory of the p-adic relative-trace formula, but rather as an input to Proposition 4.3.1

(3).

Proposition 5.3.6. Let Π, χ, K be as in § 5.3.4. Suppose that v is split, Π is a regular

principal series, and K is a conjugate-symmetric deeper Iwahori such that ΠK,† ̸= 0. Then

13In fact, at least if K is an Iwahori subgroup or one of the subgroups (5.1.2) with r = c ≥ 1, the weaker condition
s ≥ c will suffice; this is only used in the application of Lemma 5.1.2 (3) in the proof of Lemma 6.2.1.
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there exists an f † ∈ H † that is sufficiently positive for Π, χ, K, such that the Hecke measure

f ′ := f ′K,s = (5.3.6b) satisfies

IΠ(f
′
K,s, χ) ̸= 0.

Proof. Let f ′N correspond to f † = UNt for some sufficiently large integer N . We may and do

extend scalars from L to C; we do not alter the notation. By (5.3.3), we have

IΠ(f
′
N , χ) =

∑
ξ∈ΞK(Π)

ξ(t)NcK(Π, ξ)e(Π, ξ, χ).

Order the characters ξ occurring in Π† as ξ1, . . . , ξr; then we may write IΠ(f
′
N , χ) = aNx where

x = (mξicK(Π, ξi)e(Π, ξi, χ))i ∈ Cr and atN = (ξi(t)
N )i ∈ Cr. Now all entries of the vector x

are nonzero by Proposition 5.2.6 and Lemma 5.2.7, and the Vandermonde matrix A with rows

aN , . . . a2N , . . . , arN is invertible. Hence there is some 1 ≤ i ≤ r such that 0 ̸= aiNx = IΠ(f
′
iN , χ),

as desired. □

6. p-adic orbital integrals

We define and study certain local orbital integrals matching the spherical characters just de-

fined. After establishing their p-adic boundedness (as the character χ varies, in a suitable sense),

the main result of this section, Proposition 6.1.2, says that in case K is a CSDI, our orbital

integrals have plus-regular support, and it explicitly computes the values at all orbits.

We continue with the notation of the previous section.

6.1. Definition and statement of the main result. Let K ⊂ G′ be a convenient subgroup.

6.1.1. Definition. For f † sufficiently positive (depending on χ) and γ ∈ B′, let s and f ′K,s be as

in Lemma 5.3.5, and define

I†γ,K(f †, χ) := Lγ(χ)Iγ(f
′
K,s, χ) = ι−1I♯,Cγ (f ′K,s, ιχ) (6.1.1)

whenever the last term (defined with respect an embedding ι : L ↪→ C) is an absolutely convergent

orbital integral (that is, it reduces to a finite sum); this is the case when γ is regular semisimple

or f ′K,s has plus-regular support.

Lemma 6.1.1. Let γ ∈ B′ and let f ∈ H †(L) be such that the expressions I†γ,K(f †,−) are

defined. Then:

(1) the right hand side of (6.1.1) is independent of the choices of an s that is sufficiently positive

for K and χ, so long as f † is sufficiently positive for s.

(2) Suppose that f † ∈ H †(OL). For any s0 that is sufficiently positive for K such that f † is

sufficiently positive for s0, the map

χ 7−→ I†γ,K(f †, χ)

extends by linearity to a functional C∞(F×0 /(1 + ϖs0O0),OL) → kOL for some constant

k ∈ Q× depending only on K.
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Proof. If K is a CSDI, let c = c(K) be the depth of K, and let T = U c[t0;1][w
−1
0,c ; 1]; if K is

unramified, let c = 0 and T = id. For a Hecke operator T ′ =
∑

i λi vol(Ai)
−11Aidg ∈HK , denote

1[γ′ ∈ T ′] :=
∑
λi1Ai(γ

′).

Let s0 be sufficiently positive for K and χ. The integrand in the explicit expression for I†γ,K(f †)

equals

q
d(n)(2s−c)
0 χ(h1)1[γh2 ∈ h1msU

−s
t f †eKT (6.1.2)

and it is K
(s0)
H ×(K∩H ′2)-invariant by (5.1.8). Integrating first over over K

(s0)
H ⊂ H ′1, the relation

(5.1.10) shows that (6.1.2) is independent of s ≥ s0. We also see that if

k = q
−d(n)c(K)
0 vol(K ∩H ′2) vol◦(KH) (6.1.3)

where vol◦(KH) = (5.1.7). Then the functional I†γ,K(f †,−) sends C∞(F×0 /(1 + ϖs0O0),OL) to

kOL.

□

6.1.2. Main result and application to regular test Hecke measures. When K is a conjugate-

symmetric deeper Iwahori and f † is sufficiently positive, the following key result asserts that

the associated f ′K,s has plus-regular support and the p-adic orbital integral may be explicitly

computed. A remarkable fact is that its value is independent of χ.

By linearity, it suffices to study the case f † = Ut′ for some t′ ∈ T++.

Proposition 6.1.2. Let K = K0 × Kwc
0 ⊂ G′ be a conjugate-symmetric deeper Iwahori (in

particular, v splits in F ). Assume that f † = Ut′ ∈H † for some t′ ∈ T++. Then:

(1) for every s that is sufficiently positive for K such that f † is sufficiently positive for s, the

support of

f ′K,s = (5.3.6b)

is contained in G′reg+; moreover, f ′K,s matches an fK,s ∈H (G′, L) that is regularly supported

and bi-invariant under a subgroup conjugate to K0;

(2) there exists a compact subset

B†K(f †) ⊂ B′

with the following property: for every smooth character χ of F×0 such that f † is sufficiently

positive for χ and K, we have

I†γ,K(f †, χ) =

k
′ if γ ∈ B†K(f †)

0 if γ /∈ B†K(f †),

where k′ = kq
−ℓK0

(w0)

0 , with k = (6.1.3).

The proof of Proposition 6.1.2 will occupy the rest of this section, which may be skipped on a

first reading.

The first part allows to complete the proof of Proposition 4.3.1.
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Proof of Proposition 4.3.1 (3). We drop the subscript v from the notation of the statement of

the proposition. Recall that we need to find an f ′± ∈ H (G′, L) that is supported in G′reg± and

adapted to a given pair (Π, χ).

We may take f ′+ to be the element f ′K,s = (5.3.6b) associated to the data of: a conjugate-

symmetric deeper Iwahori K such that ΠK ̸= 0; an integer s ≥ 1 that is sufficiently positive for

χ and K; and an f † that is sufficiently positive for Π, χ, K. Then f ′+ is adapted to (Π, χ) by

Proposition 5.3.6, and it has plus-regular support by Proposition 6.1.2 (1). If Π is unramified we

can take K to be an Iwahori subgroup, hence (again by Proposition 6.1.2 (1)) we have that f ′+
matches an f+ that is biinvariant under an Iwahori subgroup.

We may take f ′− := f ′⋄+ for the involution g⋄ = gc,−1,t of Remark 3.3.1. By that remark, f ′− is

minus-regular, and it is clear that its matching f− is bi-invariant under an Iwahori subgroup if f+

is. Moreover, IΠ(f−, χ) = IΠ⋄(f+, χ
−1) for Π⋄(g) := Π(g⋄); since Π⋄ ∼= Πc,∨ ∼= Π, this expression

is non-vanishing too. □

6.2. Reduction to p-adic linear algebra. We start working towards the proof of Proposition

6.1.2, of which we retain all the assumptions. The proof of part (2) relies on some reductions in

the present subsection and § 6.3, and on two auxiliary inductive lemmas in § 6.4, 6.6, and it is

completed in § 6.7. The proof of part (1) relies on the first auxiliary lemma, and is given in § 6.5.

We keep using the notation of § 5.1; however, at various steps of our descent into the argument,

we will lighten (and sometimes recycle) the notation for the sake of readability. We start by

dropping all apices from the notation, writing for instance f and G in place of f ′ and G′.

We define involutions w and ι on Zν by

(λw)i := λν+1−i, λι := −λw,

and a notion of positivity by declaring λ ∈ Zν,+ if λi ≥ λi+1 for all 1 ≤ i ≤ ν−1; thus ι preserves

Zν,+. We also write λ ⪰ λ′ if λ − λ′ ∈ Zν,+. Then ϖλ ∈ T+
ν,∗ if and only if λ ∈ Zν,+, and

(ϖλ)ι = ϖλι .

Extending the notation from (3.3.16), let pν : Gν → Gν,0 ×Gν,0/F×0 be the projection, and let

pν,∗ : H (Gν)→H (Gν,0×Gν,0/F×0 ) be the pushforward map. Thus p := pn×pn+1 : G̃→ G and

p∗ = pn,∗ ⊗ pn+1,∗.

Let c be the depth of K. By the positivity condition on f † and linearity, we may assume that

f †ν = Ut′,K = pν,∗(f
†
ν,1 ⊗ f

†
ν,2), f †ν,1 = [Kν,0ϖ

λν,1Kν,0], f †ν,2 = [Kwc
ν,0ϖ

λwν,2Kwc
ν,0] (6.2.1)

for some λν,i ∈ Zν with λν,i, λ
ι
ν,i ⪰ (s+ c)ρν .

We decompose

f = fK,s = (5.3.6b) = q
(2s−c)d(n)
0 ·msU

−s
t f †eKU

c
[t0;1]

[w−10,c ; 1] = fn ⊗ fn+1

where each fν is a Hecke measure on Gν/F
×
0 , and further decompose

fν = q
(2s−c)c(ν)
0 mν,sf

†
νU
−s
tν eKνU

−c
[tν,0;1]

[w−10,ν,c; 1] = pν,∗(fν,1 ⊗ fν,2),
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where fν,i ∈ H (Gν,0) are defined up to some scalar ambiguities that we do not need to resolve.

We also denote fi = fn,i ⊗ fn+1,i for i = 1, 2.14

Fix a representative γ = [γ0; 1] = [(γn,0, γn+1,0); (1n, 1n+1)] ∈ G under the decomposition

G = (Gn,0 ×Gn+1,0)
2/F×,20 .

Decompose H1 = H2
1,0, and write h1 ∈ H1 as h1 = (h1,0, h

′
1,0). In the orbital integral (3.3.4),

we first integrate over H2 (noting that η = 1), to find

χ(γn)I
†
γ(f
†, χ) =

∫
H1

∫
H2

f([h−11,0γ0h2;h
′−1
1,0 h2]) dh2 χ(h1) dh1

=

∫
(H1,0)2

f⋆(h−11,0γ0h
′
1,0)χ((h1,0, h

′
1,0)) dh1,0dh

′
1,0

(6.2.2)

where

f⋆ = f1 ⋆ f
∨
2 ∈H (Gn,0 ×Gn+1,0).

(As part of of the proof, we will show that the above integral always reduces to a finite sum.)

Lemma 6.2.1. Assume that f † = (6.2.1), and let λν := λν,1 + λιν,2 ⪰ 2(s + c)ρν . Then f⋆ =

f⋆n ⊗ f⋆n+1 for

f⋆ν := q
2sc(ν)−ℓKν,0

(wν,0)

0 ms[Kϖ
λν−2sρνwK]m−1s ∈HGν

Proof. Let σν := (ν − 1, . . . , 0) ∈ Zν , so that t = ϖσν and σν + σιν = 2ρν . Abbreviate w = wν,0,

wc = wν,0,c; ms = mν,0,s; t = tν,0; K = Kν,0; K
′ = Kwc ; K ′′ = K

⟨c⟩
ν,0. Then

f⋆ν = fν,1 ⋆ f
∨
ν,2 = q

(2s−c)c(ν)
0 msU

−s
t f †ν,1eKU

c
tw
−1
c eK′(U−st f †ν,2)

∨m−1s

= q
2sc(ν)
0 ms[K

′′ϖλν,1−sσνK ′′]eKeK′′tceK′′w−1c [K ′′ϖ−λν,2+(s−c)σνK ′′]m−1s

= q
2sc(ν)
0 ms[K

′′ϖλν,1+(c−s)σνK ′′]eKweK′′ [K ′′ϖ−λν,2+(s−c)σνK ′′]m−1s

= q
2sc(ν)−ℓK′′ (w)
0 ms[K

′′ϖλν,1−sσνK ′′]eK [K ′′wK ′′][K ′′ϖ−λν,2+sσνK ′′]m−1s

= q
2sc(ν)−ℓK′′ (w)
0 ms[K

′′ϖλν,1−sσνK ′′]eK [K ′′ϖλιν,2+sσ
ι
νwK ′′]m−1s

= q
2sc(ν)−ℓK(w)
0 ms[Kϖ

λν,1−sσνK][Kϖλιν,2+sσ
ι
νwK]m−1s

= q
2sc(ν)−ℓK(w)
0 ms[Kϖ

λν−2sρνwK]m−1s ,

where we have used the symmetry of K ′′ and the algebra rules of Lemma 5.1.2. □

Let

X◦ν := ϖλν−2sρνwν,0 ∈ Gν,0. (6.2.3)

By Lemma 6.2.1, the integrand in (6.2.2) is non-vanishing at h1 if and only if

h−11,0γν,0h
′
1,0 ∈ mν,0,sKν,0X

◦
νKν,0m

−1
ν,0,s (6.2.4)

14The context should prevent any possible confusion from the clash of notation with fn ∈ H (Gn/F
×
0 ), since the

integer in this fn will never be specialized.
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for ν = n, n+ 1. Therefore, if the orbital integral Iγ(f
†, χ) is non-vanishing, up to changing the

representative γ0 in its H1,0-orbit we may and will assume that

γν,0 ∈ mν,0,sKν,0X
◦
νKν,0m

−1
ν,0,s. (6.2.5)

We introduce the convenient variables

Xν := m−1ν,0,sγν,0mν,0,s. (6.2.6)

Then (6.2.5) is equivalent to

Xν ∈ Kν,0X
◦
νKν,0 (6.2.7)

and (6.2.4) is equivalent to

m−1ν,0,sh
−1
1,0mν,0,s ·Xν ·m−1ν,0,sh

′
1,0mν,0,s ∈ Kν,0X

◦
νKν,0. (6.2.8)

We will reduce Proposition 6.1.2 (2) to the following.

Proposition 6.2.2. Let X◦ν := ϖλ′νwν,0 for some λ′ν ∈ Zν,+, and let (Xn, Xn+1, h1) ∈ Gn,0 ×
Gn+1,0 ×H1 satisfy (6.2.7), (6.2.8) for ν = n, n+ 1. Then h1 = (h1,0, h

′
1,0) ∈ K

(s)
H .

Lemma 6.2.3. Proposition 6.2.2 implies Proposition 6.1.2 (2).

Proof. By linearity we may assume that f † is of the form (6.2.1). Let X◦ := (X◦n, X
◦
n+1) ∈

Gn,0×Gn+1,0 (which depends on f †) be as in (6.2.3), and let B†K = B†K(f †) ⊂ B′ be the image of

m−10,sK0X
◦K0m

−1
0,s × {1} ⊂ G.

We have already noted that if γ /∈ B†K , then Iγ(f
†) = 0. Assume thus that γ ∈ B†K , and pick

a representative of the form [γ0; 1]. Proposition 6.2.2 and the discussion preceding it, applied to

Xν = (6.2.6) and λ′ν = λν − 2sρν , show that the integrand

f⋆H,γ0,χ : h1 7−→ χ(h1)f
⋆(h−11,0γ0h

′
1,0)

in (6.2.2) has support contained in K
(s)
H . Thus in order to prove Proposition 6.1.2 (2) we need to

show

f⋆
H,γ0,χ|K(s)

H

= q
2sd(n)−ℓK0

(w0)

0 . (6.2.9)

Recall the observation from (5.1.8) that if h1,0 ∈ K(s)
H,0, then m

−1
0,sh

−1
1,0m0,s ∈ K⟨s+1⟩

0 ⊂ K, and

similarly for h′−11,0 . Therefore the equivalent form (6.2.8) of (6.2.4) and the fact that χ|K(s)
H

= 1

imply (6.2.9). □

In §6.3 we reduce Proposition 6.2.2 to a simpler statement, to be proved in the remainder of

this section.

6.3. Contraction. From now until the end of the section, we lighten the notation by: dropping

all subscripts ‘0’; writing h in place of h1,0, and h
′ in place of h′1,0; and writing ms ∈ GLn+1(F )

in place of mn+1,s, whereas we recall that mn,s = tsn.

We extract, from the pair of conditions on h, h′ in (6.2.8), a single condition on h.
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Let en+1,n =
(
1n
0

)
∈Mn+1,n(F ) be the matrix with rows (e1, . . . , en, 0). Denote s := (s, . . . , s) ∈

Zn and ϖn := ϖ1 = ϖ1n ∈ GLn(F ), and define the (n+ 1)× n matrices

X := Xn+1m
−1
s en+1,nt

s
nX
−1
n ,

X◦ := X◦n+1m
−1
s en+1,nt

s
nX
◦,−1
n = ϖλ′n+1wn+1

(
ϖ−λ

′
n−2sρn−s

0

)
=


0

ϖλn

0 · · ·
0 ϖλ2

ϖλ1

 ,

where in the second-last matrix 0 ∈ (Fn)t, and λi := (λ′n+1)n+2−i − (λ′n)i − (n+ 2− 2i)s. Then

λi+1 − λi ≥ 2s

for all 1 ≤ i ≤ n− 1.

Let

hs := m−1s h−1ms =

(
t−sn w−1n h−1wnt

s
n ϖ−sn t−1n (w−1h−1 − 1n)u

1

)
∈ GLn+1(F ),

hs := t−sn htsn ∈ GLn(F ).

(6.3.1)

Lemma 6.3.1. If (6.2.7) and (6.2.8) are satisfied for ν = n, n+ 1, then

X ∈ Kn+1X
◦Kn

hsXhs ∈ Kn+1X
◦Kn.

(6.3.2)

Proof. Denote by Yν the left-hand side of (6.2.8). Then those equations imply that

Yn+1m
−1
s en+1,nt

s
nY
−1
n = hsXhs ∈ Kn+1X

◦
n+1Kn+1m

−1
s

(
tsnKnX

◦,−1
n Kn

0

)
. (6.3.3)

We simplify the right-hand side. First, we have

KnX
◦,−1
n Kn = Knwnϖ

−λ′nKn = K⟨2s⟩n wnϖ
−λ′nKn,

where the group K
⟨2s⟩
n is as in § 5.1.4 (the second equality can be shown by observing that the

quotient K
⟨2s⟩
n \Kn is represented by lower-triangular matrices). By the symmetry of K

⟨2s⟩
n , we

have

Kn+1m
−1
s

(
tsnKnwnϖ

−λ′nKn

0

)
= Kn+1

(
ϖ−sn t−sn wnt

s
nK
⟨2s⟩
n w−1n ϖ−λ

′
nKn

0

)
= Kn+1

(
ϖ−sn ·ϖ−2sρnwnK

⟨s⟩
n wnϖ

2sρnϖ−λ
′
n−2sρnKn

0

)
= Kn+1

(
K
⟨s⟩
n ϖ−λ

′
n−2sρn−sKn

0

)
Therefore (6.3.3) is equivalent to

hsXhs ∈ Kn+1ϖ
λ′n+1wn+1Kn+1

(
K
⟨2s⟩
n ϖ−λ

′
n−2sρn−s

0

)
Kn = Kn+1X

◦Kn,
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where the identity follows from writing

Kn+1

(
K
⟨2s⟩
n ϖ−λ

′
n−2sρn−sKn

0

)
= lim

ε→0
Kn+1

(
ϖ−λ

′
n−2sρn−s

ε

)
Kn+1en+1,n

and applying the multiplication rules of Lemma 5.1.2. We conclude that we have

X ∈ Kn+1X
◦Kn

hsXhs ∈ Kn+1X
◦Kn,

where the first containment follows from the above calculation and (6.2.7). □

We show that the following solution to the contracted problem (6.3.2) implies Proposition

6.2.2.

Proposition 6.3.2. Let Kν be a deeper Iwahori of level ≤ s. Let

X◦ =


0

ϖλn

0 · · ·
0 ϖλ2

ϖλ1

 ∈M(n+1)×n(F ) (6.3.4)

with λi+1 ≥ λi + 2s for all 1 ≤ i ≤ n− 1, and let X ∈ Kn+1X
◦Kn.

If h ∈ GLn(F ) satisfies

hsXhs ∈ Kn+1X
◦Kn

with the notation (6.3.1), then h ∈ K(s)
H .

Lemma 6.3.3. Proposition 6.3.2 implies Proposition 6.2.2.

Proof. We revert for a moment to the notation of Proposition 6.2.2. The discussion preceding

Proposition 6.3.2 shows that this proposition implies the conclusion that h1,0 ∈ K(s)
H,0. Observe

now that (X◦,−1n , X◦,−1n+1 ;X
−1
n , X−1n+1;h

′
1,0, h1,0) also satisfies the hypothesis of Proposition 6.2.2.

Then the previous argument applied to these data shows that h′1,0 ∈ K
(s)
H,0 as well. □

The proof of Proposition 6.3.2 will occupy the rest of this section.

6.3.1. Iwahori-invariants from minors. We say that a size-r minorM of a matrix X ∈Mm×n(F0)

is

− Southwest principal if it is obtained by deleting all but the last r rows and all but the first r

columns of X;

− quasi-SW-principal if r ≥ 2 and M contains the Southwest principal minor of size r − 1;

− anchored if M contains part of the last row of X.

Definition 6.3.4. Fix integers λ1 < · · · < λn. We say that X ∈M(n+1)×n(F ) satisfies the Minor

Condition if for every 1 ≤ r ≤ n, every r × r-minor M
(r)
X of X, and the Southwest-principal
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r × r-minor P
(r)
X , we have

v(detM
(r)
X ) ≥

r∑
i=1

λi, v(detP
(r)
X ) =

r∑
i=1

λi (6.3.5)

We say thatX ∈M(n+1)×n(F ) satisfies theWeak Minor Condition if (6.3.5) holds for all anchored

minors.

The first example of a matrix satisfying the Minor Condition is X◦ = (6.3.4).

Lemma 6.3.5. Let X,X ′ ∈M(n+1)×n(F ).

(1) If

X ′ ∈ Iwn+1X Iwn,

then X satisfies the Minor Condition if and only if X ′ does;

(2) if

X ′ ∈

(
Iwn

1

)
X Iwn,

then X satisfies the Weak Minor Condition if and only if X ′ does.

Proof. This follows from the Cauchy–Binet formula for minors of products. □

The reader may wish to glance at the proof of the two parts of our Proposition in §§ 6.5, 6.7

before looking at the auxiliary lemmas that occupy §§ 6.4, 6.6.

6.4. First auxiliary lemma. We define some variants of the condition h ∈ K(s)
H .

Definition 6.4.1. For s ≥ 1, we say that a matrix h ∈ GLn(F ) is

− s-small if for all 1 ≤ i, j ≤ n,

v(hii) = 0 and v(hij) ≥ |j − i|s; (6.4.1)

− upper-s-small up to row i if there is a decomposition

h = h
(i)
− h

(i)
+

where h
(i)
+ is s-small, and h

(i)
− admits a block decomposition

h
(i)
− =

(
α

∗ ∗

)
(6.4.2)

such that α ∈Mi(F ) is lower-triangular with units on the diagonal.

− extremely s-small if it is s-small and (wh− 1n)u = 0.

Remark 6.4.2. The set of extremely s-small matrices is a subgroup of K
(s)
H , which in turn is a

subgroup of the group of s-small matrices. If h is of the form h
(i−1)
− and it satisfies (6.4.1) for all

j ≤ i, then h is upper-s-small up to row i. (In fact, there is a decomposition h = h
(i)
− h

(i)
+ with

h
(i)
+ differing from the identity only in row i.)
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From now until the rest of this section, we write t in place of tn. We denote h−w := wnh
−1w−1n

for h ∈ GLn(F ), and we simply denote by 0 the zero row vector of length n. The following remark

will often be used in conjunction with Lemma 6.3.5.

Remark 6.4.3. If h is s-small, then t−sht and t−sh−wt belong to Iwn.

Lemma 6.4.4. Let 1 ≤ i ≤ n, and consider the equation

X.sh :=

(
t−sh−wts

1

)
Xt−shts = X ′, (6.4.3)

subject to:

− X, X ′ ∈M(n+1)×n(F ) satisfy the Weak Minor Condition of Definition 6.3.4;

− the entries of the last i rows of X below the lower antidiagonal are zero, that is

v(Xn+2−i′,i′) = λi′ , Xn+2−i′,j = 0 for all j > i′ ≤ i (6.4.4)

(where the first equation is a consequence of the second one and (6.3.5));

− h ∈ GLn(F ).

We have:

(1) for given X, every solution (h,X ′) has h upper-s-small up to row i;

(2) if h is of the form h
(i)
− as in (6.4.2), then X ′ also satisfies (6.4.4).

(3) for given X ′, there exists a solution (h,X) with h extremely s-small (and in fact upper

triangular).

Proof. We proceed by induction on i. Write

X =

(
A

c

)
, X ′ =

(
A′

c′

)
with A,A′ ∈Mn×n(F )

Consider first i = 1. The last row of (6.4.3) reads

c′j = c1h1j/ϖ
(j−1) (6.4.5)

for j ≤ n. Thus if X, X ′ satisfy (6.3.5), then v(h11) = 0 and v(h1j) ≥ (j − 1)s, hence the

first statement is proved and the second one is immediate. On the other hand, substituting

h11 = 1−
∑n

k=2 hik, c1 = c′1h
−1
11 in (6.4.5) gives the integral linear system

n∑
k=2

(c′1δjk +ϖ(k−1)sc′j)ϖ
(1−k)sh1k = c′j

in the variables ϖ(1−k)sh1k. As the system is invertible, the third statement is proved too.

Now let i ≥ 2 and suppose the first two statements known for i − 1. By Remark 6.4.3 and

Lemma 6.3.5, acting on the right by h
(i−1)
+ preserves the Weak Minor Condition on X ′; hence

we may and do replace h by h
(i−1)
− in a decomposition h = h

(i−1)
− h

(i−1)
+ . In other words, we may

assume that for j > i′ ≤ i− 1,

v(hi′i′) = 0, hi′,j = 0.
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The same conditions are then satisfied by h−1.

For j ≥ i, let
Mn+2−i,j

be the quasi-SW-principal minor of X ′ of size i whose upper-right corner is X ′n+2−i,j ; thus by

the induction hypothesis Mn+2−i,j has zero entries below the antidiagonal, and its antidiagonal

entries have valuations (in order, starting from the SW corner)

λ1, . . . , λi−1, v(X
′
n+2−i,j).

In particular,

v(detMn+2−i,j) =
i∑

i′=1

λi′ − λi + v(X ′n+2−i,j).

Hence the Minor Condition (6.3.5) implies

−λi + v(X ′n+2−i,i) = 0, −λi + v(X ′n+2−i,j) ≥ 0 for all j > i. (6.4.6)

As A′ = t−sh−wtsAt−shts, we have for all 1 ≤ j ≤ n:

ϖ−λiX ′n+2−i,j = ϖ−λi
n−1∑
k=1

(h−w)n+2−i,n+1−kϖ
(k+1−i)sXn+1−k,k−1hk+1,jϖ

(k+1−j)s

=
i−1∑
k=1

h−1i−1,kϖ
(k+1−i)sϖ−λiXn+1−k,k+1hk+1,jϖ

(k+1−j)s,

(6.4.7)

by our assumptions on h. Moreover, for j ≥ i by induction hypothesis hk+1,j = 0 for all k < i−1,

hence

ϖ−λiX ′n+2−i,j = h−1i−1,i−1hi,jϖ
(i−j)sϖ−λiXn+2−i,i. (6.4.8)

Since h−1i−1,i−1 and ϖ−λiXn+2−i,i are units, condition (6.4.6) is equivalent to

v(hi,i) = 0, v(hi,j) ≥ (j − i)s

for all j > i, establishing the first statement. If h is of the form h
(i)
− , the second statement is

immediate from (6.4.8).

Consider now the third statement. After replacing X ′ by X ′.s(h
′)−1 where h′ is as given by this

statement for i−1, we may and do assume that X ′ satisfies (6.4.4) for i′ < i. We seek h extremely

s-small, upper-triangular and differing from the identity only in row i; hence in particular h takes

the form h
(i−1)
− , and by the second statement for i− 1, we only need to find a solution to (6.4.8)

in h (with the further simplification hi−1,i−1 = 1).

We set hi,i = 1−
∑

k ̸=i hik, necessary for h to be extremely s-small, and substitute inXn+2−i,i =

h−1i,i X
′
n+2−i,i. We find the linear system

n∑
k=i+1

(ϖ−λiX ′n+2−i,iδjk +ϖ(k−i)sϖ−λiX ′n+2−i,j)hikϖ
(i−k)s = ϖ−λiX ′n+2−i,j
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in the variables ϖ(i−k)shik for k ≥ i + 1. By our reductions, −λi + v(X ′n+2−i,i) = 0 and −λi +
v(X ′n+2−i,j) ≥ 0, hence the system is integral and invertible; its solvability implies the third

statement. □

6.5. Plus-regularity of support: proof of Proposition 6.1.2 (1). We prove part (1) of

Proposition 6.1.2. It follows from Lemma 6.2.1 (via Lemma 3.5.6) that f ′ = (5.3.6b) matches an

f ∈ H (G,L) that is invariant under Kms
0 . We now turn to proving that f ′ is supported in the

plus-regular locus G′reg+ (thus f is also regularly supported).

Recall that we defined in (3.3.3) the quasi-invariant D± on G̃′, by pulling back the corre-

sponding function D± on the symmetric space S. Now that the place v is split in the quadratic

extension, we identify S with Gn+1. Tracking the process of contracting the test function, it

suffices to show that the function f⋆n ⋆ f
⋆
n+1 on Gn+1 = S has plus-regular support, where f⋆n and

f⋆n+1 are as in Lemma 6.2.1.

Now we note that, for γ =

(
A b

c d

)
∈ Gn+1 = S, the invariant D+ is equal (up to a sign) to

D+ (γ) = det(c, cA, · · · , cAn−1).

Note the quasi-invariance property: for h ∈ Gn,

D+
(
h−1γh

)
= D+ (γ) det(h).

Then by definition, γ ∈ Gn+1 is plus-regular if and only if D+ (γ) ̸= 0, or equivalently the vectors

c, cA, · · · , cAn−1 form a basis.

We observe that the plus-regularity depends only the first n columns, so that we may talk

about the plus-regularity of an element
(
A
c

)
∈M(n+1)×n(F ). Therefore by Lemma 6.3.1 (together

with the discussion preceding Proposition 6.2.2), it suffices to show that the following subset of

M(n+1)×n(F ) is inside the plus-regular locus:

msKn+1X
◦Knt

−1
s , (6.5.1)

where X◦ is as in (6.3.4).

By Lemma 6.3.5(1), any element in the setKn+1X
◦Kn satisfies the Minor Condition (Definition

6.3.4). It thus suffices to show that, if X satisfies the Weak Minor Condition, then the element(
1 u

1

)(
wts

1

)
Xt−s ∈M(n+1)×n(F )

is plus-regular. Set

X̃ :=

(
wts

1

)
Xt−s ∈M(n+1)×n(F ).

Then we claim that

(
1 u

1

)
X̃ is plus-regular if and only if X̃ is. To see this, we write X̃ =

(
Ã
c̃

)
so that ( 1 u1 ) X̃ =

(
Ã+uc̃
c̃

)
. We see inductively that the span of c̃, c̃(Ã + uc̃), . . . , c̃(Ã + uc̃)i−1 is

equal to the span of c̃, c̃Ã, . . . , c̃(Ã)i−1. The claim follows.
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It remains to show that X̃ is plus-regular. By Lemma 6.4.4 (3) (applied to the case i = n),

there exists h ∈ GLn(F ) such that, if we set

h−1X̃h = X̃ ′

where X̃ ′ =

(
wts

1

)
X ′t−s ∈ M(n+1)×n, then the entries of X ′ below the lower antidiagonal

are all zero. It therefore suffices to show that X̃ ′ is plus-regular. We note that

X̃ ′ =


∗ a2 0 0
...

...
. . . 0

∗ ∗ · · · an

∗ ∗ · · · ∗
a1 0 · · · 0

 =

(
Ã′

c̃′

)
,

where a1, a2, . . . , an are all non-zero. For 1 ≤ i ≤ n, denote by ei ∈ Fn0 the standard basis vector,

and by Vi ⊂ Fn0 the subspace spanned by e1, . . . , ei. In particular, c̃′ = a1e1. Then by induction

we see that

et1(Ã
′)i−1 ≡ aieti mod V t

i−1.

It follows easily that the subspace spanned by et1, . . . , e
t
1(Ã

′)i−1 is exactly V t
i , for all 1 ≤ i ≤ n.

The desired assertion follows.

6.6. Second auxiliary lemma. We continue with another lemma towards the proof of part (2)

of Proposition 6.1.2.

Definition 6.6.1. We say that a lower-triangular matrix h ∈ GLn(F ) with units on the diagonal

is lower-s-small from column j if

v(hij′) ≥ (i− j′)s for all i > j′ ≥ j.

This is equivalent to the existence of a decomposition

h = (j)h− · (j)h−−

where (j)h−− is lower-triangular and s-small, and

(j)h− =

(
α−

∗ 1n+1−j

)
(6.6.1)

with α− ∈Mj−1(F ) lower-triangular with units on the diagonal.

Remark 6.6.2. For a lower-triangular matrix h with units on the diagonal:

− h is lower-s-small from column j if and only if h−1 is;

− h is lower-s-small from column 1 if and only if it is s-small.

Lemma 6.6.3. Let 1 ≤ j ≤ n, and consider the equation

X.sh =

(
t−sh−wts

1

)
Xt−shts = X ′, (6.6.2)
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subject to:

− X, X ′ ∈M(n+1)×n(F ) satisfy the Weak Minor Condition of Definition 6.3.4;

− the entries of X, X ′ below the lower antidiagonal are zero, that is

v(Xn+2−i,i) = λi, Xn+2−i,j′ = 0 for all j′ > i

(where the first equation is a consequence of the second one and (6.3.5)), and similarly for X ′;

− the entries of the last n− j columns of X above the lower antidiagonal are zero, that is,

Xn+2−i,j′ = 0 for all i > j′ ≥ j + 1; (6.6.3)

− h ∈ GLn(F ) is lower-triangular with units on the diagonal.

We have:

(1) for given X, every solution (h,X ′) has h lower-s-small from column j;

(2) if h is of the form (j)h− as in (6.6.1), then X ′ also satisfies (6.6.3);

(3) for given X ′, there exists a solution (h,X) with h extremely s-small.

Proof. We prove this by decreasing induction on j, the case j = n being trivial. Thus let j ≤ n−1
and assume the statements proved for j + 1.

After replacing h by (j−1)h− as in the decomposition (6.6.1), that is acting by .s
(j+1)h−− on

both sides of (6.6.2), by the induction hypothesis we are led to a situation that is equivalent

for the purposes of the first two statements. Hence we may and do assume that h has the form
(j+1)h−. For i ≥ j, let

Nn+1−i,j+1

be the quasi-SW-principal minor of X ′ of size j +1 whose upper-right corner is X ′n+1−i,j+1; thus

the matrix Nn+1−i,j+1 has vanishing entries below the antidiagonal, and its antidiagonal entries

(in order, starting from the SW corner) have valuations

λ1, . . . , λj , v(X
′
n+1−i,j+1).

In particular,

v(detNn+1−i,j+1) =

j+1∑
j′=0

λj′ − λj+1 + v(X ′n+1−i,j+1).

Hence (6.3.5) implies

−λj+1 + v(X ′n+1−i,j+1) ≥ 0. (6.6.4)

The same condition holds for X by assumption.

We have

λ−1j+1X
′
n+1−i,j+1 = ϖ−λj+1

∑
1≤k,l≤n

(h−w)n+1−i,n+1−kϖ
(k−i)sXn+1−k,l+1hl+1,j+1ϖ

(l−j)s

=

i∑
k=j

h−1i,kϖ
(k−i)sϖ−λj+1Xn+1−k,j+1

(6.6.5)
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where we have used our assumptions on h and X. All terms are integral except possibly the

last one, whose valuation is v(h−1i,j )− (i− j)s. That this should be non-negative, for all i > j, is

equivalent to h being lower-s-small from column j, proving the first statement.

If moreover h has the form (j)h−, then in (6.6.5) all terms are zero unless i = j, in which case

we only have the term corresponding to i = j = k, giving X ′n+1−j,j+1 = Xn+1−j,j+1 = 0. This

proves the second statement.

For the third statement, we seek an extremely s-small matrix h that differs from the identity

only in column j. Then h−1 satisfies the same conditions, h is of the form (j−1)h−, and we need it

to satisfy (6.6.5) (for some X), in whose right-hand side only the terms k = j, i may be nonzero.

Substituting

h−1jj := 1−
∑
i>j

h−1ij , Xn+1−j,j+1 = (1−
∑
i>j

hij)
−1X ′n+1−j,j+1,

and observing that for i ≥ j + 1 only the term k = i may be nonzero in (6.6.5), we find

h−1ij ϖ
(j−i)sϖ−λj+1Xn+1−j,j+1 = ϖ−λj+1X ′n+1−i,j+1.

This is an invertible integral linear system

i∑
k=j+1

(ϖ−λj+1X ′n+1−j,j+1δkj +ϖk−jϖ−λj+1X ′n+1−i,j+1)ϖ
(j−k)sh−1kj = ϖ−λj+1X ′n+1−i,j+1.

in the variables ϖ(j−k)sh−1kj . The solvability of the system implies our third statement. □

6.7. Proof of Propositions 6.1.2 (2), 6.2.2, and 6.3.2. By Lemmas 6.2.3, 6.3.3, it suffices

to prove Proposition 6.3.2. Thus we need to show that for X,Y ∈ Kn+1X
◦Kn, all the solutions

in h to the equation

Y = hsXhs (6.7.1)

have h ∈ K(s)
H . By Lemma 6.3.5, both X and Y satisfy the Minor Condition.

Write X =
(
A
c

)
∈M(n+1)×n(F ), with c ∈ Fn,t. Then

Y = hsXhs = X ′ +X ′′,

X ′ := X.sh =

(
t−sh−wtsAt−shts

ct−shts

)
,

X ′′ := X..sh :=

(
ϖ−st−s(wh−1 − 1n)u

0

)
ct−shts,

(6.7.2)

where the notation X.sh is as in Lemmas 6.4.4, 6.6.3.

Note that X ′′ = Y −X ′ is a rank-1 matrix whose rows are all multiples of row n+1 of X ′ (and

whose last row is zero), so that the determinants of any pair of corresponding anchored minors

of Y , X ′ are equal. In particular, X ′ also satisfies the Weak Minor Condition of Definition 6.3.4.

We proceed in several steps to show that h ∈ K(s)
H .

(1) By applying first Lemma 6.4.4 (3) for i = n, then Lemma 6.6.3 (3) for j = 1, we find an

extremely s-small h′ such that, first, X..sh
′ = 0 (which is automatic by the extreme smallness

of h′) and, second, X.sh
′ = h

′
sXhs has zero entries outside of the lower antidiagonal and of
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column 1. Hence, up to changing variables by such an h′, we may assume X satisfies these

vanishing conditions.

(2) Apply Lemma 6.4.4 (1) to the equation

X ′ = X.sh, (6.7.3)

to deduce that h is upper-s-small, h = h−h+ with h− lower-triangular with units on the

diagonal and h+ s-small.

(3) Act on (6.7.3) by .sh
−1
+ ; by Remark 6.4.3 and Lemma 6.3.5 (2) this preserves the Weak Minor

Condition. We can then apply Lemma 6.6.3 (1) (with j = 1) to the resulting equation, to

conclude that h− and h are s-small.

(4) By Remark 6.4.3 and Lemma 6.3.5 (1), we deduce that X ′ = X.sh satisfies the full Minor

Condition; in particular, all entries of X ′ have valuation no less than v(λ1). Since this also

holds for the entries of Y , it must hold for the entires ofX ′′ too. As λ−11 ct−shts is integral with

first entry a unit, the condition on X ′′ is satisfied if and only if ϖ−st−s(wh−1 − 1n)u ∈ On;

that is, h ∈ K(s)
H .

The proof of Propositions 6.3.2, 6.2.2 and 6.1.2 (whose part (1) was proved in § 6.5) is now

complete.

7. The p-adic relative-trace formula and p-adic L-functions

This section is dedicated to the construction of the p-adic L-function of Theorem B and the

related RTF. In § 7.1 we give the statements. In § 7.2 we give the proofs: similarly to what done

in § 4, we construct the p-adic relative-trace distribution from its geometric expansion, then we

extract from it the p-adic L-function and deduce the spectral expansion. In § 7.3, we give a RTF

for the derivative of the distribution.

Throughout this section, we fix a rational prime p.

7.1. Statements. Recall that we denote Γ = ΓF0
:= F×0 \A∞,×/Ô

p,×
F0

, and Y := SpecZpJΓF0K⊗
Qp We say that Π ∈ C (G′)herQp

is ordinary if for all v|p, the representation Πv is ordinary in the

sense of Definition 5.2.1. The ordinary representations form an ind-subscheme

C (G′)her,ord ⊂ C (G′)herQp
.

For Kp =
∏
vKv, we let C (G′)her,ordKp

be the subscheme of those Π which are Kv-ordinary for all

v|p.

7.1.1. p-adic L-function. The following is Theorem B from the introduction

Theorem 7.1.1. Let L be a finite extension of Qp, and let Π be an ordinary hermitian trivial-

weight cuspidal automorphic representation of G′(A) over L.

Assume that for each place v|p of F0, v splits in F or Πv is unramified. Then there exists a

unique function

Lp(MΠ) ∈ O(YL)
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whose restriction to Y (p∞)L satisfies

Lp(MΠ)(χ) = ep(MΠ⊗χ)L (MΠ)(χ) (7.1.1)

where L (MΠ) is the function in Theorem 4.2.1, and ep(MΠ⊗χ) :=
∏
v|p e(Πv, χv) for the factors

of (5.3.5).

7.1.2. Generalized Radon measures. We make the first of two preparations which will be relevant

to the p-adic relative-trace formula.

Recall that a Banach ring is a topological ring equipped with a norm |·| for which it is complete;

the relevant examples for us are the finite extensions of Qp (with the p-adic norm) and O(Y )

(with the Gauss norm).

Definition 7.1.2. Let X be a set and let R be a Banach ring. A generalized bounded Radon

measure15 with values in R is a pair (µ,L1,∞(X,µ)), where

− L1,∞(X,µ) ⊂ L∞(X) is a closed subspace of the R-Banach space of bounded R-valued function

on X;

− µ : L1,∞(X,µ)→ R is a bounded R-linear functional.

We will usually denote such measures simply by µ, and for Φ ∈ L1,∞(X,µ), we will use the

notation ∫
X
Φ(x) dµ(x) := µ(Φ).

When R′ ⊃ R is an extension of Banach rings, an R-valued generalized bounded Radon measure

µ gives rise to an R′-valued generalized bounded Radon measure by extension of scalars, which

we will still denote by µ. We say that a function Φ ∈ L∞(X) is µ-integrable if it belongs to

L1,∞(X,µ). When we make an assertion regarding
∫
X Φ dµ for some Φ ∈ L∞(X), we implicitly

include the assertion that Φ is µ-integrable.

7.1.3. Local distributions at p. Let Kp =
∏
v|pKv ⊂ G′(F0,p) be a compact open subgroup that

is convenient in the sense that each Kv is (as defined in § 5.3.1). We will say that Kp is a

conjugate-symmetric deeper Iwahori (CSDI) if each Kv is (as defined in § 5.1.4).

For χ ∈ Y (p∞) and f †p = ⊗v|pf
†
v ∈H †

p =
⊗

v|p H †
v that is sufficiently positive for Πp, χp, and

Kp (in the obvious sense derived from § 5.3.4 for each v|p), and for Πp a tempered irreducible

representation of G′p and γ ∈ B′p, we define

I†Πp,Kp
(f †p , χp) :=

∏
v|p

I†Πv ,Kv
(f †v , χv), I†γ,p,Kp

(f †p , χp) :=
∏
v|p

I†γ,v,Kv
(f †v , χv),

where the last factors are as in (6.1.1); we impose the restriction that γ ∈ B′rs,p unless Kp is a

CSDI.

7.1.4. p-adic relative-trace formula. For Kp as above, recall the Hecke subspace

H (G′(Ap))◦Kp,rs,qc ⊂H (G′(Ap))◦rs

15When X is a topological space and L1,∞(X,µ) contains Cc(X), the functional µ is a (bounded) Radon measure
in the sense of Bourbaki.
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of § 4.2.2. We denote Utp = ⊗v|pUtv .

Theorem 7.1.3 (p-adic analytic RTF). Let Kp =
∏
v|pKv ⊂ G′(F0,p) be a convenient subgroup,

and let L be a finite extension of Qp.

There exist:

(1) For each finite place v ∤ p of F0 and for v = ∞, for each γ ∈ B′v, and for each tempered

irreducible representation Πv of G′v over L, distributions

IΠv : H (G′v, L)
◦ −→ O(YL),

Iγ,v : H (G′v, L)
◦ −→ O(YL[

√
−1])

obtained from the corresponding distributions of Proposition 4.2.2 (1), (3) by pullback via the

restriction maps Y ∋ χ 7→ χv ∈ Yv(1)Qp. (If v =∞, Yv(1) := SpecQ.)

(2) For each representation Π over L as in Theorem 7.1.1, a distribution

IΠ :=
1

4
cKp(Π)Lp(MΠ)

∏
v∤p

IΠv : H (G′(Ap), L)◦ −→ O(YL),

where the constant cKp(Π) :=
∏
v cKv(Πv) for the factors of (5.3.5).

(3) For each γ ∈ B′(F0)
◦, a bounded-by-1 p-adic L-function

Lp,γ ∈ ZpJΓF0K ⊂ O(Y )

whose restriction to Y (p∞) equals L
(p)
γ := Lγ/

∏
v|p Lγ,v (where Lγ is as in Proposition

4.2.2(4a)).

(4) An orbital-integral function

I p : B′(F0)
◦ ×H (G′(Ap), L)◦ −→ O(YL) (7.1.2)

defined by

(γ, f ′p) 7−→ I p
γ (f

′p) := κ(1∞)−1Lp,γ
∏
v∤p

Iγ,v.

which is bounded in the variable γ.

(5) (a) for every χp ∈ Yp(p∞), a Qp(χ)-valued generalized bounded Radon measure Iordγ,p,Kp
(χp)

on B′rs(F0)
◦, defined by the limit of weighted samplings∫

B′
rs(F0)◦

Φ(γ) dIordγ,p,Kp
(χp) := lim

N→∞

∑
γ∈B′

rs(F0)◦

I†γ,p,Kp
(UN !

tp , χp) · Φ(γ) (7.1.3)

on the space of bounded functions Φ ∈ L∞(B′rs(F0)
◦) for which the sums over γ converge

and the limit converges;

(b) if Kp is a CSDI, a Qp-valued generalized bounded Radon measure Iordγ,p,Kp
on B′(F0)

◦

(whose restriction to on B′rs(F0)
◦ coincides with Iordγ,p,Kp

(χp) for every χp), defined by∫
B(F0)◦

Φ(γ) dIordγ,p,Kp
= kp · lim

N→∞

∑
γ∈B′(F0)◦∩B†

p,N

Φ(γ);
(7.1.4)
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here, B†p,N =
∏
v|pB

†
Kv

(UN !
tv ,Kv

) and kp =
∏
v|p kv, with the factors as in (6.1.3).

(6) A distribution

IKp
: H (G′(Ap), L)◦Kp,qc −→ O(YL)

which admits the spectral expansion

IKp
=

∑
Π∈C (G′)her,ordKp

IΠ

and:

(a) after restricting to H (G′(Ap), L)◦Kp,rs,qc
if Kp is not a CSDI: for each finite-order χ ∈

YL, the geometric expansion in L(χ)

IKp
(f ′p, χ) =

∫
B′

rs(F0)◦
Ipγ(f

′p, χp) dIordγ,p,Kp
(χp),

(b) if Kp is a CSDI, the geometric expansion in O(YL)

IKp
(f ′p) =

∫
B′(F0)◦

I p
γ (f

′p) dIordγ,p,Kp
.

7.2. Proofs. We will prove Theorem 7.1.3 and, as an interlude, Theorem 7.1.1.

7.2.1. Boundedness of local orbital integrals. We consider the local distributions Iγ of Proposition

4.2.2 (3).

Lemma 7.2.1. Let v ∤ p∞ or, respectively, v =∞, and let f ′v ∈H (G′v, L)
◦. There is a constant

c(f ′v) ∈ Q× such that for every γ ∈ B′v (respectively, for every γ ∈ B◦v), the polynomial

Iγ(f
′
v) ∈ O(Yv(1))L ∼= L[T ]

(respectively the number Iγ(f
′
∞,1) ∈ L) belongs to c(f ′v)OL[T ] (respectively c(f

′
v)OL). Moreover,

for all but finitely many v, if f ′v is the unit Hecke measure then we may take c(f ′v) = 1.

Proof. By the definitions and Lemma 3.3.4, it suffices to consider Iγ′(f
′
v, χv) instead of Iγ(f

′
v, χv),

for any γ′ in the unique plus-regular orbit above γ.

First consider the case of v =∞, for which we may assume that f ′∞ matches f◦∞: then by the

proof of Lemma 4.1.4, the function γ 7→ Iγ′(f
′
∞) takes finitely many values on B◦v , so that the

boundedness is trivial.

Assume now that v ∤ p∞. If γ′ is regular semisimple, then the orbital integral Iγ(f
′
v, χv) is

equal to I♯γ′(f
′
v, χv) defined by (3.3.4). The latter is a finite sum of the values of the integrand

at the cosets under the maximal compact subgroup of H ′1,v × H ′2,v under which f ′v is invariant.

Therefore the integral is a polynomial in χv(ϖv) and χv(ϖv)
−1 whose coefficients’ denominators

are bounded by those of f ′v. If f
′
v is the unit measure or more generally spherical, then the orbital

integral is an integral polynomial since the volume of the compact open subgroup GLn(OF0,v)×
(GLn ×GLn+1)(OF0,v) of H

′
1,v ×H ′2,v is equal to one by our choice of measures.

In general, for a plus-regular element γ′, by [Lu, Lemma 5.14] the integral in (3.3.4) is absolutely

convergent (in the archimedean topology) when the exponent of |χv| is small enough. This implies

that for some large integer N , the product χ(ϖv)
−NI♯γ′(f

′
v, χv) is a power series in χ(ϖv)

−1. Now
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the normalized orbital integral Iγ′(f
′
v, χv) is by definition (cf. (3.3.7)) given by

I♯
γ′ (f

′
v ,χv)

Lγ′ (χv)
. In

particular, we have an equality of power series in χ(ϖv)
−1:

χ(ϖv)
−NIγ′(f

′
v, χv) =

χ(ϖv)
−NI♯γ′(f

′
v, χv)

Lγ′(χv)
.

The same argument as for the regular semisimple case shows that the coefficients of the power

series χ(ϖv)
−NI♯γ′(f

′
v, χv) are p-adically bounded, and integral if f ′v is spherical. Since Lγ′(χv) is

an integral polynomial in the variable χ(ϖv)
−1, it follows that the coefficients of the power series

χ(ϖv)
−NIγ′(f

′
v, χv) are also bounded (in the p-adic topology), as desired. □

7.2.2. Proof of Theorem 7.1.3 / I. Part (1) and the definitions in part (4) and (5) of Theorem

7.1.3 are self-explanatory.

For part (3), it suffices to show the existence of an integral interpolation of the functions

on Y (p∞)Qp ⊂ Y given by the abelian L-functions in (3.3.11) (with the Euler factors at p∞
removed). This is a consequence of the results of Deligne–Ribet [DR80], who prove that for every

totally even (respectively odd) finite Hecke character ξ of of a totally real field F ′0 and every even

(respectively odd) k ≥ 0, there is an Lp(1−k, ξ) ∈ Zp(ξ)JΓF ′
0
K interpolating χ′ 7→ Lp(1−k, ξχ′).16

The boundedness of the measures Iordγ,p,Kp
(χp) (which is, importantly, uniform in χp) follows

from Lemma 6.1.1 (2). Their explicit and uniform variant over B(F0)
◦ when Kp is a CSDI follows

from Proposition 6.1.2 (2).

The boundedness of γ 7→ I p
γ (f ′p) follows from the integrality of Lγ,p and Lemma 7.2.1.

We have thus proved parts (1), (3), (4), (5) of Theorem 7.1.3. After some preliminaries, we

will now prove the existence of the global distribution and the geometric expansion in part (6).

The spectral expansion in part (6) (with the definitions from part (2)) will be proved in § 7.2.6.

7.2.3. Finite-slope distributions. For γ ∈ B′rs(A), and Π as in Theorem 7.1.1, we first define the

following distributions on the subspace of H (G′(Ap), L)◦ ⊗H †
p of elements that are sufficiently

positive for all the relevant data:

I†Π,Kp
(f ′pf †p , χ) :=

1

4
L (MΠ, χ) ·

∏
v∤p

IΠv(fv, χv) · I
†
Πp,Kp

(f †p , χ) = IΠ(f
′pf ′p),

I†γ,Kp
(f ′pf †p , χ) := κ(1∞)−1Lpγ(χ) ·

∏
v∤p

Iγ,v(f
′
v, χv) · I†γ,p(f †p , χv).

(7.2.1)

Then we may define and expand

I†Kp
(f ′pf †p , χ) :=

∑
Π∈C (G′)herQp

I†Π,Kp
(f ′pf †p , χ) =

∑
γ∈B′(F0)

I†γ,Kp
(f ′pf †p , χ), (7.2.2)

where the geometric expansion is valid if f ′p has weakly plus-regular support or Kp is a CSDI,

and is a consequence of Proposition 4.2.2 (5), the definition (6.1.1), and Proposition 6.1.2 (1).

16The results of Deligne–Ribet are stated for totally even characters only and include the interpolation at varying
k: it is well-known that this allows to obtain the case of a totally odd character ξ by reduction to the totally even
character ξω, where ω is the Teichmüller character.
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For an integer s ≥ 1, we denote ϖp :=
∏
v|pϖv ∈ OF0,p and

ΓF0,s := ΓF0/(1 +ϖs
pOF0,p).

Lemma 7.2.2. Let f ′p ∈H (G′(Ap), L)◦. There is a constant c(f ′p,Kp) ∈ Q× such that follow-

ing holds. For each γ ∈ B′(F0)
◦, each s that is sufficiently positive for Kv for all v|p and each

(f †v )v|p ∈
∏
v|p H †

v (OL) that are sufficiently positive for s, if we set f † = f ′p ⊗⊗v|pf
†
v , the maps

Y (ϖs
p) ∋ χ 7−→ I†γ,K(f †, χ)

Y (ϖs
p) ∋ χ 7−→ I†γ,K(f †, χ) (if Kp is a CSDI or f

′p has plus-regular support)

extend by linearity to functionals C(ΓF0,s,OL)→ c(f ′p,Kp)OL.

Proof. The desired extension of I†γ,Kp
(f †) is the convolution of the measure on ΓF0,s given by

I†γ,Kv
(fv), which are bounded in terms of Kp by Lemma 6.1.1 (2), and (the restriction of) I p

γ (f ′p),

which we have seen to be bounded uniformly in γ. For I†Kp
(f †), the extension is defined via the

(finite) geometric expansion.

□

7.2.4. Proof of Theorem 7.1.3 / II. Corollary 5.3.4 shows that in the limit

IordKp
(f ′p, χ) := lim

N→∞
I†Kp

(f ′pUN !
t,Kp , χ) =

∑
Π∈C (G′)her,ord

1

4
ep(MΠ, χ)L (MΠ, χ) · (⊗v∤pIΠv)(f

′p, χp).

(7.2.3)

The existence of the limit and (7.2.2) prove that the orbital-integral functions

Ip(−)(f
′p, χ) : γ 7−→ κ(1∞)−1 · (⊗v∤pIγ,v)(f ′p, χp)

are Iordγ,p,Kp
(χp)-integrable, and that

IordKp
(f ′p, χ) =

∫
B′

?(F0)◦
Ipγ(f

′p, χ) dIordγ,p,Kp
(χp), (7.2.4)

where ? = ∅ if Kp is a CSDI and ? = rs otherwise.

Now by Lemma 7.2.2, the map χ 7→ IordKp
(f ′p, χ) coincides, for each s, with the evaluation of a

limit of uniformly (in both f † = UN !
t and s) bounded Radon measures on ΓF0,s, hence it extends

uniquely to a bounded Radon measure

IKp
(f ′p) : C(ΓF0 , L) −→ L (7.2.5)

corresponding to the element IKp
(f ′p) ∈ O(YL) of part (6).

The geometric expansion in part (6a) is (7.2.4). Then if Kp is a CSDI, by Lemma 7.2.3 below

applied to (7.1.4), the distribution IKp
has the geometric expansion described in part (6b).

Lemma 7.2.3. Let (IN )N∈N, I∞ ∈ O(Y ). Suppose that for all χ ∈ Y (p∞) we have

lim
N→∞

IN (χ) = I∞(χ).

Then limN→∞IN = I∞.
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Proof. Recall that Y (p∞) = lim−→Y (ps); then observe that the ideals Js := Ker[O(Y )→ O(Y (ps)) ⊂∏
χ∈Y (ps)Qp(χ)] form a fundamental system of neighbourhoods of 0 in O(Y ). □

We now turn to the p-adic L-function, then to the spectral expansion of IKp
.

7.2.5. Proof of Theorem 7.1.1 (= Theorem B). Let Kp =
∏
vKv be a convenient subgroup such

that for every place v|p of F0, the representation Πv is Kv-ordinary. Similarly to the proof ot

Theorem 4.2.1, we use Corollary 4.3.4 asserting the existence of suitable test Gaussians. (Note

that as χ|Ap,× is smooth, the definition of ‘adapted to (Π, χ,Kp)’ in § 4.2.2 still makes sense, and

the proof of that corollary goes through.)

For any χ ∈ Y (p∞)L and any f ′p ∈H (G′(Ap∞), L)◦Kp,rs,Πp,χp , we define

Lp(MΠ, ·)f ′p :=
4IKp(f

′p, ·)
cKp(Π) · (⊗v∤pIΠv)(f

′
v, ·)

away from the zero set Z (f ′p) of the denominator. Note that we may assume that f ′p is a pure

tensor with factors equal to the unit Hecke measure at places v ∤ p∞ where Πv is unramified; if

so, each Z (f ′p) is the pullback of a closed subset Z(f ′p) ⊂ YS(1)L :=
∏
v∈S Yv(1)L for some fixed

set of places S. As IKp restricts to IordKp
, it follows from (7.2.3) that the functions Lp(MΠ, ·)f ′p

glue to a function Lp(MΠ, ·) with the desired interpolation properties, on the complement of the

polar locus Z :=
⋂
f ′∈H (G′(Ap∞),L)◦

Kp,rs,Πp,χp
Z (f ′p) ⊂ YL. By Corollary 4.3.4, the closed subset

Z is empty. The function Lp(MΠ) is still bounded since, by the Nullstellensatz applied to a

finite subproduct of
∏
v∤p∞ Yv(1)L, finitely many f ′p suffice to construct Lp(MΠ). This completes

the proof of Theorem 7.1.1.

7.2.6. Proof of Theorem 7.1.3 / III. Part (2) of the theorem is now clear. The spectral expansion

of IKp
in part (6) then follows from the definitions and (7.2.4). This completes the proof of

Theorem 7.1.3.

7.3. Derivative of the analytic RTF. We study the derivative of the distribution IKp .

7.3.1. Notation. ’Denote by m ⊂ OY the ideal of functions vanishing at χ = 1. For a Y -scheme

Y ′ and a function Φ ∈ mO(Y ′), we say that Φ vanishes at χ = 1 and we denote by ∂Φ be the

image of Φ in m/m2 ⊗OY
OY ′ = OY ′⊗̂ΓF0 .

For V ∈ V ◦ a coherent or incoherent pair of definite hermitian spaces as in §2.1.3, and v a

finite place of F0, we let:

− C (G′)her,ord,V ⊂ C (G′)her,ord be the subset of those isomorphism classes of representations Π

such that for each finite place u of F0, the space Vu is the one attached to Πu by the local

Gan–Gross–Prasad conjecture (Proposition 2.4.1).

− H (G′(Ap), L)◦,VKp,qc
⊂H (G′(Ap), L)◦Kp,qc

be the subspace of those f ′p that match (spectrally

and geometrically, see Proposition 3.5.3) a function on H (GV (Ap), L)◦ := H (GV (Ap), L)⊗L
Lf◦∞;

− 1V be the characteristic function of B′rs(A)V :=
∏′
uB
′
rs,u,Vu

⊂ B′rs(A);
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− V (v) ∈ V ◦ be the pair such that V (v)u ∼= Vu exactly for u ̸= v; it is coherent if and only if V

is incoherent.

Proposition 7.3.1. Consider the situation of Theorem 7.1.3, and let V ∈ V ◦,− be an incoherent

pair. For all f ′p ∈H (G′(Ap), L)◦,VKp,qc
, the following hold.

(1) For all Π ∈ C (G′)her,ord and all γ ∈ B′(F0),

IKp
(f ′p,1) = IΠ(f

′p,1) = I p
γ (f

′p,1) = 0.

(2) There is a spectral expansion

∂IKp
(f ′p) =

∑
Π∈C (G′)her,ord,VKp

∂IΠ,Kp
(f ′p)

where

∂IΠ,Kp
(f ′p) =

1

4
cKp(Π) ∂Lp(MΠ) · (⊗v∤pIΠv)(f

′p,1).

(3) Suppose that f ′p has weakly regular semisimple support. The function ∂I p
(−)(f

′p) is integrable

for the Radon measure Iordγ,p,Kp
:= Iordγ,p,Kp

(1), and there is a geometric expansion

∂IKp
(f ′p) =

∫
B′

rs(F0)◦
∂I p

γ (f
′p) dIordγ,p,Kp

=

∫
B′

rs(F0)◦

∑
v∤p∞ nonsplit

1V (v)(γ)I
vp
γ (f ′vp,1) · ∂Iγ,v(f

′
v) dI

ord
γ,p,Kp

,
(7.3.1)

where for any γ we put I vp
γ := κ(1∞)−1 · Lp,γ ⊗u∤vp Iγ,u.

Proof. Consider the geometric terms Iγ(f
′p,1). For γ ∈ B′rs(F0) ∩ B′◦∞, let Vγ ∈ V ◦,+ be the

unique coherent pair such that γ matches an orbit in Brs(F0)Vγ as in (3.5.4); let Σ(γ, V ) be

the non-empty finite set of non-archimedean (and necessarily nonsplit) places of F0 such that

Vγ,v ̸∼= Vv. If v ∈ Σ(γ, V ), then by the assumption on f ′p we have Iγ,v(f
′
v,1) = 0; hence I p

γ (f ′p)

vanishes at 1 to order at least |Σ(γ, V )| ≥ 1. Moreover, if v ∈ Σ(γ, V ) then

∂Iγ(f
′p) = I vp

γ (f ′vp,1) · ∂Iγ,v(f
′
v), (7.3.2)

which can be nonzero only if Σ(γ, V ) = {v}, equivalently Vγ = V (v).

Consider now a representation Π = Πn ⊠ Πn+1 ∈ C (G′)her,ord. Let VΠ ∈ V ◦,ϵ(Π) be the pair

such that Π ∈ C (G′)her,ord,VΠ (cf. Remark 2.5.7). If ϵ(Π) = −1, then L (MΠ,1) = 0 by the

functional equation of Rankin–Selberg L-functions; this implies IΠ(f
′p∞,1) = 0. If ε(Π) = +1,

then for any finite place v such that VΠ,v ̸∼= Vv, we have IΠv(f
′
v,1) = 0 by the assumption on f ′p.

This completes the proof of part (1). More generally, we note that the last argument shows that

Π ̸∈ C (G′)her,ord,V =⇒ IΠv(f
′
v,1) = 0 for some v ∤ p∞. (7.3.3)

This shows that the sum in part (2) indeed runs over C (G′)her,ord,V ; as above, this implies that

ε(Π) = −1 and Lp(MΠ,1) = 0, which implies the second equality in (2).

We now consider part (3). By the definition of the measure Iordγ,p,Kp
, the second equality follows

from (7.3.2), whose right-hand side can be nonzero only if Vγ = V (v). We consider the expansion
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in the first equality; it will hold without the condition that f ′p is quasicuspidal, and by linearity

we may thus assume that f ′p = ⊗vf ′v is a pure tensor. Suppose first that Kp is a CSDI. Since∫
dIordγ,p,Kp

is a bounded functional, we simply differentiate under the integral sign in Theorem

7.1.3 (6). We now consider the general case. Viewing IKp
as in (7.2.5) we have

∂IKp
(f ′p) = IKp

(f ′p, ℓ)

(see for instance, [DL24, Lemma 3.42]), where the ‘logarithm’ ℓ : ΓF0 → Γfr
F0
⊂ ΓF0⊗̂Qp is the

projection onto the maximal Zp-free quotient Γfr
F0

of ΓF0 .

For s ≥ 1, let ℓs : ΓF0 → Γfr
F0
/ps be the reduction map, and let ℓ̃s : ΓF0 → Γfr

F0
/ps → Γfr

F0
be

any lift of ℓs, which is a linear combination of characters whose conductors at places v|p do not

exceed s. By the definition of IKp
, the expansion (7.2.3), and linearity, we have

IKp
(ℓ̃s) = lim

N→∞
I†Kp

(f ′pUN !
tp , ℓ̃s)

Then by Proposition 4.2.2 (5), we have

IKp(ℓ̃s) = lim
N→∞

∑
γ∈B′

rs(F0)

I†γ(f
′pUN !

tp , ℓ̃s). (7.3.4)

By Lemma 7.2.2, up to multiplying f ′p by a power of p independent of s we have that all terms

in (7.3.4) are p-integral; hence it makes sense to consider the reduction of that identity modulo ps,

IKp
(ℓs) = lim

N→∞

∑
γ∈B′

rs(F0)

I†γ(f
′pUN !

tp , ℓs)

in Γfr
F0
/ps. Now ℓs =

∑
v∤∞ ℓs,v, where ℓs,v := ℓs|F×

0,v
, so from Remark 4.5.1, the γ-summand equals

∑
v∤∞

Iγ(f
′
∞)

κ(1∞)κ∞(γ′)

∫
H1(A∞)

∫
H2(A∞)

f ′∞(h−11 γ′h2)ℓs,v(h1,v)η(h2)
d♮h1d

♮h2
d♮g (7.3.5)

in Γfr
F0
/ps; here γ′ ∈ G′rs(F0) is any preimage of γ. (Note that only finitely many v-summands are

nonzero, hence it is trivial to interchange sum and integration.) For v ∤ p, the v-summand is

Iγ(f
′
∞)

κ(1∞)κ∞(γ′)
I†γ,p(U

N !
tp ,1)I

vp∞
γ (f ′vp∞,1) ·Iγ,v(f

′
v, ℓs,v)

≡ 1

κ(1∞)κ∞(γ′)
I†γ,p(U

N !
tp ,1)I

vp
γ (f ′vp,1) · ∂Iγ,v(f

′
v).

For v|p, the v-summand in (7.3.5) is a multiple of I p
γ (f ′p,1), which is zero by part (1). Therefore

∂IKp
(f ′p) is congruent to

IKp
(f ′p, ℓ) ≡ lim

N→∞

∑
γ∈B′

rs(F0)

I†γ,p(U
N !
tp ,1) · ∂I p

γ (f
′p)

in Γfr
F0
/ps for all s. We conclude that the above congruences amount to an equality in Γfr

F0
; by

definition, the right-hand side is ∫
B′

rs(F0)
∂I p

γ (f
′p) dIordγ,p,Kp

,
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as desired. □

Part 2. p-adic heights and the arithmetic relative-trace formula

We now study the p-adic heights of Gan–Gross–Prasad cycles. In §8, we recall the relevant

Shimura varieties, the arithmetic diagonal cycles, and their moduli interpretations over the reflex

fields. In §9, we study various integral models and prove some vanishing results for their coho-

mologies. In § 10 we collect the necessary definitions and results on cycles and p-adic heights. In

§11, we define the arithmetic relative-trace distribution encoding the heights of GGP cycles, and

prove the corresponding RTF.

In §§8-9, we use slightly different notation on unitary groups from the rest of the paper.

8. Unitary Shimura varieties and arithmetic diagonals

For this section and the next one, we largely follow [RSZ20,RSZ21].

8.1. Unitary Shimura varieties. We keep denoting by F a CM number field with maximal

totally real subfield F0 and nontrivial F/F0-automorphism c: a 7→ ac. For an algebraic group G

over F0, we denote its restriction of scalars to Q by

G♭ := ResF0/QG.

8.1.1. Unitary Shimura data and the associated varieties. We denote by Q the algebraic closure

of Q in C. Let ν be a positive integer. Recall from [RSZ21, §2.2] that a generalized CM type (or

a signature type) of rank ν is a function r : HomQ(F,Q)→ Z≥0, denoted φ 7→ rφ, such that

rφ + rφc = ν for all φ ∈ HomQ(F,Q); (8.1.1)

here φc := φ ◦ c. When ν = 1, a generalized CM type is “the same” as a usual CM type, via

Φ =
{
φ ∈ HomQ(F,Q)

∣∣ rφ = 1
}
.

Fix a CM type Φ of F , and let (W, ( , )) be an F/F0-hermitian vector space of dimension ν.

The signatures of W at the archimedean places determine a generalized CM type r of rank n, by

writing

sigWφ = (rφ, rφc), φ ∈ Φ, Wφ :=W ⊗F,φ C.

Consider the unitary group

G := U(W ). (8.1.2)

For each φ ∈ Φ, choose a C-basis of Wφ with respect to which the matrix of the hermitian

form ( , ) is given by diag(1rφ ,−1rφc ) We now define a Shimura datum (G♭, {h♭G}), where {h♭G}
is a G♭(R)-conjugacy class of homomorphisms S := ResC/RGm,R → G♭

R. With respect to the
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inclusion and the identification induced by the fixed CM type Φ,

G♭(R) ⊂ GLF⊗R(W ⊗R)
Φ−→∼
∏
φ∈Φ

GLC(Wφ),

we define hG♭ as (hG♭,φ)φ∈Φ where the φ-component is defined on C× by

hG♭,φ : z 7−→ diag
(
1rφ , (z

c/z)1rφc

)
.

The reflex field E(G♭, hG♭) of this Shimura datum is the reflex field Er♮ of the function r♮,

characterized by

Gal(Q/Er♮) =
{
σ ∈ Gal(Q/Q)

∣∣ σ∗(r♮) = r♮
}
, (8.1.3)

where we define a modified function

r♮ : HomQ(F,Q) Z≥0

φ

 0, φ ∈ Φ;

rφ, φ ∈ Φc.

(8.1.4)

We then obtain a tower of Shimura varieties (ShK(G♭, {hG♭}))K⊂G(A∞) over Er♮ .

Remark 8.1.1. The Shimura variety ShK(G♭, {hG♭}) is not of PEL type, i.e., it is not related to

a moduli problem of abelian varieties (this can be seen already from the fact that the restriction

of {hG♭} to Gm ⊂ S is not mapped via the identity map to the center of G♭). However, this

Shimura variety is of abelian type.

8.1.2. A special signature type. If the generalized CM type r satisfies

rφ =

 ν − 1, φ = φ0,

ν, φ ∈ Φ∖ {φ0},
(8.1.5)

for some CM type Φ and some φ0 ∈ Φ, we say that the signature type of r is strictly fake Drinfeld

(with respect to (Φ, φ0)). In this case, we have φ0 : F
∼−→ Er♮ for all ν ≥ 1; in other words the

reflex field is F via the embedding φ0 : F → C ( cf. [RSZ21, Example 2.3 (ii)]). In this paper, we

will only consider data of strict fake Drinfeld type. We will abbreviate ShK(G) := ShK(G♭, {hG♭}),
omitting the superscript ♭ and suppressing the datum {hG♭}.

8.1.3. Hecke correspondences. Recall that if X be a scheme, a correspondence on X is a diagram

of finite morphisms

X ′

}} ""

X X .

It is said to be étale if both morphisms are étale. Correspondences on X form a monoidal

category under composition. If L is a ring, we denote by ÉtCorr(X )L) the L-algebra generated

by isomorphism classes of étale correspondences on X . It acts (on the right) on cycles and

cohomology of X by pullback and pushforward.
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For each K ⊂ G(A∞), and each characteristic-zero field L, we have an L-algebra homomor-

phism
T : H (G(A∞), L)K −→ ÉtCorr(ShK(G))

[KgK] 7−→


ShK′(G)

nat1

yy

natg

%%

ShK(G) ShK(G)

 (8.1.6)

where [KgK] := vol(K)−11KgK dg, K
′ := K ∩ gKg−1, and the map nat1 is the natural map

induced by the embedding K ′ ⊂ K while natg is induced by the composition

ShK′(G)
.g
// Shg−1K′g(G) // ShK(G) .

For the other Shimura varieties in this section, we also have Hecke correspondences defined in an

entirely analogous way.

8.1.4. Product Shimura varieties and the arithmetic diagonal. Let Φ be a CM type, let Wn be a

hermitian space of dimension n ≥ 1, and assume that the associated generalized CM type rn is

of strict fake Drinfeld type. Let Wn+1 = W ⊕⊥ Fe where e has norm 1. Let Gν = U(Wν) for

ν = n, n+1, and let (ShKν (Gν))Kν be the corresponding tower of Shimura varieties. We also have

a product Shimura variety ShK(G) = ShK(G) = ShK(G♭, hG♭) associated with G = Gn × Gn+1

and hG♭ = hG♭
n
× hG♭

n+1
. Denote H := Gn. The map

ȷ : H −→ G

that is the graph of the natural embedding Gn → Gn+1 induces a corresponding map of Shimura

varieties

ȷ : ShKH
(H) −→ ShKG

(G) (8.1.7)

whenever KH ⊂ ȷ−1(KG) ⊂ H(A∞).

The target Shimura variety has dimension 2n − 1, and the image of ȷ has codimension n, in

the arithmetic middle dimension (i.e., the codimension is just more than half the dimension of

the ambient variety). We thus call the map (8.1.7) the arithmetic diagonal, and the image cycle

(defined in more detail in § 11.2.1) the arithmetic diagonal cycle in Sh(G).

8.2. Incoherent Shimura varieties. For our specific signature type, we may present the above

Shimura varieties more symmetrically using incoherent hermitian spaces.

8.2.1. Shimura varieties for incoherent unitary groups. Let V be a totally positive definite in-

coherent F/F0-hermitian space of dimension ν. The theory of conjugates of Shimura varieties

([MS82]; see also [Gro,ST]) shows that there exists a unique-up-to-isomorphism tower

(ShK(G))K⊂G(A∞)

over SpecF with the following property. For any CM type Φ of F and any archimedean place v0

of F0, let φ0 ∈ Φ be the unique embedding above v0, let G
(v0) = U(V(v0)) be the unitary group

associated to the nearby hermitian space V(v0), and let (ShK(G(v0)))K be the tower of Shimura
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varieties associated with the data (G(v0),Φ, φ0) as in § 8.1.2. Then

ShK(G)×SpecF, φ0 Specφ0(F )
∼
// ShK(G(v0)) ,

where we have an isomorphism G(A∞) ≃ G(v0)(A∞) induced from a fixed isometry V (v0)v ≃ Vv
for all v ∤ ∞. We will call ShK(G) the Shimura varieties attached to the incoherent hermitian

space V (even though strictly speaking they are not Shimura varieties defined by Deligne).

From now on we will also make the assumption that all our unitary groups G are anisotropic;

in the incoherent case this means that G(v0) is anisotropic for any (hence every) archimedean

place v0 ∈ Hom(F0,R). Then ShK(G) is proper for any compact open subgroup K ⊂ G(A∞);

this is guaranteed if F0 ̸= Q.

8.2.2. The arithmetic diagonal for incoherent Shimura varieties. Fix now an incoherent pair V =

(Vn, Vn+1) ∈ V ◦,−. We denote G = GV = GV
n ×GV

n+1 := U(Vn)×U(Vn+1) (an incoherent unitary

group as in § 1.3.1), and let ShKG
(G) denote the product of Shimura varieties constructed in §8.1.4.

Then for every place v0 ∈ Hom(F0,R), let G(v0) := G
(v0)
n ×G

(v0)
n+1 := U(V (v0)n)×U(V (v0)n+1)) be

the unitary group associated to the nearby hermitian space V (v0). Then there exists a projective

system of varieties (ShK(G))K⊂G(A∞) over SpecF such that, for every embedding φ0 : F → C

extending v0 and every choice of CM type Φ such that φ0 ∈ Φ we have

ShK(G)×SpecF Specφ0(F )
∼
// ShK(G(v0)) (8.2.1)

where ShK(G(v0)) = ShK(G(v0),♭, hG(v0),♭) with hG(v0),♭ = h
G

(v0),♭
n

× h
G

(v0),♭
n+1

(the latter defined in

§ 8.1.1). Similarly, we have incoherent Shimura varieties ShKH
(H) for the group H = HV = U(Vn).

As in § 8.1.4, we have (finite) maps

ȷ : ShKH
(H) −→ ShKG

(G), (8.2.2)

which are the pullbacks of (8.1.7) via (8.2.1).

8.3. RSZ Shimura varieties. The unitary Shimura varieties above do not admit natural moduli

descriptions. Hence we will relate them to RSZ Shimura varieties, which admit a PEL type moduli

definition. They will play an auxiliary role when computing local heigts. We will follow [RSZ21].

8.3.1. Shimura varieties for unitary similitude groups. We resume the notation from §8.1. Thus
let Φ be a CM type, and let W be a hermitian space of dimension ν ≥ 1 whose associated

generalized CM type rν is of strict fake Drinfeld type in the sense of §8.1.2. Recall also that Gm

denotes the multiplicative group over Q.

We first consider the group (over Q)

GQ := ResF0/QGU(W )×ResF0/Q
Gm,F0

Gm

of unitary similitudes of (W, ( , )) with similitude factor in Gm.
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Let {hGQ} be the GQ(R)-conjugacy class of the homomorphism hGQ = (hGQ,φ)φ∈Φ, where the

components hGQ,φ are defined with respect to the inclusion

GQ(R) ⊂ GLF⊗R(W ⊗R)
Φ−→∼
∏
φ∈Φ

GLC(Wφ),

and where each component is defined on C× by

hGQ,φ : z 7−→ diag(z · 1rφ , zc · 1rφc ).

We single out the special case ν = 1. We letW =W0 be totally definite and we write ZQ := GQ

(a torus over Q) and hZQ := hGQ . Explicitly,

ZQ =
{
z ∈ ResF/QGm

∣∣ NmF/F0
(z) ∈ Gm

}
.

The reflex field of (ZQ, {hZQ}) is EΦ, the reflex field of the CM type Φ.

8.3.2. RSZ Shimura varieties. The Shimura varieties of [RSZ20] are attached to the group

G̃ := ZQ ×Gm GQ, (8.3.1)

where the maps from the factors on the right-hand side to Gm are respectively given by NmF/F0

and the similitude character. In terms of the Shimura data already defined, we obtain a Shimura

datum for G̃ by defining the Shimura homomorphism to be

h
G̃
: C×

(h
ZQ

,h
GQ )

−−−−−−−→ G̃(R).

Then (G̃, {h
G̃
}) has reflex field E ⊂ Q characterized by

Gal(Q/E) =
{
σ ∈ Gal(Q/Q)

∣∣ σ ◦ Φ = Φ and σ∗(r) = r
}

=
{
σ ∈ Gal(Q/Q)

∣∣ σ ◦ Φ = Φ and σ∗(r♮) = r♮
}
.

(8.3.2)

In other words, the reflex field is the common composite E = EΦEr = EΦEr♮ = EΦ for our

signature type (8.1.5).

Remark 8.3.1. The RSZ Shimura varieties are related to the unitary Shimura varieties as follows.

The torus ZQ embeds naturally as a central subgroup of GQ, which gives rise to a product

decomposition

G̃ ZQ ×G♭

(z, g) (z, z−1g),

∼
(8.3.3)

where G♭ ⊂ GQ is the restriction of scalars of the unitary group (8.1.2). The isomorphism (8.3.3)

extends to a product decomposition of Shimura data,(
G̃, {h

G̃
}
) ∼= (ZQ, {hZQ}

)
×
(
G♭, {h♭G}

)
. (8.3.4)

Hence, for a decomposable compact open subgroup K
G̃
= KZQ ×KG♭ , there is a product decom-

position

ShK
G̃

(
G̃, {h

G̃
}
) ∼= ShK

ZQ

(
ZQ, {hZQ}

)
× ShKG

(
G, {hG}

)
,

of Shimura varieties over E.
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8.3.3. Product Shimura varieties and the arithmetic diagonal. Let now W = (Wn,Wn+1) ∈ V

and G := Gn ×Gn+1 := U(Wn)×U(Wn+1) be as in § 8.1.4. Similar to (8.3.1) we set

G̃ := ZQ ×Gm GQ
n ×Gm GQ

n+1. (8.3.5)

where GQ
ν is the similitude unitary group attached to Wν as in (8.3.5). We have an analogous

Shimura datum with the reflex field E = EΦ, and an isomorphism induced by (8.3.3)

G̃ ZQ ×G♭.∼ (8.3.6)

In this situation, we will always assume that the open compact K
G̃

is decomposable of the form

K
G̃
= KZQ×KG = KZQ×Kn×Kn+1. In particular, we have a finite étale morphism ShK

G̃
(G̃)→

ShKG
(G)E over SpecE.

Moreover, let H̃ := G̃n. Then we have a map ȷ : H̃→ G̃ and corresponding maps

ShK
H̃
(H̃) −→ ShK

G̃
(G̃) (8.3.7)

that are the pullbacks of (8.1.7) along the projection ShK
ZQ
×KG

(G̃)→ ShKG
(G) given by (8.3.6).

8.4. Moduli functors over E. We formulate the PEL type moduli functor for RSZ Shimura

varieties, following [RSZ21, §3]. Denote by (LNSch)/R the category of locally noetherian schemes

over a ring R, and by Sets the category of sets.

8.4.1. The torus case. First we consider the torus ZQ. The construction of [RSZ21, §2.2], spe-
cialized to n = 1, gives a Kottwitz PEL moduli functor (LNSch)/E → Sets, which is represented

by a finite étale stack M0,K
ZQ

over E = EΦ. Since the precise definition of this functor plays

only a minor auxiliary role in this paper, we omit it and refer the interested readers to loc. cit.;

it suffices to recall that (among other data) one needs to fix a certain F/F0-traceless element√
∆ ∈ F× adapted to the CM type Φ. The stack M0,K

ZQ
is isomorphic, over E, to finitely many

copies of the Shimura variety ShK
ZQ

(ZQ). For our purposes, it suffices to work with a fixed copy,

which we denote by M τ
0,K

ZQ
.

8.4.2. Definition of the moduli funtor. Let now W be of dimension ν as in §§ 8.1.1, 8.3.1, and set

V = HomF (W0,W ).

We now present the moduli functor MK
G̃

represented by the Shimura variety ShK
G̃
(G̃). For

simplicity, we will always assume

K
G̃
= KZQ ×KG

where KG ⊂ G(A∞) is a compact open subgroup. For each scheme S in (LNSch)/E , MK
G̃
(S) is

by definition the groupoid of tuples (A0, ι0, λ0, η0, A, ι, λ, η), where

• (A0, ι0, λ0, η0) is an object of M τ
0,K

ZQ
(S);

• A is an abelian scheme over S;
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• ι : F → End0(A) := End(A)⊗Z Q is an action of F on A up to isogeny satisfying the Kottwitz

condition of signature type r given by (8.1.5),

char
(
ι(a) | LieA

)
=

∏
φ∈Hom(F,Q)

(
T − φ(a)

)rφ for all a ∈ F. (8.4.1)

• λ is a quasi-polarization on A whose Rosati involution satisfies condition

Rosλ
(
ι(a)

)
= ι(a) for all a ∈ F, (8.4.2)

and

• η is a KG-orbit (equivalently, a KG̃
-orbit, where K

G̃
acts through its projection K

G̃
→ KG) of

isometries of A∞F /A
∞-hermitian modules

η : V̂(A0, A)
∼−→ V ⊗F A∞F . (8.4.3)

Here, denoting by V̂(A′) the adelic Tate module of an abelian variety A′,

V̂(A0, A) := HomA∞
F

(
V̂(A0), V̂(A)

)
, (8.4.4)

endowed with its natural A∞F -valued hermitian form h,

h(x, y) := λ−10 ◦ y
∨ ◦ λ ◦ x ∈ EndA∞

F

(
V̂(A0)

)
= A∞F , x, y ∈ V̂(A0, A). (8.4.5)

Finally, there are natural functors interpreting Hecke correspondences T (KgK) for g ∈ G(A∞).

Proposition 8.4.1 ([RSZ21]). The functor MK
G̃
is represented by ShK

G̃
(G̃).

9. Integral models

We define and study various integral models of the RSZ unitary Shimura varieties introduced

in the last section.

9.1. Integral models with parahoric levels. We follow [RSZ21, § 4] with slightly different

formulation. We continue with the notation of § 8, we we fix a rational prime ℓ, and we denote

by Vℓ the set of places of F0 over ℓ. If ℓ = 2, then we assume that every v ∈ Vℓ is split in F .
We will assume that KZQ,ℓ ⊂ ZQ(Qℓ) is maximal. Then the auxiliary moduli stack M0,K

ZQ

(respectively its substack M0,K
ZQ

) has a natural integral modelM0,K
ZQ

(respectivelyMτ
0,K

ZQ
),

which is finite étale over SpecOE,(ℓ). For each v ∈ Vℓ, we endow the Fv/F0,v-hermitian space

Wv :=W ⊗F Fv with the Qℓ-valued alternating form trFv/Qℓ

√
∆
−1

( , ), and we fix a vertex lattice

Λv ⊂Wv with respect to this form, i.e., Λv is an OF,v-lattice such that

Λv ⊂ Λ∨v ⊂ π−1v Λv.

Here πv denotes a uniformizer in Fv (if v splits in F , this means the image in Fv of a uniformizer

for F0,v), and Λ∨v ⊂Wv denotes the dual lattice with respect to trFv/Qℓ

√
∆
−1

( , ).

We assume that KG ⊂ G(A∞F0
) is of the form KG = Kℓ

G × KG,ℓ, where K
ℓ
G ⊂ G(Aℓ∞) is

arbitrary and where

KG,ℓ =
∏
v∈Vℓ

KG,v ⊂ G(F0,ℓ) =
∏
v∈Vℓ

Gv,
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with

KG,v := StabGv(Λv). (9.1.1)

We note that if v is unramified in F , then KG,v is a maximal parahoric subgroup of U(W )(F0,v).

We then define MK
G̃

as the functor that associates to each scheme S in (LNSch)/OE,(ℓ)
the

groupoid of tuples (A0, ι0, λ0, A, ι, λ, η
ℓ), where

• (A0, ι0, λ0) is an object ofMτ
0(S);

• A is an abelian scheme over S;

• ι : OF,(ℓ) → End(ℓ)(A) is an action up to prime-to-ℓ isogeny satisfying the Kottwitz condition

(8.4.1) on OF,(ℓ);

• λ ∈ Hom(A,A∨)Z(ℓ)
is a quasi-polarization on A whose Rosati involution satisfies condition

(8.4.2) on OF,(ℓ); and

• ηℓ is a Kℓ
G-orbit of isometries of Aℓ∞

F /Aℓ∞
F0

-hermitian modules

ηℓ : V̂ℓ(A0, A)
∼−→ V ⊗F Aℓ∞

F , (9.1.2)

where

V̂ℓ(A0, A) := HomAℓ∞
F

(
V̂ℓ(A0), V̂

ℓ(A)
)
, (9.1.3)

and where the hermitian form on V̂ℓ(A0, A) is the obvious prime-to-ℓ analog of (8.4.5).

We impose the following further conditions on the above tuples.

(i) Consider the decomposition of ℓ-divisible groups

A[ℓ∞] =
∏
v∈Vp

A[v∞] (9.1.4)

induced by the action of OF0 ⊗ Zℓ ∼=
∏
v∈Vℓ OF0,v. Since Rosλ is trivial on OF0 , λ induces a

polarization λv : A[v
∞] → A∨[v∞] ∼= A[v∞]∨ of ℓ-divisible groups for each v. The condition we

impose is that kerλv is contained in A[ι(πv)] of rank #(Λ∨v /Λv) for each v ∈ Vℓ.

(ii) We require that the sign condition, the Eisenstein condition hold; we omit the definitions and

refer to [RSZ21, §5].

The morphisms in the groupoidMK
G̃
(S) are the obvious ones.

We have the following result from [RSZ20,RSZ21].

Proposition 9.1.1. The stack MK
G̃

is Deligne-Mumford, and regular with strictly semistable

reduction at all places u of E above ℓ, provided that u is unramified over F . It is smooth over

SpecOE,(ℓ) if the lattices Λv have type 0 or n for every v | ℓ. The generic fibre ofMK
G̃
is MK

G̃
.

Finally, there are natural functors interpreting Hecke correspondences T (f ℓ) for all f ℓ ∈
H (G(Aℓ∞))KG

. The correspondences T (f ℓ) are all étale.

9.2. More integral models at split places. We need to have regular integral models for deeper

levels at split places. We will consider two cases: the Iwahori case and the principal congruence

subgroup case.
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9.2.1. Setup. Fix a place v ∈ Vℓ that splits in F , say v = ww. Let u : E → Qℓ be a place of

E above v; we will assume that Eu is unramified over F0,v. Let ũ : Q ↪→ Qℓ be an embedding

extending u. Then ũ induces a bijection Hom(F,Q) ≃ Hom(F,Qℓ). Let Homw(F,Q) be the

subset of Hom(F,Q) consisting of φ ∈ Hom(F,Q) such that ũ◦φ induces w. The set Homw(F,Q)

depends only on u but not on the choice of ũ. Note that the distinguished element φ0 belongs

to Homw(F,Q). We will assume that the matching condition between the CM type Φ and the

chosen place u of E is satisfied:

Homw(F,Q) ⊂ Φ, (9.2.1)

cf. [RSZ20, §4.3]. Note that, for our signature type (8.1.5), this is equivalent to the condition

that the restriction r|Homw(F,Q) of the signature function is of the form

rφ =

 n− 1, φ = φ0 ∈ Homw(F,Q);

n, φ ∈ Homw(F,Q)∖ {φ0}.
(9.2.2)

9.2.2. Principal congruence subgroups. We now recall from [RSZ20, §4.3] the moduli problem in

the case of principal congruence subgroups. Let m be a nonnegative integer, and define Km
G,v to

be the principal congruence subgroup mod pmv inside KG,v, where pv denotes the prime ideal in

OF0 determined by v. Let

Km
G̃

:= KZQ ×Kℓ
G ×Km

G,v ×
∏

v′∈Vℓ∖{v}

KG,v′ ⊂ KG̃
.

Then one can extend the definition ofMK
G̃
,OE,u

to the case of the level subgroup Km
G̃

by adding

a Drinfeld level-m structure at v. More precisely, consider the factors occurring in the decompo-

sition (9.1.4) of the ℓ-divisible group A[ℓ∞],

A[v∞] = A[w∞]×A[w∞]. (9.2.3)

The condition (9.2.2) implies that A[w∞] is a one-dimensional formal OF,w0-module. We introduce

Tw(A0, A)[w
m
0 ] := HomOF,w

(A0[w
m], A[wm]) and Tw(A0, A) := lim−→m

Tw(A0, A)[w
m
0 ]. Note that

Tw(A0, A) is a 1-dimensional formal OF,w0-module. The datum we add to the moduli problem is

an OF,w-linear homomorphism of finite flat group schemes,

ϕ : π−mw Λw/Λw −→ Tw(A0, A)[w
m], (9.2.4)

which is a Drinfeld wm-structure on the target. Here Λw is the summand attached to w in the

natural decomposition

Λv = Λw ⊕ Λw (9.2.5)

with Λv the vertex lattice at v chosen in §9.1. See [RSZ20, §4.3] (which we note interchanges the

roles of w and w) for more details.

Then by [RSZ20, Theorem 4.7], the moduli problem MKm
G̃

is relatively representable by a

finite flat morphism to MK
G̃

and consequently it coincides with the normalization of MK
G̃

in

the generic fiber ofMKm
G̃
. It is regular and flat over SpecOE,(u). Furthermore, the generic fiber

MKm
G̃
×SpecOE,(u)

SpecE is canonically isomorphic to MKm
G̃
.



GAN–GROSS–PRASAD CYCLES AND DERIVATIVES OF p-ADIC L-FUNCTIONS 97

9.2.3. Iwahori subgroups. We will also need the Iwahori case. For simplicity we assume that the

vertex lattice Λv in (9.2.5) is self-dual. We now choose a chain of OF,w-lattices

Λw = Λ
(0)
w ⊂ Λ

(1)
w ⊂ · · · ⊂ Λ

(n)
w = π−1w Λw,

where each inclusion has colength one. Equivalently, we choose a full flag in the kv-vector space

Λw/πwΛw. This chain determines uniquely a chain of vertex OF,v = OF,w × OF,w-lattices Λ
(i)
v :=

Λw ⊕ Λ
(i)
w , 0 ≤ i ≤ n. The stabilizer of the chain Λ

(i)
v is an Iwahori subgroup Iwv of Stab(Λv).

To the moduli problem MK
G̃
,OE,u

, we add the datum of a chain of isogenies of OF,w-divisible

modules

G0 = Tw(A0, A) −→ G1 −→ · · · −→ Gn = G0/G0[w] (9.2.6)

with equal heights #kv. An equivalent datum is an Iwv-orbit of the Drinfeld level structure

ϕ : π−1w Λw/Λw −→ Tw(A0, A)[w].

The resulting moduli functor is then denoted byM
KIwv

G̃

, where KIwv

G̃
denotes the compact sub-

group of K
G̃

with the Iwahori factor at v. Then the moduli problemM
KIwv

G̃

is relatively repre-

sentable by a finite flat morphism toMK
G̃
and consequently it coincides with the normalization of

MK
G̃
in the generic fiber ofM

KIwv
G̃

. It is regular, proper and flat over SpecOE,(u). Moreover, by

the theory of local models, the schemeM
KIwv

G̃

has strictly semistable reduction over SpecOE,(u)

(namely, its generic fiber is smooth and every closed point of the special fiber admits an open

neighborhood which is smooth over the scheme SpecOE,(u)[x1, · · · , xm]/(
∏m
i=1 xi −ϖ) for some

m ≥ 1, cf. [Har01, Prop. 1.3]). Moreover, there is a natural morphism fromMKm=1
G̃

toM
KIwv

G̃

,

which is finite flat. There is a stratification of the special fiber M
KIwv

G̃

⊗ ku, where ku denotes

the residue field of OE,(u):

M
KIwv

G̃

⊗ ku =
⋃

1≤i≤n
M

KIwv
G̃

,ku,i
, (9.2.7)

whereM
KIwv

G̃
,ku,i

is the closed subscheme where the kernel of the isogeny Gi−1 → Gi in (9.2.6) is

connected, cf. [TY07, §3] for a similar case. By [TY07, Prop. 3.4] (or rather its proof), each of

M
KIwv

G̃
,ku,i

is smooth over Spec ku.

9.2.4. Hecke correspondences. We recall from [RSZ20, §4.3] that, in each of the above two cases

(principal and Iwahori level), there are natural functors interpreting Hecke correspondences at-

tached to functions 1KgK for any g ∈ G(A∞), where we simply denote K = KG:

MK′
G̃

nat1

{{

natg

##

MK
G̃

MK
G̃

(9.2.8)

where K ′
G̃
= KZQ ×K ′G, and K ′G is a subgroup of K

G̃
∩ gK

G̃
g−1. We refer to [RSZ20, §4.3] for

the unexplained notation. (Note that in loc. cit., the authors only consider the case of a principal

congruence subgroup KG = Km
G . The Iwahori case is similar and may be reduced to the case
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KG = Km
G as follows. We can factorize [IwgIw] as eIw ⋆ [KgK] ⋆ [IwgIw] for some K = Km

G ⊂ Iw,

and accordingly we define the correspondence for [IwgIw] as the composition of the three factors:

the middle one is as in loc. cit., and the other two are given by the natural map from the principal

level to the Iwahori level.)

Both maps nat1 and natg are finite flat, and étale if gℓ = 1. The Hecke correspondence

(9.2.8) induces an endomorphism (by the usual pull-back and then push-forward maps) on the

group of cycles (with L-coefficients), rather than merely cycles modulo rational equivalence. This

endomorphism is independent of the choice of K ′
G̃
in the diagram above. The resulting map

T : H (G(Aℓ∞), L)K // ÉtCorr(MK)L

is a ring homomorphism.17 Moreover, in the Iwahori case, the away-from-ℓ Hecke correspondences

preserve the stratification (9.2.7).

9.3. Moduli functors for the product Shimura varieties. It is now easy to extend the

construction in §8.3 to the product unitary group G̃ defined in § 8.3.3. There are analogous

moduli functors over E and over OE,(ℓ). For example, the ℓ-integral model may be succinctly

defined as

MK
G̃
=MK

G̃(Vn)
×Mτ

0
MK

G̃(Vn+1)
, (9.3.1)

where K
G̃(Vν)

= KZQ ×Kν for ν ∈ {n, n+ 1}.
The productMK

G̃
may no longer be regular even if both factors are regular, and we may need

to resolve the product singularity. We will need to study two cases: the vertex parahoric case at

an inert place, and the Iwahori case at a split place.

9.3.1. Vertex parahoric level at an inert place. We first consider the vertex parahoric case from

§9.1. Fix a place v ∈ Vℓ that is inert in F and we let w denote the unique place of F above v.

We fix a vertex lattice Λ♭v ⊂ Vn,v of type 0 ≤ t ≤ n and let Λv = Λ♭v ⊕ ⟨e⟩OF,v
⊂ Vn+1,v where

the hermitian norm of the special vector e has valuation ϵ ∈ {0, 1}.18 Then Λv is a vertex lattice

of type t + ϵ. We let u : E → Qp be a place of E above v and we further assume that Eu is

unramified over F0,v. We let Kn,v and Kn+1,v be the stabilizer of Λ♭v and Λv respectively. We

then call Kv = Kn,v × Kn+1,v a vertex parahoric subgroup of type (t, t + ϵ). The (self-dual)

hyperspecial case corresponds to type (0, 0).

In this case, the integral models MK
G̃(Vn)

and MK
G̃(Vn+1)

have strictly semistable reduction

over SpecOE,u; andMK
G̃(Vn)

(resp. MK
G̃(Vn+1)

) is smooth over SpecOE,u only when t ∈ {0, n}
(resp. t + ϵ ∈ {0, n + 1}); see Proposition 9.1.1. When MK

G̃(Vn)
or MK

G̃(Vn+1)
is non-smooth

over SpecOE,u, its special fiber admits a “balloon–ground” stratification ([LTX+22] for t = 1 and

[ZZh] for general t): the special fiber is a union of two Weil divisors

MK
G̃(Vn)

,ku =M◦K
G̃(Vn)

,ku ∪M
•
K

G̃(Vn)
,ku (9.3.2)

17However, we do not know if the assertion remains true for the full Hecke algebra H (G(A∞), L)K . When m = 0,
the recent work of Li–Mihatsch [LM, Proposition 3.4] shows that the assertion holds.
18Note that in §2.1.3 we have assumed the special vector has norm 1. For the general discussion of the geometry
of Shimura varieties with parahoric levels, it is more convenient to relax this condition.
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where the first one M◦K
G̃(Vn)

,ku
is called the balloon stratum and the second one M•K

G̃(Vn)
,ku

is

called the ground stratum. (When t ∈ {0, n} we understand that the balloon stratum is empty.)

WhenMK
G̃
is not regular, we let M̃K

G̃
be the blow up along the product of the balloon strata

of the two factors, and denote the blow-up morphism

π : M̃K
G̃

MK
G̃
. (9.3.3)

For (?n, ?n+1) ∈ {◦, •}2, we denote by M̃(?n,?n+1)
K

G̃
,kv

the strict transform ofM?n
K

G̃(Vn)
,ku
×M?n+1

K
G̃(Vn+1)

,ku
.

For later reference we record the following result from [LTX+22] for t = 1 and [ZZh] for general t.

Proposition 9.3.1. The scheme M̃K
G̃
is regular with strictly semistable reduction

M̃K
G̃
⊗ ku =

⋃
(?n,?n+1)∈{◦,•}2

M̃(?n,?n+1)
K

G̃
,kv

, (9.3.4)

where the schemes M̃(?n,?n+1)
K

G̃
,kv

are smooth of pure dimension 2n− 1.

The map π is small, i.e., a proper birational morphism with the property that

codim{z ∈MK
G̃
| dimπ−1(z) ≥ i} ≥ 2i+ 1,

for all i ≥ 0.

9.3.2. Iwahori level at a split place. Fix as in §9.2 a place v ∈ Vℓ that splits in F into v = ww

and we let u : E → Qℓ be a place of E above v. We further assume that Eu is unramified over

F0,v. Then the integral modelMK
G̃
over SpecOE,(u) is smooth if one of the two compact open

subgroups Kn,v and Kn+1,v is hyperspecial. When both Kn,v and Kn+1,v are Iwahori, MK
G̃
is

no longer regular and we need to resolve the product singularity. More precisely, we consider the

fiber product of the stratifications from (9.2.7)

MK
G̃
,ku,(i,j) :=MK

G̃(Vn)
,ku,i ×Mτ

0
MK

G̃(Vn+1)
,ku,j . (9.3.5)

We choose an ordering of the set {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1}, and rename the component

MK
G̃
,ku,(i,j) asMK

G̃
,ku,r where 1 ≤ r ≤ n(n+ 1). LetM(0)

K
G̃
:=MK

G̃
and for 1 ≤ r ≤ n(n+ 1)

let M(r)
K

G̃
be the blow-up of M(r−1)

K
G̃

along (the strict transforms of) MK
G̃
,ku,r. We write M̃K

G̃

forM(n(n+1))
K

G̃
, and M̃K

G̃
,ku,(i,j) for the strict transform ofMK

G̃
,ku,(i,j). The composition of the

natural blow-up maps is denoted as

π : M̃K
G̃

MK
G̃
. (9.3.6)

(We also note that the resolution in the inert case earlier can also be view a special case of the

current procedure: one simply orders the components such that the first one is the product of

the balloon strata.)

Proposition 9.3.2. The scheme M̃K
G̃
is regular with strictly semistable reduction

M̃K
G̃
,ku =

⋃
1≤i≤n,

1≤j≤n+1

M̃K
G̃
,ku,(i,j), (9.3.7)
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where the schemes M̃K
G̃
,ku,(i,j) are smooth of pure dimension 2n−1. The map π is a small map.

Proof. The first part is well-known, for example see [Har01, Prop. 2.1] or [GS95]. For the

smallness, we use the explicit description as in the proof of [Har01, Prop. 2.1]. Consider a point

P = (a, b) on the special fiber M̃K
G̃
,ku with an open neighborhood that is smooth over

SpecOE,(u)[x1, · · · , xr, y1, · · · ys]/(
r∏
i=1

xi −ϖ,
s∏
j=1

yj −ϖ)

for some (uniquely-determined) integers r, s ≥ 1, such that P lies over the point defined by

xi = 0, yj = 0, 1 ≤ i ≤ r, 1 ≤ j ≤ s. Then keeping track of the steps of the blow-ups in loc. cit.

shows that the dimension of the fiber of P is min{r − 1, s − 1}. Note that the locus of P with

fixed r, s ≥ 1 is contained in the union of

(MK
G̃(Vn)

,ku,i1 ∩ · · · ∩MK
G̃(Vn)

,ku,ir)× (MK
G̃(Vn+1)

,ku,j1 ∩ · · · ∩MK
G̃(Vn+1)

,ku,js)

for all possible 1 ≤ i1 ≤ · · · ≤ ir ≤ n, 1 ≤ j1 ≤ · · · ≤ js ≤ n + 1. The codimension of such locus

inMK
G̃
is r + s− 1 ≥ 2min{r − 1, s− 1}+ 1, which proves the smallness of the map π. □

This procedure depends on the choice of an ordering and therefore it is not canonical. Never-

theless the smallness of π shows that the resolution has the property that π∗Qp ≃ IC, the latter

being the intersection complex of the Qp-sheaf (for p ̸= ℓ). Moreover, the resulting M̃K
G̃

and

each of M̃K
G̃
,ku,(i,j) still has an action of H (G(Aℓ∞))KG

by correspondences.

9.3.3. Integral arithmetic diagonal. We have an integral model

ȷ : MK
H̃

//MK
G̃

(9.3.8)

of the morphism (8.3.7). In the two cases discussed above, over a place u of E, we have the small

resolution M̃K
G̃
and we denote by

ȷ̃ : M̃K
H̃
−→ M̃K

G̃
(9.3.9)

the strict transform ofMK
H̃
along the resolution morphism. For uniformity of notation, we will

put M̃K
H̃
:=MK

H̃
, M̃K

G̃
:=MK

G̃
, ȷ̃ := ȷ in the cases where those schemes are already regular.

9.4. Vanishing of absolute cohomology. We will prove the vanishing of the top-degree abso-

lute cohomology of the scheme M̃K
G̃
, for certain levels K

G̃
and after suitable localizations.

Let L be a finite extension of Qp.

9.4.1. Correspondences that annihilate the cohomology. We use some general result from [LL21,

LL22], that we now recall. Following [LL21, Appendix B], we define a commutative L-algebra

of étale correspondences on a scheme X to be a commutative L-algebra T equipped with a

homomorphism T→ ÉtCorr(X )L.

Let X be a regular scheme, proper and flat of relative dimension 2n − 1 (not necessarily

strictly semistable) over the ring of integers of a non-archimedean local field, with residue field

k; we assume that the generic fiber X is smooth. Let T be a commutative L-algebra of étale

correspondences on X with a maximal ideal m. Let Y denote the reduced special fiber of X .
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Assume that there is a stratification Y = Y [m] ⊃ · · · ⊃ Y [0] by closed subschemes and, for each

0 ≤ i ≤ d, a refinement of Y (i) := Y [i] \ Y [i−1] as a disjoint union of open and closed subschemes

of Y (i) of pure dimension di:

Y (i) =
∐
M∈Si

Y (M),

over a finite set of indices Si, such that

(1) For every i and M ∈ Si, denoting by Y [M ] the Zariski closure of Y (M), then Y [M ] is smooth

and is a disjoint union
∐
M ′∈SM

Y (M ′) where SM is a subset of S :=
∐

S(i);

(2) For every i and M ∈ Si, the scheme Y (M) is stable under the action of T.

Proposition 9.4.1 (Li–Liu). Under the above assumptions, if we further suppose that either of

the following two conditions holds:

(1) Hj(Y [M ] ⊗k k, L)m = 0 whenever j ̸= dimY [M ] for every M ∈ S,

(2) H2n(X,L(n))m = 0 and Hj(Y (i) ⊗k k, L)m = 0 whenever j ≤ dimY (i) − codimX Y (i) for

every i,

then H2n(X , L(n))m = 0.

Proof. Case (1). The vanishing assumption Hj(Y [M ]⊗kk, L)m = 0 is the assertion of [LL22, Prop.

4.25]. The proof of [LL22, Theorem 4.21] applies verbatim to show that the assumptions imply

the desired vanishing H2n(X , L(n))m = 0.

Case (2). This is [LL21, Corollary B.15]. We sketch their proof for the convenience of the

reader.

By the assumption H2n(X,L(n))m = 0 and the exact sequence

H2n
Y (X ) // H2n(X ) // H2n(X)

it suffices to show H2n
Y (X )m = 0. This follows from an induction using

− the exact sequences

H2n
Yj+1

(X ) // H2n
Yj
(X ) // H2n

Y ◦
j
(X \ Yj+1),

− the absolute purity theorem of Gabber H2n
Y ◦
j
(X \ Yj+1) ≃ H2n−2nj (Y ◦j ) for the regular local

immersion Y ◦j ↪→X \ Yj+1 of codimension nj ,

− the Hochschild–Serre spectral sequenceHr(k,Hs(Y ◦j ⊗kk)(n)) =⇒ Hr+s(Y ◦j )(n). In particular,

it suffices to replace (3) by a weaker assumption H2n−2nj (Y ◦j ⊗k k, L)m = H2n−2nj−1(Y ◦j ⊗k
k, L)m = 0 (namely H

dYj−cYj−i(Y ◦j ⊗k k, L)m = 0 for i = 0, 1 where dYj and cYj denote

respectively the dimension of Yj and the codimension of Yj in X .

□

9.4.2. The vanishing result. We consider the scheme M̃K
G̃
over SpecOE,u of § 9.3 where v and

KG,v are in one of the following cases:
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(1) the split-(Drinfeld-level, hyperspecial) case: the place v is split in F and in the product (9.3.1)

one of the two factors has Drinfeld-level for some integer m and the other has hyperspecial

level;

(2) the split-(Iwahori, Iwahori) case: the place v is split in F and in the product (9.3.1) both

factors have Iwahori level; in this case M̃K
G̃
is the small resolution in Proposition 9.3.2;

(3) the inert-vertex-parahoric case: the place v is inert in F and in the product (9.3.1) both factors

have vertex-parahoric levels (of type (t, t + ϵ)); in this case M̃K
G̃
is the small resolution in

Proposition 9.3.1.

Proposition 9.4.2. Let S be a finite set of nonarchimedean places of F0 containing those above

ℓ and p and those where KG is not maximal hyperspecial, and let

T = Tspl,S :=
⊗
v/∈S
split

H (Gv, L)Kv ⊂H (G̃(AS , L)◦KS .

Let m ⊂ T be the maximal ideal attached to a representation π ∈ C (G)(L). Suppose we are in

one of the above three cases, and suppose moreover that the following hold:

(1) In the split-(Iwahori, Iwahori) case, the representation πv is a (tempered) principal series.

(2) In the inert-vertex-parahoric case, the type (tn, tn+1) satisfies tn ∈ {0, 1, n− 1, n} and tn+1 ∈
{0, 1, n, n+ 1}.

Then we have

H2n(M̃K
G̃
, L(n))m = 0. (9.4.1)

Proof. We wish to apply the vanishing theorem of Li–Liu given in Proposition 9.4.1. For this, we

need to specify a stratification of the reduced special fiber of M̃K
G̃
. In the split-(Drinfeld-level,

hyperspecial) case, for simplicity we consider the case the Drinfeld level takes place on the first

factor MK
G̃(Vn)

. Then the special fiber, denoted by Yn+1, of the second factor in the product

(9.3.1) is smooth. In [LL22, §4.3] the authors have defined a stratification of the reduced special

fiber, denoted by Yn, ofMK
G̃(Vn)

, essentially a refinement of the Newton stratification

Yn =

n−1∐
i=0

∐
M∈Si

Y (M)
n ,

where Si denotes the Si
m in loc. cit.. Here we simply take the stratification of Y = Yn×Yn+1 as

the product of the stratification of Yn with Yn+1

Y =

n−1∐
i=0

∐
M∈Si

Y (M)
n × Yn+1.

By [LL22, §4.3] this stratification of Yn verifies the two conditions stated before Proposition 9.4.1

(for X =MK
G̃(Vn)

). It follows easily that the above stratification of Y verifies the two conditions

stated before Proposition 9.4.1 (for X =MK
G̃
).

In the split-(Iwahori, Iwahori) case and the inert-vertex-parahoric case, the scheme X =MK
G̃

has strictly semistable reduction. The special fiber Y is already reduced and we define the
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stratification induced by the union (9.3.7) and (9.3.4) respectively, as follows. Let J denote the

set of indices in (9.3.7) and (9.3.4), and denote Y = ∪j∈J Yj . Then we define Si to be the set

of subsets M of I with #M = #I − i such that Y [M ] := ∩j∈MYj is non-empty (then it has

codimension #M + 1 in X ). Set Y [i] = ∪M∈SiY [M ] and Y (M) = Y [M ] \ Y [#M+1]. Then we have

the resulting stratification

Y =

#J∐
i=0

Y [i] =

#J∐
i=0

∐
M∈Si

Y (M). (9.4.2)

The strict semistability of X implies that the stratification verifies the two conditions stated

before Proposition 9.4.1. (Note that the scheme Y [i] is empty once i > dimY .)

We write T = Tn ⊗Tn+1 and m corresponding to (mn,mn+1) for maximal ideals mν of Tν , ν ∈
{n, n+ 1}. We will distinguish the three cases.

Split-(Drinfeld-level, hyperspecial) case. By Proposition 9.4.1 (1), it suffices to verify that, for

every M ∈ S, we have Hj(Y [M ] ⊗k k, L)m = 0 whenever j ̸= dimY [M ]. This follows from the

Künneth formula, [LL22, Prop. 4.25] for Hj(Y
[M ]
n ⊗k k, L)mn = 0, j ̸= dimY

[M ]
n , and the similar

vanishing result for Hj(Yn+1 ⊗k k, L)mn+1 = 0, j ̸= dimYn+1.

Split-(Iwahori, Iwahori) case. We first define a stratification of the special fiber Z ofMK
G̃
prior

to the resolution, similar to (9.4.3):

Z =

#J∐
i=0

Z [i] =

#J∐
i=0

∐
M∈Si

Z(M). (9.4.3)

Then, under the condition (1), it follows from [LL21, (3), p. 859] that H i
c(Z

(M))m = 0 for all i and

M ∈ S, unless Z(M) are maximal dimensional, in which case H i
c(Z

(M))m = 0 unless i = dimZ(M).

(In loc. cit. the authors only treated the case of Drinfeld levels; but the proof applies verbatim to

the Iwahori case.) Now we return to the stratum Y (M) in (9.4.3). It is easy to see that the natural

map πM : Y (M) → Z(M) is smooth and the direct images RπjM,!L are constant on Z(M). It follows

that H i
c(Y

(M))m = 0 for all i and M ∈ S, unless Y (M) are maximal dimensional hence equal

to Z(M), in which case H i
c(Y

(M))m = 0 unless i = dimZ(M). It follows from the cohomological

exact sequence associated to Y [M ] = Y (M) ∪ (Y [M ] \ Y (M)) (see for example (9.4.5) below) and

an induction that H i(Y (M))m = 0 for all i and M ∈ S, unless Y (M) are maximal dimensional,

in which case H i(Y [M ])m = 0 for i > dimY [M ] and by Poincaré duality H i(Y [M ])m = 0 for

i ̸= dimY [M ]. We have thus verified the condition in case (1) of Proposition 9.4.1 and therefore

we have proved H2n(X )m = 0 in this case.

Inert-vertex-parahoric case. We note that the moduli spaceMK
G̃(Vν )

for type tν (at v) is isomor-

phic to another similarly defined moduli space of type ν − tν . Therefore it suffices to consider

the cases when tn, tn+1 ∈ {0, 1}. We first recall from [LL21, §9, p. 868] that, when the type is

tn = 1, the cohomology of the balloon and the ground strata satisfy

H i(Z ⊗k k, L)m = 0, i ̸= dimZ (9.4.4)

for Z = Y ◦n , Y
•
n , Y

†
n respectively, where we simplify the notation Y ?

n = M?
K

G̃(Vn)
,k in (9.3.2) for

? ∈ {◦, •}, and define Y †n = Y ◦n ∩ Y •n . If one of tn, tn+1 is 0, the proof is now similar to the
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split-(Drinfeld-level, hyperspecial) case, Proposition 9.4.1 (1). It remains to consider the type

(1, 1) case. For (?n, ?n+1) ∈ {◦, •}2, we will write Y ?n,?n+1 for the strict transform of Y ?n
n ×Y

?n+1

n+1 .

Then by the formula for cohomology of blow-up, H i(Y ?n,?n+1 ⊗k k, L) is isomorphic to

H i((Y ?n
n × Y

?n+1

n+1 )⊗k k, L)⊕

 0, (?n, ?n+1) = (◦, •) or (•, ◦)

H i−2((Y †n × Y †n+1)⊗k k, L), (?n, ?n+1) = (◦, ◦) or (•, •).

Similarly we can compute the cohomology of all of the closed strata Y [M ] in terms of the notation

in (9.4.3) using (9.4.4)

H i(Y [M ] ⊗k k, L)m = 0, i ̸= dimY [M ],

for all M ∈ S but one exception: the stratum Y [M0] := Y ◦,◦ ∩ Y •,•, which is a P1-bundle over

Y †,†. Nonetheless the exceptional case has vanishing (localized at m) cohomology at all degree

outside i = dimY †,† and i = dimY †,† + 2. Using (9.4.4) (for both n and n + 1) we can deduce

that

H i
c(Y

(M) ⊗k k, L)m = 0, i > dimY [M ]

for M ̸=M0 ∈ S. To treat the exceptional case, we use the exact sequence

H i−1(Y [M0] \ Y (M0)) // H i
c(Y

(M0)) // H i(Y [M0]). (9.4.5)

Note that the stratum Y [M0] has codimension 2 in X , and Y [M0]\Y (M0) is smooth of codimension 3

in X . Since H i(Y [M0])m = 0 when i ≥ dimY [M0] + 2, and H i(Y [M0] \ Y (M0))m = 0 when

i ̸= dimY [M0] \Y (M0) = dimY [M0]−1, we conclude that H i
c(Y

(M0))m = 0 when i ≥ dimY [M0]+2.

By Poincaré duality we have H i(Y (M0))m = 0 when i ≤ dimY [M0] − 2. Since H2n(X,L(n)) = 0,

we have verified the condition in case (2) of Proposition 9.4.1 and therefore we have proved

H2n(X )m = 0. □

Remark 9.4.3. The condition (1) in Proposition 9.4.2 may be unnecessary if one makes a more

careful study on the stratification of the special fiber of the small resolution.

10. p-adic Abel-Jacobi maps and p-adic heights

We summarize the definitions and results we need from the theory of p-adic heights. For more

details or more general setups, see Nekovář’s original paper [Nek93] and [DL24, Appendix A]; our

constructions follow the sign conventions of the latter reference. Nothing in this section is new.

The notation of this section is independent of that of the rest of the paper. We denote by L a

finite extension of Qp, and by Γ a finite-dimensional L-vector space. T

10.1. p-adic Abel–Jacobi maps and biextensions. Let F be a field of characteristic different

from p, and let X be a smooth projective scheme over F of pure dimension m−1 ≥ 1. We denote

by Z•(X)R the module of •-dimensional algebraic cycles with coefficients in a ring R (omitted

from the notation when R = Z), and by Ch•(X)R = Z•(X)R/(rational equivalence) the Chow

R-module. We denote H i(F,−) = H i
cont(GF ,−).
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10.1.1. p-adic Abel–Jcobi maps. Let 0 ≤ d ≤ m and consider the absolute étale cohomology

H2d(X,L(d)). By the Hochschild–Serre spectral sequence, it has a filtration Fil• with

0 −→ H1(F,H2d−1(XF , L(d))) −→ H2d(X,L(d))/Fil2 −→ H0(F,H2d(XF , L(d))) −→ 0.

We denote by cl : Zd(X)L → H0(GF , H
2d(XF , L(d)) the geometric cycle class map, by Zd(X)0L

its kernel, and we let

c̃l : Zd(X)L −→ H2d(X,L(d)))/Fil2,

cl : Zd(X)0L −→ H1(F,H2d−1(XF , L(d)))

be the absolute cycle class map and the Abel–Jacobi map, respectively. The maps cl, c̃l factor

through the Chow group Chd(X), and the map cl factors through the image Chd(X)0 ⊂ Chd(X)

of Zd(X)0.

If M ⊂ H2d−1(XF , L(d)) is a GF -stable subspace, we denote by

ZdM (X)0L, ChdM (X)0L

the preimages in Zd(X)0L, Ch
d(X)0L of H1(F,M) ⊂ H1(F,H2d−1(XF , L(d))) under the Abel–

Jacobi map.

Suppose that F is non-archimedean of residue characteristic ℓ. We will consider subspaces M

satisfying the condition:

(1) if ℓ ̸= p: H1(F,M) = 0;

(2) if ℓ = p: H1
st(F,M) = H1

f (F,M).

Remark 10.1.1. Since by [NN’ 16, Theorem B] the map cl takes values in the subspace

H1
st(F,H

2d−1(XF , L(d))),

the conditions above imply that

cl(ZdM (X)0L) ⊂ H1
f (F,M).

If M is pure of weight −1 (as is implied for all M ⊂ H2d−1(XF , L(d)) by the weight-monodromy

conjecture), then the relevant one among the conditions above is satisfied.

10.1.2. Biextensions from algebraic cycles. Let d1, d2 ≥ 0 be integers with d1 + d2 = m, and let

Z1 ∈ Zd1(X)0L, Z2 ∈ Zd2(X)0L

be cycles with disjoint supports. Let Mi := H2di−1(XF , L(di)). To each Zi is associated an

extension of L[GF ]-modules

0→Mi → Ei → L→ 0
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whose class inH1(F,Mi) is the p-adic Abel–Jacobi image cl(Zi). A further geometric construction

yields the biextension E2
1 = EZ2

Z1
fitting in the following exact diagram

0

��

0

��

0 // L(1) // E2

��

// M1
//

��

0

0 // L(1) // E2
1

��

// E1
//

��

0

L

��

L

��

0 0

(10.1.1)

where M1 = M∗2 (1) via Poincaré duality, and E2 := E∗2(1). We denote its class by [E2
1 ] ∈

H1(F,E2).

10.2. Height pairings. We collect some definitions and properties of local and global height

pairings.

10.2.1. Local height pairings of algebraic cycles. Suppose that F is non-archimedean of residue

characteristic ℓ. Let λ : F×⊗̂L→ Γ be an L-linear map.

For i = 1, 2 let Mi ⊂ H2di−1(XF , L(di)) be L[GF ]-submodules, and denote still by ⟨ , ⟩ : M1⊗L
M2 → L(1) the restriction of the Poincaré pairing

⟨ , ⟩ : H2d1−1(XF , L(d1))⊗L H
2d2−1(XF , L(d2))

∪−→ H2m−2(XF , L(m))
Tr−→ L(1),

where the map Tr is the sum of the trace maps for the connected components of X. Assume that

M1, M2 satisfy the following conditions:

(1) ⟨ , ⟩ : M1 ⊗LM2 → L(1) is a perfect pairing;

(2) if ℓ ̸= p, we have H0(F,Mi) = 0 for i = 1, 2; this implies condition (1) for M1, M2 in § 10.1.1,

and is implied by the condition that Mi is pure of weight −1;

(3) if ℓ = p:

− Mi is crystalline with Dcrys(Mi)
φ=1 = 0 for i = 1, 2; this implies condition (2) for M1, M2

in § 10.1.1, and is implied by the condition that Mi is crystalline and pure of weight −1;

− the Panchishkin condition: there is a (necessarily unique) extension of crystalline repre-

sentations

0→M+
i →Mi −→M−i → 0

such that Fil0DdR(M
+
i ) = DdR(M

−
i )/Fil0DdR(M

−
i ) = 0; this implies that the natural map

DdR(M
+
i )⊕ Fil0DdR(Mi)

∼=−→ DdR(Mi) (10.2.1)

is a splitting of the Hodge filtration on DdR(Mi).
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Assume that Z1 ∈ Zd1M1
(X)0, Z2 ∈ Zd2M2

(X)0. Then the biextension class [EZ2
Z1

] belongs to

the preimage H1
M1-f

(F,E2) ⊂ H1(F,E2) of H1
f (F,M1) under the natural map H1

f (F,E
1) →

H1(F,M1). This group sits in the (pushout) diagram of exact sequences19

0 // H1(F,L(1))
σ←−
// H1

M1-f
(F,E2) // H1

f (F,M1) // 0

0 // H1
f (F,L(1))

σf←−
//

OO

H1
f (F,E

2) //

OO

H1
f (F,M1) // 0

(10.2.2)

admitting canonical splittings σ, σf . These are obvious if ℓ ̸= p, as then H1(F,M1) = 0; for

ℓ = p, they are induced by (10.2.1) (see [Nek93, § 4]). Morevoer, the Kummer map identifies

H1(F,L(1)) ∼= F×⊗̂L(1).

Definition 10.2.1. Let M1, M2, Z1, Z2 be as above. We define

hX,λ(Z1, Z2) := λ ◦ σ([E2
1 ]) ∈ Γ. (10.2.3)

Remark 10.2.2. Since the conditions on the pair (M1,M2) are stable under subobejcts and ex-

tensions (see [DL24, Lemma A.14] for extensions when ℓ = p), there is a maximal pair satisfying

those; in particular we may omit (M1,M2) from the notation.

Remark 10.2.3. If ℓ = p, it follows from the previous discussion that σ([E2
1 ]) ∈ O×F ⊗̂L ⊂ F×⊗̂L

if and only if [E2
1 ] is crystalline (that is, belongs to H1

f (F,E
2)).

Lemma 10.2.4 (Base change). Consider the setup of Definition 10.2.1.

(1) Let F ′/F be a finite extension, and let λ′ := λ ◦ NF ′/F . Then for any Z1 ∈ Zd1M1
(X)0,

Z ′2 ∈ Zd2M2
(XF ′)0,

hXF ,λ(Z1,NF ′/FZ
′
2) = hXF ′ ,λ′(Z1,F ′ , Z2).

(2) Let u : X ′ → X be a finite étale morphism, and let Z1 ∈ Zd1M1
(X)0, Z2 ∈ Zd2M2

(X)0. Denote

by Z ′i the pullback of Zi to X
′. Assume ℓ ̸= p. Then

hX,λ(Z1, Z2) =
1

deg u
hX′,λ(Z

′
1, Z

′
2).

Proof. Part (1) is [Nek95, (II.1.9.1)]. Part (2) follows from [LL21, Lemma B.3] and [DL24,

Proposition A.7]. □

10.2.2. Global height pairings for Selmer groups. Let now F be number field and λ : ΓF,L → Γ be

an L-linear map.

LetM1,M2 be L-vector spaces endowed with continuousGF -representations that are unramfied

at all but finitely many places of F , and de Rham at all the p-adic places. Assume moreover

that M1, M2 are endowed with a perfect GF -equivariant pairing ⟨ , ⟩ : M1 ⊗L M2 → L(1), and

that for each i and each finite place w of F , the representation Mi restricted to GFw satisfies the

conditions (2), (3) of § 10.2.1.

19This diagram should also replace an incorrect one in [Dis17, (4.1.4)].
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Under these conditions,20 Nekovář [Nek93] defined a bilinear height pairing on the Bloch–Kato

Selmer groups

hM1,λ : H
1
f (F,M1)⊗L H1

f (F,M2) −→ Γ (10.2.4)

as follows. For i = 1, 2 pick representatives Ei of the extension classes [Ei] ∈ H1
f (F,Mi), and let

E2
1 be a biextension fitting in a diagram (10.1.1) of GF -representations. For each place w of F ,

one can then define h
E2

1
w ([E1], [E2) by the right-hand side of (10.2.3) (where everything is viewed

as a representation of Gw); the sum

h([E1], [E2]) :=
∑
w

h
E2

1
w ([E1], [E2)

does not depend on the choice of E2
1 .

Lemma 10.2.5 (Projection formula). Let (M1,M2) and (M ′1,M
′
2) be as above. Let ϕ : M ′1 →M1

be a map of GF -representations, and let ϕ∗(1) : M2 →M ′2 be the dual map. Let [E′1] ∈ H1
f (F,M

′
1),

[E2] ∈ H1
f (F,M2). Denote by E′2 := ϕ∗(1)∗E2, E1 := ϕ∗E

′
1 the pushouts. Then

hM ′
1
([E′1], [E

′
2]) = hM1([E1], [E2]).

Proof. Let E′ ∈ H1
f (F,E

2′) be a biextension (as in (10.1.1)) of E′1 and E
2′ := ϕ∗(E∗2(1)) = E′∗2 (1).

The map ϕ : M ′∗2 (1) ∼= M ′1 → M1
∼= M∗2 (1) induces by pullback a map ϕ : E2′ → E2. Then a

diagram chase shows that ϕ∗E
′ ∈ H1

f (F,E
2) is a biextension of E1 and E2. □

10.2.3. Decomposition in the case of algebraic cycles. Let X be a proper smooth scheme over F

of dimension m− 1, and suppose that Mi ⊂ H2di−1(XF , L(di)) are L[GF ]-submodules satisfying

the above conditions with respect to a pairing ⟨ , ⟩ that is the restriction of the Poincaré pairing.

We then denote hX,λ := hM1,M2,λ, for which we have

hX,λ(cl(Z1), cl(Z2)) =
∑
w∤∞

hXw,λw(Z1, Z2), (10.2.5)

where the sum runs over all the non-archimedean places of F , and Xw := XFw , λw := λ|F×
w ⊗̂L.

10.3. Relation to arithmetic intersection theory. We collect two results relating local heights

away from p, and the crystalline property of biextensions at p, with arithmetic intersections. We

start with some preliminaries. For more details on the background, see [LL21, Appendix B] and

references therein.

10.3.1. Extensions of algebraic cycles. Let X be a regular scheme; for a closed subset Y (omitted

from the notation if Y = X ) we denote by KY
0 (X ) the K-group of complexes of coherent

sheaves on X with cohomology supported in Y . We denote by F• the filtration on KY
0 (X ) by

the codimension of support. We have an L-linear map

κ : Zd(X )L −→ F•K0(X )L (10.3.1)

such that if Z ⊂X is an integral subscheme, then κ([Z ]) = [OZ ].

20These are not the most general possible; for instance, the crystalline condition at p-adic places is not necessary.
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Let now F be a nonarchimedean local field and denote by k its residue field. Assume that the

regular scheme X is endowed with a projective and flat map π : X → OF , and denote by X and

Xk respectively the generic and special fibre of X .

Definition 10.3.1. Let Z ∈ Zd(X)L, and denote by |Z| ⊂ X its support. We say that an element

Z ∈ FdK
Xk∪|Z|
0 (X )L ⊂ FdK0(X )L

is an extension of Z if Z|X ∈ FdK0(X)L coincides with κ(Z).

10.3.2. Intersection pairing. Suppose that X has dimension m − 1 ≥ 1. For a pair of integers

d1, d2 ≥ 0 with d1 + d2 = m, and cycles Zi ∈ FdiK0(X ) with |Z1| ∩ |Z2| ⊂ |Xk|, we define their

intersection by

(Z1 ·Z2) := χ(π∗(Z1 ∪Z2)),

where

∪ : Fd1K |Z1|
0 (X )⊗ Fd2K

|Z2|
0 (X ) −→ FmKXk

0 (X )

is the cup product, and χ : K0(Spec k)→ Z is the Euler characteristic. The definition is extended

linearly to cycles with coefficients in L.

10.3.3. Arithmetic intersections and the crystalline property at p. Consider the setup of § 10.2.1

with ℓ = p.

Proposition 10.3.2. Assume that p > m or m = 2, and that X admits a proper smooth model

X /OF . If the supports of the Zariski closures Z1, Z2 of Z1, Z2 in X are disjoint, then the

biextension [E2
1 ] is crystalline.

Proof. If p > m, this is a special case of [DL24, Theorem A.8]. If m = 2, this is a special case of

[Dis17, Proposition 4.3.1]. □

10.3.4. Arithmetic intersections and local heights away from p. Consider the setup of § 10.2.1

with ℓ ̸= p.

Proposition 10.3.3. Assume that m = 2n and d1 = d2 = n. Let T1, T2 ∈ ÉtCorr(X )L, and

assume that Z1.T1 and Z2.T2 have disjoint supports. Let X be a regular flat projective scheme

over OF with generic fibre X, and let Zi ∈ FdiK0(X ) be an extension of Zi for i = 1, 2.

Suppose that one of the following conditions holds:

(1) X is smooth over OF , Zi is (the image under κ = (10.3.1) of) the Zariski closure of Zi, and

Ti = id;

(2) T1, T2 annihilate H2n(X , L(n)).

Then

hλ(Z1.T1,Z2.T2) = −((Z1.T1) · (Z2.T2))λ(ϖ)

where ϖ ∈ F× is a uniformizer.

Proof. In case (1), this is a special case of [LL21, Proposition B.10] combined with [DL24, Proposi-

tion A.7, Remark A.6]. In case (2), this is [LL21, Proposition B.13] combined with [DL24, Propo-

sition A.7, Remark A.6]. □
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In favorable cases, correspondences satisfying condition (2) of the proposition can be found

using Proposition 9.4.1 as in [LL21,LL22].

11. The arithmetic relative-trace formula

Let V ∈ V ◦,− be an incoherent pair, and let G = GV , H := HV . In this section, we define

our cycles of interest, and a distribution J = JKp on (part of) the Hecke algebra for G(Ap)

that encodes their p-adic heights. The main result of this section is the arithmetic RTF for J

(Theorem 11.5.3).

We will denote XK := ShK(G), YKH
:= ShKH

(H). In § 11.1 we study the étale cohomology

of XK and define the Galois representation of interest. In § 11.2, we define and study the

arithmetic diagonal cycles and Gan–Gross–Prasad cycles. In § 11.3 we define J by means of

height pairings of those cycles, and give its spectral expansion. In § 11.4 we prove some vanishing

results to decompose J as a sum indexed by the nonsplit places of F0. Finally, in § 11.5 we state

the geometric expansion of J .

11.1. Cohomology and automorphic Galois representations. Let L be an algebraic exten-

sion of Qp.

11.1.1. Ordinary representations of G(A). We say that π ∈ C̃ (G)(L) is ordinary if for every place

v|p of F0, the base-change BC(πv) satisfies the ordinariness conditions of § 1.1.2. If Kp ⊂ G(F0,p)

is a compact open subgroup, we say that πp is Kp-ordinary if it is ordinary and moreover πKp ̸= 0.

These conditions define ind-subschemes

C (G)ordKp
⊂ C (G)ord ⊂ C (G)Qp .

We also denote by C (H\G)ord and C (H\G)ordKp
their ind-subschemes of Galois orbits of distin-

guished representations. Finally, for the above decorations ‘?’, we define C̃ (G)?(L) as the corre-

sponding sets of isomorphism classes of representations such that C (G)?(L) = C̃ (G)(L)/GL (cf.

§ 2.5.3).

11.1.2. Duals and Hecke actions. If S is a finite set of places of F0 and M is an admissible (left)

L[G(AS)]-module, we denote

M∗ := lim←−
KS⊂G(AS∞)

MKS ,∨

the algebraic dual of M , whereas as usual we denote by M∨ = lim−→KS M
KS ,∨ the contragredient;

for any compact subgroupK ′ ⊂ G(AS∞), we denote byM∗K′ theK ′-coinvariants (thus the natural

map M∨,K
′ →M∗K′ is an isomorphism if K ′ is open). We have a map

M∨−→ M∗

x 7−→ lim
K
x ◦ eK

(11.1.1)

(where eK : M →MK is the natural K-projection). The left Hecke action on M induces a right

action

T : H (G(AS), L) −→ Hom(M∗,M∨).
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11.1.3. Hecke and Galois actions on the cohomology of unitary Shimura varieties. For i ∈ Z, we

put
M i,K := H i(ShK(G)F ,Qp(n)), M i := lim−→

K

M i
K . (11.1.2)

where the limit is with respect to the pullback maps. For ? = ∅,K, we also put M⊕,? :=
⊕
M i,?;

it has a natural (left) action by H (G(A∞),Qp)? and by the Galois group GF .

Let ⋄ ∈ Z∪{⊕}. Then the H (G(A∞),Qp)-action on M⋄ makes it into an admissible G(A∞)-

module, so that we may consider M⋄,∗. It is helpful to think of M⋄,∗ as the inverse limit of

homology (and of M⋄, M⋄,∨ as the direct limits of cohomology, respectively homology).

For π ∈ C̃ (G)(L), let
ρ[π]⋄ := HomH (G(A∞))(π

∨,M⋄,∨L (1)),

M⋄,π := π∗ ⊠ ρ[π] ⊂M⋄,∗L (1),

so that we have a Hecke-equivariant map

π −→ HomGF
(M⋄,∗(1), ρ[π]) (11.1.3)

factoring through HomGF
(M⋄,π, ρ[π]). In fact, it is known (see [BW80, Theorem III.5.1]) that

the temperedness implies

M⊕,π =M2n−1,π (11.1.4)

so that we will simply write Mπ :=M2n−1,π, ρ[π] := ρ[π]2n−1.

We put MK
π∨ := (Mπ

K)∨ and Mπ∨ := lim−→K
Mπ∨ , so that Mπ = M∗π∨(1). For ? ∈ {temp, t-ord},

we put

M?,Qp
:=
⊕

Mπ ⊂M⊕Qp
, M?

Qp
:=
⊕

Mπ ⊂M⊕,∗
Qp

(1)

where the sums run over C (G)(Qp) and C (G)ord(Qp) respectively. These are base-changes of L-

subspacesM? ⊂M2n−1,M?
L ⊂M2n−1,∗(1). Poincaré duality gives an isomorphismMK

∼=M∗K(1),

which induces isomorphisms

MK
?
∼=M?

K

for ? ∈ {temp, t-ord} ∪ C̃ (G)(L).

11.1.4. Automorphic Galois representations and decomposition of the cohomology. Assume from

now on that the extension L of Qp is finite, and denote by Qp an algebraic closure of L. Let

π = πn ⊠ πn+1 ∈ C̃ (G)(L).

Lemma 11.1.1. For ν ∈ {n, n+ 1} there is a semisimple continuous representation

ρπν ,Qp
: GF → GLν(Qp)

characterized, up to isomorphism, by the property that for all but finitely many places w of F

split over F0, the restriction ρπν ,Qp|GFw
is unramified, and a geometric Frobenius at w acts with

a characteristic polynomial equal to the Satake polynomial of πw viewed as a representation of

GLν(Ew). If πν is stable, then

ρπν ,Qp

∼= ρBC(πν),Qp
(11.1.5)

(where the latter is as in § 1.2).
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Proof. The construction is as in [DL24, Lemma 4.10], using [LTX+22, Proposition 3.2.8] (due to

Shin) instead of [Mok15]. Property (11.1.5) is immediate from the construction. □

Let

ρπ,Qp
: GF → GLn(n+1)(Qp)

be defined by ρπ,Qp
(−n) := ρπn,Qp

⊗ρπn+1,Qp
. If ρ : GF → GLn(L) is a continuous representation,

denote by ρQp
:= ρ⊗L Qp the base-change and by ρss

Qp
its semisimplification.

The following key hypothesis gives an explicit description of ρ[π] (at least in the stable case).

Hypothesis 11.1.2. Let π ∈ C̃ (G)(L), and let K ⊂ G(A∞) be an open compact subgroup. Then

ρ[π]ss
Qp

is is isomorphic to a direct summand of ρπ,Qp
. Moreover, if π is stable then ρ[π]ss

Qp

∼= ρπ,Qp
.

Remark 11.1.3. Let Π ∈ C (G′)her,−Qp
, and let L = Qp(Π). Let π ∈ C (GV )(Qp) be the preimage

of Π under (2.5.1); a priori we know it is isomorphic to its GL-conjugates but not that it arises

from some π ∈ C̃ (GV )(L). Assume that Hypothesis 11.1.2 holds. By the definitions, the space

Mπ

is isomorphic to π∗ ⊠ ρ[π] as a Hecke- and Qp[GF ]-module, and it is a GL-invariant subspace of

M2n−1,∗
Qp

(1). Let Mπ := (Mπ)GL ⊂M2n−1,∗
L (1), and define the L[GF ]-module

ρΠ := (Mπ)H(A∞)

Then we have

ρΠ ⊗L Qp
∼= (π∗)H(A∞) ⊗Qp

ρ[π].

The first tensor factor is 1-dimensional, so that by Remark 2.5.7 and (11.1.5), the representation

ρΠ : GF −→ GLn(n+1)(L)

satisfies

(ρΠ ⊗L Qp)
ss ∼= ρΠn,Qp

⊗ ρΠn+1,Qp
(n).

(In fact, it is conjectured that ρΠν,Qp
is irreducible for ν = n, n+1, so that the semisimplifcation

should be superfluous.) This also implies that π has a model π = HomL[GF ](M
π, ρΠ) defined

over L; in other words, for an incoherent V ∈ V ◦,− we have C̃ (HV \GV )stQp
= C (HV \GV )stQp

.21

11.1.5. Properties of automorphic Galois representations.

Proposition 11.1.4. Let π ∈ C (G)Qp(L). The Galois representation ρ := ρπ,Qp
satisfies the

following properties:

(1) For every nonarchimedean place w of F , the representation ρ|GFw
is pure of weight −1 in the

sense of [DL24, Definition A.11].

(2) The representations ρc and ρ∗(1) are isomorphic.

(3) For every place v|p of F0 and every place w|v of F :

(a) if πv is unramified, then ρ|GFw
is crystalline;

21It is plausible that this kind of equality holds more generally, but we do not explore this here.
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(b) if moreover πv is ordinary, then ρ|GFw
is Panchishkin-ordinary.

If Hypothesis 11.1.2 holds, then the conclusions (1)-(3) above also hold for ρ = ρ[π] and

ρ =Mπ
K .

Proof. Part (1) is a fundamental result of Caraiani [Car12,Car14] (see also [TY07, Lemma 1.4

(3)]). Part (2) follows from the last statement in [DL24, Lemma 4.10] for ρπ,Qp
, and from

the Galois-equivariance of the Poincaré pairing for ρ[π], Mπ. The proof of part (3) is as in

[DL24, Lemmas 4.9, 4.14]. (In fact the assumption on πν,v in (b) is stronger than the analogous

assumption in loc. cit.; correspondingly each factor ρπν |GFw
is also ordinary in the sense of [Nek93,

Definition 1.29]; however, only Panchishkin-ordinariness is stable under tensor products.) □

For the rest of the paper, we will assume Hypothesis 11.1.2 for every22 representation π ∈
C̃ (G)(Qp).

11.2. Gan–Gross–Prasad cycles. We define our cycles and study an ‘ordinary’ modification.

11.2.1. Arithmetic diagonal cycles. We have a fundamental cycle

[Y ]◦ = ([YKH
]◦) ∈ lim←−

KH

Z0(YKH
)Q,

where the transition maps on the right are pushforwards and [YKH
]◦ = vol(KH, dh)[YKH

]. Let ȷ

be (system of) arithmetic diagonal maps (8.2.2). The arithmetic diagonal cycle

Z := ȷ∗[Y ]◦ ∈ lim←−
K

Zn(XG,K)Q (11.2.1)

is well-defined. We denote by ZK its image in Zn(XG,K)Q.

11.2.2. Limits of Selmer groups. Let L be a finite extension of Qp, and let π ∈ C̃ (G)(L). For

? ∈ {temp, t-ord, π}, define

H1
f (F,M

?) := lim←−
K

H1
f (F,M

?
K), H1

f (F,M?) := lim−→
K

H1
f (F,M

K
? ).

11.2.3. GGP cycles and associated functionals. Let

Zπ,K ∈ H1
f (F,Mπ,K)

be the Hecke-eigencomponent of c̃l(ZK). Here, by the discussion in § 10.1, the fact that Zπ,K

belongs to the Bloch–Kato Selmer group is a consequence of the vanishing of Mπ,K ∩M2n and

Proposition 11.1.4.

Definition 11.2.1. The Gan–Gross–Prasad cycle of π is

Zπ := lim←−
K

Zπ,K ∈ H1
f (F,M

π);

22In fact, it would be enough to assume it for the representation π in order to prove Theorem D for π, at the cost
of some complication in the exposition.
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The H(A)-invariant functional associated to it via (11.1.3) will still be denoted by

Zπ : π −→ H1
f (E, ρ[π])

ϕ 7−→ Zπϕ := ϕ∗Zπ.

From the H(A)-invariance it follows that Zπ vanishes unless π ∈ C (H\G).

Remark 11.2.2. The linear functional Zπ valued in the Selmer group can be viewed as an arith-

metic analog of the automorphic period functional Pπ of (4.6.1).

11.2.4. Ordinary cycles. Suppose that every place v|p of F0 splits in F . For each v, we may

fix a place w|v of F and compatible bases of Vν,w, giving isomorphisms GF0,v
∼= GLn × GLn+1,

HF0,v
∼= GLn as algebraic groups over F0,v = Fw. Then we may and will use the notation,

definitions and results of § 5; we generally also denote □p :=
∏
v|p□v; for instance, t0,p =

∏
v|v t0,v,

N◦0,p =
∏
v|pN

◦
0,v ⊂ GLn(F0,p)×GLn+1(GF0,p)

∼= G(F0,p). We define an operator eord := limUN !
t0 ;

it acts on MN◦
0,p

and on πN
◦
0,p for any π ∈ C (G)Qp ; the representation π is ordinary if and only

if it is not annihilated by eord.

Let Kp ⊂ G(F0,p) be an open compact subgroup containing N◦0,p, and let c ≥ 1 be such that Kp

contains K
⟨c+1⟩
0 . For positive integers r, N with N ! ≥ r ≥ c, set m0,r =

∏
v|pm0,r,v (cf. (5.1.4)

for the definition of twisting matrices), and define

Z†,NKp
:=
∏
v|p

qrd(n)v · Z.T (m0,rU
N !−r
t0,p

eKp)Q ∈ Zn(XG,Kp),

which is independent of r by Corollary 5.1.5.

We define the ordinary arithmetic diagonal cycle by

Zord
Kp

:= lim
N→∞

c̃l(Z†,NKp
) ∈ lim←−

Kp

(H2n(XKpKp ,Qp(n))/Fil
2).eord.

For any π ∈ C (H\G)ord, we define the ordinary GGP cycle

Zord
π,Kp

∈ H1
f (F,M

π
Kp

)

to be the eigencomponent of Zord
Kp

. By the definitions, for any sufficiently large r,

Zord
π,Kp

=
∏
v|p

qrd(n)v lim
N→∞

Zπ.T (m0,rU
N !−r
t0,p

eKp).

We have an induced H(Ap)-invariant functional still denoted by the same name

Zord
π,Kp

: πKp −→ H1
f (E, ρ[π]).

It factors through eordeKp .

11.2.5. Norm relation. Continue with the notation and assumptions of § 11.2.4. In order to study

p-adic heights, it will be useful to know that Z†,Nπ,Kp
is a norm from some ring class fields of F of

conductors that are high powers of p.

Let T be the unitary group of the 1-dimensional hermitian space (F,NF/F0
). We have a map

rec : GF −→ F×\A∞,×F −→ T(F0)\T(A∞),
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where the first map is the reciprocity law of class field theory and the second map is x 7→ xc/x

(and the bars denote Zariski closures). For v|p and r ≥ 0, let K
(r)
T,v := T(OF0,v) ∩ 1 + vrOF0,v , let

Γr = Γ
(v)
r := T(F0)\T(A∞)/T(Ôv

F0
)K

(r)
T,v, and let

Fr = F (v)
r /F

be the abelian extension such that Gal(Fr/F ) ∼= Γr under the reciprocity map. We have the

norm map

NFr/F : Zn(XG,K,Fr) −→ Zn(XG,K).

Lemma 11.2.3. Fix a place v|p of F0. For any fp ∈H (G(Ap∞),OL)Kp and any integer r with

max{1, c(Kv)− 1} ≤ r ≤ N !, there exists a cycle Zr = Z†,NKp (fp)
(v)
r ∈ Zn(XG,K,Fr)OL

such that

Z†,NKp (f
p) = NFr/F (Zr).

Proof. We may assume fp = eKp , and abbreviate Z†,NK = Z†,NKp (fp). Let Kp
H := H(Ap∞) ∩ Kp

and let Yr := Y
Kp

HK
(r)
H,0,p

. Then by (5.1.8), the map Y
ȷ→ X

m0,r→ X → XK factors through Yr, and

we can write

Z†,NK =
∏
v|p

qrd(n)v · (ȷ∗[Yr]◦).T (m0,rU
N !−r
t0,p

eK) = vol◦(KH,0,p) · (ȷ∗[Yr]).T (m0,rU
N !−r
t0,p

eK)

(see (5.1.7) for vol◦(KH,0,p)).

Let det : H → T be the determinant map. For a compact open subgroup K ⊂ H(A∞), by

Shimura’s reciprocity law we have an isomorphism of GF -sets

π0(YK,F )
∼= T(F0)\T(A∞)/ detK.

Now we have detK
(r)
H,0,v = 1+ vrOF0,v = 1+wrOF0,w

∼= K
(r)
S,v, where the last identification comes

from the natural map F×w ⊂ F×v → Sv. Thus we deduce a natural surjection p: π0(Yr,F ) → Γr.

For each γ ∈ Γr, let Yr,γ,F ⊂ Yr,F be the union of connected components in p−1(γ); it arises as

Yr,γ ×Fr F for an Fr-subvariety

Yr,γ ⊂ Yr,Fr .

Then for any γ0 ∈ Γr, we have

Z†,NK = vol◦(KH,0,p) ·NFr/F (ȷ∗[Yr,γ0 ]).T (m0,rU
N !−r
t0,p

eK),

which belongs to NFr/F (Z
n(XG,K,Fr)Zp) since vol◦(KH,0,p) is a p-unit. □

11.3. The distribution and its spectral expansion. From now until the end of the paper,

we suppose that every place v|p of F0 splits in F and that Kp ⊂ G(F0,p) is the hyperspecial

subgroup G(OF0,p).

11.3.1. Height pairings. Considering the setup of § 10.2.3, we denote by

h : H1
f (F,M

Kp

t-ord)×H
1
f (F,M

t-ord
Kp

) −→ ΓF0,L (11.3.1)

the pairing induced by the family hXK ,λ : H
1
f (F,M

K
t-ord)

⊗2 → ΓF0,L for K = KpKp, where

λ : ΓF,L −→ ΓF0,L



116 DANIEL DISEGNI AND WEI ZHANG

is the natural surjection. It is well-defined by the projection formula (Lemma 10.2.5). Note that

the conditions of § 10.2.1 for the definition of h (as well as for the definition of the pairing hπ

from § 1.3.7) are satisfied by Proposition 11.1.4. We also have a pairing (abusively denoted by

the same name)

h : H1
f (F,M

Kp

t-ord)×H
1
f (F,M

Kp

t-ord) (11.3.2)

obtained from (11.3.1) by composing with the map induced by (11.1.1) on the second factor.

For a non-archimedean place w of F , we denote by hw the corresponding local pairings (10.2.5)

on pairs of (limits of) cycles with disjoint supports in Znt-ord(XK,Fw)
0
L (if w|p) or Zntemp(XK,Fw)

0
L

(if w ∤ p). For w ∤ p, this requires a projection formula for w-local heights, which is equivalent to

Lemma 10.2.4 (2).

11.3.2. Definition of the distribution. For S a finite set of non-archimedean places of F0, denote

by

H (G(AS), L)◦KS-temp ⊂H (G(AS), L)KS

the subalgebra of measures fS = fS∞f∞ such that f∞ ∈ Lf◦∞ (where f◦∞ = (4.1.5)) and

M⊕.T (fSeKS
) ⊂MKS

temp.

Define first

JKp : (H (G(Ap), L)◦Kp-temp)
2 −→ ΓF0,L

(fp1 , f
p
2 ) 7−→ h(Zord

Kp
.T (fp1 ), Z

ord
Kp
.T (fp2 )),

(11.3.3)

(where the right-hand side uses the pairing (11.3.2)).

Definition 11.3.1. For any fp ∈H (G(Ap), L)◦Kp
that can be written as

fp = fp1 ⋆ f
p,∨
2 (11.3.4)

with fpi ∈H (G(Ap), L)◦Kp-temp, we define the arithmetic relative-trace distribution by23

JKp(f
p) := JKp(f

p
1 , f

p
2 ).

Remark 11.3.2. The definition is independent of the decomposition (11.3.4). Indeed, let Kp ⊂
G(Ap∞) be such that fp ∈ H (G(Ap∞))Kp , and let S be a finite set of finite places of F0,

not above p, such that KS := K ∩ G(ASp∞) is a maximal hyperspecial subgroup. Let etemp
K ∈

H (G(AS∞))KS be an element acting as the idempotent projection MK →MK
temp. Then by the

projection formula (Lemma 10.2.5), for each decomposition (11.3.4) we have

JKp(f
p
1 , f

p
2 ) = h(Zord

Kp
.T (fp1 ), Z

ord
Kp
.T (fp2 e

temp
K )) = h(Zord

Kp
.T (fp), Zord

Kp
.T (etemp

K )),

which shows that JKp(f
p) is well-defined.

Let now
fp,Kp,N :=

∏
v|p

qrd(n)v ·m0,r,pU
N !−r
t0,p

eKp , (11.3.5)

where 1 ≤ r ≤ N !. By the definitions, we have

JKp
(fp1 , f

p
2 ) = lim

N→∞
h(Z.T (fp1 fp,Kp,N ), Z.T (f

p
2 fp,Kp,N )).

23The abuse of notation with respect to (11.3.3) should cause no confusion.
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It is independent of the choice of r ≤ N !.

11.3.3. Spectral expansion. Let π ∈ C̃ (H\G)ordKp
(L). Denote by

hMπ : H
1
f (F,M

Kp
π )×H1

f (F,M
π∨
Kp

) −→ ΓF0,L

the restriction of h. For any fp ∈H (G(Ap), L)◦, we define

Jπ,Kp(f
p) := hMπ(Z

ord
π,Kp

.T (fp), Zord
π∨,Kp

) = Tr
hπ◦

(
Zord
π,Kp

⊠Zord
π∨,Kp

)
(,)

πKp
(T (fp)),

where the pairing (, )πKp is the restriction of (, )π = (1.3.4) to πKp × π∨,Kp . Then it is clear that

if fp is as in Definition 11.3.1, we have

JKp(f
p) =

∑
π∈C (H\G)ordKp

Jπ,Kp
(fp),

where for a Galois orbit π = {πσ} ∈ C (H\G)ordKp
of isomorphism classes of representations, we

put Jπ,Kp
:=
∑

Jπσ ,Kp .

11.4. Decomposition over nonsplit places. We will complete the arithmetic relative-trace

formula by finding a geometric expansion for the distribution JKp . Each term in the expansion

will be a sum over all nonsplit finite places of F0. The goal of this subsection is to show the

preliminary result that JKp has a decomposition as a sum over nonsplit places, by proving some

vanishing results for local height pairings at split (p-adic and non-p-adic) places.

11.4.1. Decomposition over all places. Let v be a non-archimedean place of F0. We define

J
(v),N
Kp

(fp1 , f
p
2 ) :=

∑
w|v

hw(Z
†,N
Kp

.T (fp1 ), Z
†,N,
Kp

.T (fp2 ))

for any fp1 , f
p
2 ∈H (G(Ap), L)◦Kp-temp (respectively H (G(Ap), L)◦Kp-t-ord

if v|p) such that the two

cycles involved have disjoint supports. Here, the sum ranges over the (one or two) places of F

above v.

It is then clear from the definitions that for fp1 , f
p
2 ∈ H (G(Ap), L)◦Kp-t-ord

, we have a decom-

position

JKp
(fp1 , f

p
2 ) = lim

N→∞

∑
v∤∞

J
(v),N
Kp

(fp1 , f
p
2 ). (11.4.1)

In the rest of this subsection, we show the vanishing of the contribution at split (p-adic and

non-p-adic) places.

Remark 11.4.1. If v ∤ p∞, we can more generally define

J (v)(f1, f2) :=
∑
w|v

hw(Z.T (f1), Z.T (f2))

for f1, f2 ∈H (G(A), L)◦temp such that the two cycles involved have disjoint supports; then

J
(v),N
Kp

(fp1 , f
p
2 ) = J (v)(fp1 fp,Kp,N , f

p
2 fp,Kp,N ). (11.4.2)



118 DANIEL DISEGNI AND WEI ZHANG

11.4.2. Auxiliary Shimura varieties. Let v be a place of F0 and w a place of F above v. Choose

an “admissible CM type Φ (relative to v)” in the sense of [LL21, p.851] and a place u of the reflex

field E above the place w of F such that u is unramified over w. (Note that Φ depends on v.)

Recall from §9.1 that, by our assumption, the compact open subgroup KZQ is maximal at v. We

then have the auxiliary Shimura variety

X ′u := X ′K/Eu
:= ShK

G̃
(G̃)Eu (11.4.3)

and its integral model X ′
u :=MK

G̃
,OE,u

from §9.3. We observe that X ′u is of the form XFw ×Fw A

for some finite étale Fw-algebra A.

We denote by

Z ′ = Z ′
u := ȷ̃∗

(
vol(KH)[M̃K

H̃
]
)

the OE,u-integral model of the arithmetic diagonal cycle, where ȷ̃ is as in § 9.3.3.

11.4.3. Local heights at split places. The following lemma will be useful for considerations both

at places above p and away from p. We first need a definition.

Definition 11.4.2. We say that a pair (f1,v, f2,v) ∈ H (Gv)
2
Kv

is Kv-regular, if f1,v has regular

support and f2,v = eKv .

If S is a finite set of finite places of F0 and v /∈ S is another finite place of F0, we say that a pair

(fS1 , f
S
2 ) ∈H (G(AS), L)◦

KS is K-regular at v if we can write KS = KSvKv and fSi = fi,v ⊗ fSvi
with (f1,v, f2,v) Kv-regular.

Lemma 11.4.3. Let v be a split place of F0. Let K =
∏
vKv be an open subgroup of G(A∞).

Suppose that f1, f2 ∈H (G(A), L)◦K satisfy:

− (f1, f2) is Kv′-regular support at some finite place v′ ̸= v;

− the subgroup Kv = Kn,v ×Kn+1,v satisfies either of the following conditions:

(a) for some labelling {ν, ν ′} = {n, n+1}, the subgroup Kν,v is maximal hyperspecial and Kν′,v

is the principal congruence subgroup of level m ∈ Z≥0 (cf.§9.2);

(b) for both ν = n, n+1, the subgroup Kν,v is Iwahori (that is, Gν,v-conjugate to the standard

Iwahori Iwν,v,0).

Then the following statements hold.

(i) The cycles Z.T (f1) and Z.T (f2) have disjoint support (on the generic fiber).

(ii) Abusing notation, we still let T (fi) denote the (flat) correspondence on the integral model X ′
u.

Then the cycles Z ′
u.T (f1) and Z ′

u.T (f2) have disjoint supports in X ′
u.

Proof. Part (i) follows from [RSZ20, Theorem 8.5 (i)]. (The result in loc. cit only treats the

auxiliary Shimura variety attached to G̃; but it implies the desired result for G.)

For (ii) case (a), the integral model with Drinfeld m-level structure at one factor and with

hyperspecial level (m = 0) at the other factor is regular. The proof of [RSZ20, Theorem 8.5 (ii)]

(only the case f2 = eK was considered there) still applies to show that the cycles Z ′
u.T (f1) and

Z ′
u.T (f2) have disjoint supports in X ′

u.
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In case (b), the integral model is the resolution given in §9.3 of the moduli scheme and the

Hecke correspondences are obtained by base change and hence remain finite flat. The cycles are

obtained by strict transforms. Hence it suffices to show the disjointness before the resolution,

which again follows from [RSZ20, Theorem 8.5 (ii)]. (Strictly speaking, the result of loc. cit.

concerns the case of Drinfeld m-levels rather than Iwahori level. However, we may pull back the

cycles to the moduli scheme with Drinfeld level for m = 1 and then apply that result.)

□

Proposition 11.4.4. Let v ∤ p be a split place of F0. Let f1, f2 ∈ H (G(A), L)◦temp be as in

Lemma 11.4.3. Assume furthermore that either Kv is hyperspecial or that T (f
v
1 ), T (f

v
2 ) annihilate

H2n(X ′
u, L(n)). Then

J (v)(f1, f2) = 0.

Proof. We show that hw(Z.T (f1), Z.T (f2)) = 0 for each of the two places w|v. By Lemma 10.2.4

(2), it suffices to show the vanishing of the local height after pull-back to the auxiliary Shimura

variety ShK
G̃
(G̃) over Eu. Finally, under our assumption, Proposition 10.3.3 further reduces the

question to the vanishing of the arithmetic intersection pairing on the integral model X ′
u over

OE,u. This last vanishing follows from Lemma 11.4.3 (ii). □

11.4.4. Vanishing at p-adic places.

Proposition 11.4.5. Let v be a place of F0 above p (hence split in F ). If n > 1, assume p > 2n.

Let fp = fp1 ⋆ f
p
2 ∈ H (G(Ap, L)◦Kp-t-ord

, and assume that the pair (fp1 , f
p
2 ) has regular support.

Then

lim
N→∞

J
(v),N
Kp

(fp) = 0.

Proof. Write Z1 := Z†,NKp
.T (fp1 ), Z2 := Z†,NKp

.T (fp2 ), and let Kp be such that f1, f2 are right-Kp-

invariant. For any finite extension E of Fw, denote by λ′E : E×⊗̂L → E×⊗̂L the identity map,

and by hXK,E
:= hXK,E ,λ

′
E
the corresponding height pairing. We will show that

hXK,Fw
(Z1, Z2) ∈ pN !−CO×Fw

⊗̂OL

for some constant C; after taking limits, this implies the desired vanishing. Up to multiplying by

a nonzero scalar, we may assume that fpi ∈H (G(Ap),OL)
◦.

By Lemma 11.2.3, for some constant C ′ cancelling the denominators of fi, and for any suffi-

ciently large r ≤ N !, we have Zi = NFr/F (Zi,r) for some Zi,r ∈ p−C
′
Zn(XG,K,Fr)OL

. Denote by

Fw,r the localization of Fr at its unique place above w. First, we show that

hXK,Fw,r
(Z1, Z2,r) ∈ O×Fw,r

⊗̂L. (11.4.4)

By Lemma 10.2.4 (1) (which applies thanks to the observation made after (11.4.3)), it is enough

to show the same result for the corresponding height pairing of arithmetic diagonal cycles on the

auxiliary Shimura variety (11.4.3). This follows from Lemma 11.4.3 (ii), Proposition 10.3.2, and

Remark 10.2.3.

By the integrality results of [Nek95, Proposition II.1.11], we have in fact

hXK,Fw,r
(Z1, Z2,r) ∈ p−C′′

r−C′
O×Fw,r

⊗̂OL, (11.4.5)
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for a constant C ′′r that, similarly to [DL24, Proof of Proposition 4.35], can be bounded as follows.

Let T :=Mt-ord,K,L ∩H2n−1(XK,F ,OL(n))/(tors), and denote by

N∞H
1
f (Fw,r,T) :=

⋂
s≥r

Im
[
TrFw,s/Fw,r

: H1
f (Fw,s,T) −→ H1

f (Fw,s,T)
]
.

Then pC
′′
r ≤ c′′r := |H1

f (Fw,r,T)/N∞H
1
f (Fw,r,T)|. However c′′r is bounded independently of r:

this follows by the same argument as for [DL24, Lemma 4.37] from the fact that Mt-ord,K,L, as a

representation of GFw , is crystalline, Panchishkin-ordinary, and pure of weight −1 (Proposition

11.1.4). Thus in (11.4.5) we may replace C ′′r + C ′ by a constant C ′′.

Finally, by Lemma 10.2.4 (1), we have

pC
′′ · hXK,Fw

(Z1, Z2) = pC
′′
NFw,r/Fw

(hXK ,Fw,r(Z1,Fw,r , Z2,r)) ∈ NFw,r/Fw
(O×Fw,r

⊗̂OL).

By the definition of Fw,r and local class field theory, NFw,r/Fw
(O×Fw,r

⊗̂OL) ⊂ pr−C
′′′
(O×Fw

⊗̂OL) for

some constant C ′′′. This completes the proof. □

11.5. The arithmetic relative-trace formula. The previous subsection shows that, for suit-

able fp1 , f
p
2 , we have a decomposition

JKp
(fp1 , f

p
2 ) = lim

N→∞

∑
v∤∞ nonsplit

J
(v),N
Kp

(fp1 , f
p
2 ).

We state a geometric expansion of J
(v),N
Kp

(in fact, J (v)) for inert places v. When F/F0 is

unramified, we then deduce a geometric expansion of JKp , thus completing the corresponding

RTF.

11.5.1. Local arithmetic intersection numbers and geometric expansions at inert places. Let v ∤
2p be an inert finite place of F0 and let w be the unique place of F above v. We define for

δ ∈ G
V (v)
rs (F0,v),

Jδ,v(eKv) := −(δ · Nn,v,Nn,v)λ(ϖw), (11.5.1)

where, in the right hand side, (−,−) denotes the arithmetic intersection number on the unitary

Rapoport–Zink space Nn,v ×Spf OF̆v
Nn+1,v (resp. the small resolution in [ZZh]) if Kv is hyper-

special (resp. Kv is vertex parahoric), relative to the quadratic field extension Fw/F0,v. Since

Jδ,v(eKv) only plays an intermediate role, we refer to [MZ] (resp. [ZZh]) for the unexplained

notation in the hyperspecial (resp. parahoric) case.

Recall the matching of global orbits δ of (3.5.4), and the characteristic function 1V ′ of those

orbits matching one from a given V ′ ∈ V ◦ from § 7.3.1.

Proposition 11.5.1. Let v ∤ 2p be an inert finite place of F0. Let f1, f2 ∈H (G(A), L)◦temp and

let f = f1 ⋆ f
∨
2 . Suppose that:

(1) (f1, f2) is K-regular at a place different from v;

(2) f1,v = f2,v = eKv where Kv is a vertex parahoric subgroup of type (t, t) (cf. §9.3);

(3) Kv is hyperspecial or T (f1), T (f2) annihilate H
2n(X ′

u, L(n)).
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Then

J (v)(f1, f2) =
∑

δ∈BV (v)
rs (F0)

Jvδ (f
v)Jδ,v(fv)

=
∑

γ∈B′
rs(F0)

1V (v)(γ)J
v
δ(γ)(f

v)Jδ(γ),v(fv).

Proof. It suffices to show the first equality. Similar to the proof of Proposition 11.4.4, by the base

change property of Lemma 10.2.4(2) we have

J (v)(f1, f2) =
1

deg(X ′u/Xw)
hu(Z

′.T (f1), Z
′.T (f2)),

where hu denotes the local height on X ′u over OE,u. Under our assumption, by Proposition 10.3.3

we have

hu(Z
′.T (f1), Z

′.T (f2)) = (Z ′.T (f1),Z
′.T (f2))λ(NmEu/Fw

ϖu).

Since λ|F×
w

is necessarily unramified and Eu/Fw is an unramified extension, we have

λ(NmEu/Fw
ϖu) = deg(Eu/Fw)λ(ϖw).

In the hyperspecial case, by [RSZ20, Theorem 8.15] (the statement there is for the sum over all

places of E above w, but the proof contains the formula for each place u), we obtain

(Z ′
u.T (f1),Z

′
u.T (f1)) = deg(X ′u/Xw)

∑
δ∈BV (v)

rs (F0)

Jvδ (f
v)Jδ,v(fv).

The vertex parahoric case is similar and we omit the details. □

Remark 11.5.2. We could relax condition (2) in the proposition to allow vertex parahoric subgroup

Kv of type (t, t+ϵ) with ϵ ∈ {0, 1}. But this implicitly violates the convention in §2.1.3, so that we

would need to renormalize the matching of orbits that appears in the statement of the proposition.

11.5.2. The arithmetic relative-trace formula. We are ready to deduce the following relative-trace

formula for JKp .

Theorem 11.5.3 (Arithmetic relative-trace formula). Suppose that:

− F/F0 is unramified,

− p > 2n if n > 1,

− all places v|2p of F0 are split in F .

Suppose also that there is a finite set S of places of F0, not above p or ∞, and a compact open

subgroup Kp =
∏
v∤pKv satisfying:

− Kv is (self-dual) hyperspecial for v /∈ S,
− for every split place v ∈ S, Kv = Kn,v × Kn+1,v where either at least one of the factors is

maximal hyperspecial, or both are Iwahori,

− for every inert v ∈ S, Kv is a vertex parahoric subgroup of type (t, t) (cf. §9.3),

For i = 1, 2, let fpi = fpi = fSpi ⊗⊗v|Sfi,v ∈H (G(Ap), L)◦Kp-t-ord satisfy the following properties:

− for every inert v, f1,v = f2,v = eKv ,
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− for two (necessarily split) places v ∈ S, the pair (f1,v, f2,v) is Kv-regular (in the sense of

Definition 11.4.2);

− for every finite place v ∈ S, T (fSpi ) annihilates H2n(X ′
u, L(n)) for some place u of E that is

unramified over v.

Let fp := fp1 ⋆ f
p,∨
2 ∈H (G(Ap), L)◦Kp. Then we have a spectral and a geometric expansion

JKp(f
p) =

∑
π∈C (H\G)ordKp

Jπ,Kp(f
p)

=

∫
B′

rs(F0)◦

∑
v∤p∞

nonsplit

1V (v)(γ)J
vp
δ(γ)(f

vp)Jδ(γ),v(fv) dI
ord
γ,p,K′

p
,

where dIordγ,p,K′
p
= dIordγ,p,K′

p
(1p) is as in (7.1.3) for K ′p = G′(OF0,p).

Proof. The spectral expansion was noted in § 11.3.3. We establish the geometric expansion. By

(11.4.1), we have

J (fp) = lim
N→∞

∑
v∤∞

J
(v),N
Kp

(fp1 , f
p
2 ).

By Propositions 11.4.4, 11.4.5, only the terms corresponding to nonsplit places v ∤ p contribute.

(We use the ‘second’ place of regular support to apply Proposition 11.4.4 to the ‘first’ one.) By

(11.4.2) and Proposition 11.5.1, we then have

J (fp) = lim
N→∞

∑
v∤p∞
nonsplit

∑
γ∈B′

rs(F0)

1V (v)(γ)J
vp
δ(γ)(f

vp)Jδ(γ),v(fv) · Jδ(γ)(fp,Kp,N ⋆ f∨p,Kp,N ).

The asserted form of the geometric expansion then follows, via Lemma 3.5.6 and Lemma 5.3.5,

from the definition of dIordγ,p,K′
p
. □

Epilogue

12. Comparison of RTFs and proof of the main theorem

In this concluding section, we compare the arithmetic distribution JKp with the derivative

∂IK′
p
of the analytic distribution, and deduce our main theorem. Throughout this section we

assume:

− F/F0 is unramified,

− p > 2n if n > 1,

− all places v|2p of F0 are split in F .

12.1. Comparison of relative-trace formulas. The comparison will be based on the following

local result.
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Theorem 12.1.1 ([Zha21,MZ,ZZh]). Let v be an inert place of F0 and assume that either of the

following conditions on Kv ⊂ Gv, K ′v ⊂ G′v hold:

(1) Kv is hyperspecial, and K ′v = G(OF0,v);

(2) Kv = Kn,v × Kn+1,v is a vertex parahoric subgroup of type (t, t) (cf. §9.3), and K ′v =

K ′n,v ×K ′n+1,v where K ′ν,v is the stabilizer in G′ν(F0,v) of both the vertex lattice defining Kν,v

and its dual lattice.

Suppose that γ ∈ B′rs,v matches an orbit δ = δ(γ) ∈ Brs,v,Vv for the hermitian pair Vv with

ϵ(Vv) = −1 (cf. (1.3.1)). Then

Jδ,v(eKv) = ∂Iγ,v(eK′
v
).

Proof. By the definitions, the identity is equivalent to

−(δ · Nn,v,Nn,v) = ∂Iγ(eK′
v
)/λ(ϖw) =

d

ds

∣∣∣∣
s=0

ICγ,v(eK′
v
, | · |sFv

)/(− log q20,v) (12.1.1)

(where w is the place of F above v, and the ‘division’ in the second term has the obvious meaning).

In the hyperspecial case, the identity (12.1.1) is the Arithmetic Fundamental Lemma conjecture

proved in [Zha21,MZ]. In the vertex parahoric case, (12.1.1) (an instance of Arithmetic Transfer

conjecture) is recently proved by Z. Zhang [ZZh].

There are two points where the formulation in those works appears different. First, they

consider a version with derivatives of ‘inhomogenous’ orbital integrals; this is verified to be

equivalent to the above homogeonous version as in [RSZ18, Proposition 14.1 (ii)]. Second, their

identity apparently differs from ours by a sign −1: the reason is that their orbital integral contains

a transfer factor defined as in § 2.4 ibid.; under our assumptions on γ and v, that transfer factor

(in its inhomogeneous version), evaluated at a preimage γ′ ∈ G′rs,v of γ, differs from our κv(γ
′)

by −1. □

We can now make the global comparison.

Theorem 12.1.2 (Comparison of RTFs). Let S, Kp =
∏
v∤pKv, and

fp ∈H (G(Ap), L)◦Kp

be as in Theorem 11.5.3. Write S = Sspl ⊔ Sin as a union of sets of split and inert places.

Let K ′p := G′(OF0,p) and let K ′p =
∏
v∤pK

′
v ⊂ G′(Ap∞) be a compact open subgroup satisfying:

− for every v /∈ S, K ′v = G′ν(OF0,v) is hyperspecial;

− for every inert v ∈ S, K ′v = K ′n,v ×K ′n+1,v and K ′ν,v is the stabilizer in G′ν(F0,v) of both the

vertex lattice defining Kν,v and its dual lattice.

Let

f ′p = f ′Sp ⊗ f ′Sspl∞ ⊗ f
′
Sin ∈H (G′(Ap), L)◦K′p-rs, qc

be a quasicuspidal Gaussian with weakly regular semisimple support whose factors satisfy the

following properties:

− f ′S
splp = ⊗vf ′v with f ′v = eK′

v
;

− f ′
Sspl∞ matches fSspl∞;
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Then IK′
p
(f ′p,1) = 0 and

JKp(fp) = ∂IK′
p
(f ′p).

Proof. We first show that fp and f ′p match under the assumption. By our conditions and the

Jacquet–Rallis Fundamental lemma (Proposition 3.5.4), fS
inp and f ′S

inp match. The theorem of

[ZZh] on transfer at vertex parahoric levels shows that fv and f ′v match at the places in Sin as

well.

It follows that the function f ′p is incoherent, hence IK′
p
(f ′p,1) = 0 by Proposition 7.3.1.

Next we compare the geometric expansions of both sides of the desired equality, given by

Theorem 11.5.3 and Proposition 7.3.1 (3) respectively. By the identity of Theorem 12.1.1, these

are equal term by term. The proof is complete. □

12.2. Test Hecke measures. We find some fp ∈H (G(Ap), L)◦, f ′p ∈H (G(Ap), L)◦ to which

the comparison may be applied, and that isolate a given pair of representations over L.

We will from now admit the following local hypothesis:

Hypothesis 12.2.1. Let v be an inert place of F0 and let πv = πn,v ⊠ πn+1,v be a representation

of Gv such that πn,v is either unramified or almost unramified, and πn+1,v is almost unramified.

Let fv = eKv where Kv ⊂ Gv is a vertex parahoric subgroup of type (t, t) for t = n if πn is

unramified and t = 1 if πn is almost unramified. Then

Jπv(fv) ̸= 0.

The special case of type (t, t) = (n, n) is proved in [Dan] (note that [Dan] considered the

equivalent problem for the parahoric subgroup of type (0, 1)).

Lemma 12.2.2. Let π ∈ C (H\G)ord,stKp
(L) and let Π = BC(π). Assume that:

− for every place v of F0 that is split in F/F0, at least one of πn,v and πn+1,v is unramified;

− for every place v of F0 that is inert in F/F0, πn,v and πn+1,v are either unramified or almost

unramified, and if πn,v is almost unramified then πn+1,v is also almost unramified.

Then there exist:

− a finite set S of places of F0, not above p or ∞,

− open compact subgroups Kp =
∏
v∤pKv ⊂ G(Ap∞) and K ′p =

∏
v∤pK

′
v ⊂ G′(Ap∞),

− Hecke measures fp1 , f
p
2 , f

p := fp1 ⋆ f
p,∨
2 ∈H (G(Ap), L)◦Kp

and f ′p ∈H (G′(Ap), L)◦K′
p-rs, qc

,

such that:

− (S,Kp, fp1 , f
p
2 ,K

′p, f ′p) satisfy the conditions of Theorem 11.5.3 and of Theorem 12.1.2;

− M⊕,∗.T (fpi eKp) ⊂
⊕

π′∈BC−1(Π)=ΠM
Kp

π′ ;

− Π′(f ′peKp) = 0 for every Π ̸= Π′ ∈ C ;

− ⊗v∤pJπv(fp) = ⊗v∤pIΠ,v(f ′p) ̸= 0.

Proof. We construct f1, f
p
2 , f

′p as products whose various factors take care of the required

conditions.
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Regularity of the supports. Let Srs = {v+, v−} be a set consisting of two split places of F0 at

which Π is an unramified regular principal series (cf. Lemma 4.3.3). We use ‘±’ instead of ‘v±’

as a subscript for the sake of legibility in this paragraph. Let

f ′± ∈H (G′±, L)

be an element with ±-regular support such that IΠ±(f
′
±,1) ̸= 0 as provided by Lemma 4.3.1 (3);

we take any sufficiently smallK ′± such that f ′± ∈H (G′±, L)K′
±
. For each v ∈ Srs, upon a choice of

a basis of Vv, we have the matching fv,1 ∈H (Gv , L); by that Lemma, we may arrange that fv,1 is

bi-invariant under an Iwahori subgroup Kv ⊂ Gv. We put fv,2 := eKv . Thus fv = fv,1⋆f
∨
v,2 = fv,1

still matches f ′v and has Kv-regular support. For i = 1, 2, we put

fSrs,i = ⊗v∈Srsfv,i, f ′Srs = ⊗v∈Srsf ′v.

Any global Hecke measure with component f ′Srs has weakly regular semisimple support (Definition

3.3.5) since G′rs = G′reg+ ∩G′reg− .

Choices at places of ramification. Let SR be the finite set of places v /∈ Srsp∞ of F0 where at

least one of πn,v, πn+1,v is ramified. Then for every split v ∈ SR, we let Kv = Kn,v ×Kn+1,v such

that πKv ̸= 0 and Kν,v is hyperspecial if πν,v is unramified. Then we pick any fv,1, fv,2, fv :=

fv,1 ⋆ f
∨
v,2 ∈H (Gv, L)Kv such that Jπv(fv) ̸= 0. For every inert v ∈ SR, we let Kv be the vertex

parahoric subgroup such that πKv
v ̸= 0 and we let fv = eKv . More precisely, there are two cases:

− if πn,v is unramified and πn+1,v is almost unramified, we let Kv be a vertex parahoric subgroup

of type (n, n);

− if both πn,v and πn+1,v are almost unramified, we let Kv be a vertex parahoric subgroup of

type (1, 1).

We put fSR,i = ⊗v∈SRfv,i and we let f ′
SR ∈H (G′

SR) match fSR := fSR,1 ⋆ f
∨
SR,2

.

Isolation of π and Π. Now take S = SR ∪ Srs. For v /∈ Sp, we let Kv, K
′
v be hyperspecial, and

form K =
∏
vKv, K

′ =
∏
vK
′
v. Consider the split Hecke algebras

T = Tspl :=
⊗
v∤Sp
split

H (Gv, L)Kv ⊂H (G(ASp, L)◦KS

T′ = T′spl :=
⊗
v∤Sp
split

H (G′v, L)K′
v
⊗L H (G′∞, L)

◦ ⊂H (G′(ASp, L)◦K′Sp .

Let fπ,1 = fπ,2 ∈ T be an element acting as the idempotent projection fromM⊕,∗K onto
⊕

π′∈BC−1(Π)M
K
π′ ,

which exists by Lemma 4.6.2 (for Σ the finite set of representations occurring in M⊕,∗K ). Let

f ′π ∈ T′ be an element supported at the finite places and matching fπ := fπ,1 ⋆ f
∨
π,2.

Let f ′Π ∈ T′ be an element such that Π(f ′Π) = id and that for each ι : L ↪→ C, R(f ′ιΠ) sends

A (G′)K into Πι,K , which exists by Proposition 4.3.2; let fΠ,1 ∈ T be a matching element and let

fΠ,2 be the unit of T.

Annihilation of absolute cohomology. For every place v ∈ S, by the vanishing theorem of Propo-

sition 9.4.2 (1) (applied to the maximal ideal m of T corresponding to the eigensystem attached

to π), there exists f{v},1 = f{v},2 ∈ T which annihilates H2n(X ′
u, L(n)) (for X ′

u as in § 11.4.2),



126 DANIEL DISEGNI AND WEI ZHANG

and acts by a non-zero scalar on the line
⊗

v∤Sp
split

πKv
v . Let f ′{v} ∈ T′ be an element supported at

the finite places and matching f{v} := f{v},1 ⋆ f
∨
{v},2.

Assembly. For i = 1, 2, ∅, we define

fSpi = fπ,ifΠ,i ⊗⊗v∈Sf{v},i ∈ T, f ′Sp = f ′πf
′
Π ⊗⊗v∈Sf{v} ∈ T′,

viewed naturally as elements in H (G(ASp), L)◦
KSp , H (G′(ASp), L)◦

K′Sp . Then we define

fpi = fS,if
Sp
i , f ′p = f ′Sf

′Sp.

Then it is easy to see that, by construction, fpi satisfies the required conditions. To check the

condition on spherical characters, we use

⊗v∤pJπv(fp) = ⊗v/∈SpJπv(fSp)
∏
v∈S

Jπv(fv).

The product over v ∈ S does not vanish by construction; the first factor is the product of

⊗v/∈SpJπv(eKSp) ̸= 0 and of the eigenvalue of fSp acting on the line πK
Sp
, which is a non-zero

scalar. □

12.3. Proof of the main theorem. We first reduce the identity

hπ(Zπ(ϕ), Zπ∨(ϕ′)) = ep(MΠ)
−1 · 1

4
∂Lp(MΠ) · α(ϕ, ϕ′) (12.3.1)

of Theorem D to the factorization

Jπ,Kp(f
p) =

1

4
∂Lp(MΠ) · ⊗v∤pJπv(fp). (12.3.2)

Lemma 12.3.1. Let π ∈ C (G)ordKp
, and let Π = BC(π), L = Qp(π). The following are equivalent:

(1) For every ϕ ∈ π, ϕ′ ∈ π∨, the identity (12.3.1) holds.

(2) For some ϕ ∈ π, ϕ′ ∈ π∨ such that α(ϕ, ϕ′) ̸= 0, the identity (12.3.1) holds.

(3) For every fp ∈H (G(A), L)◦, the factorization (12.3.2) holds.

(4) For some fp ∈H (G(A), L)◦ such that ⊗v∤pJπv(fp) ̸= 0, the factorization (12.3.2) holds.

Proof. It is trivial that (1) implies (2), and (3) implies (4). The two converse implications follow

from multiplicity one and the nonvanishing of α.

We prove that (3) is equivalent to (1). It is clear that (1) is equivalent to

Tr
h◦Zπ⊠Zπ∨
(,)π

(τ) = ep(MΠ)
−1 · 1

4
∂Lp(MΠ) · Trα(,)π(τ) (12.3.3)

for all τ ∈ End(π), and equivalently for some τ such that Trα(,)π(τ) ̸= 0. Thus it is enough to

show that (12.3.2) is equivalent to (12.3.3) for some such τ .

Choose a factorization (, )π = (, )πp(, )πp . For any N ≥ 1, let fp,Kp,N := (11.3.5) ∈ H (Gp, L),

let f⋆p,Kp,N
:= fp,Kp,N ⋆ f∨p,Kp,N

, and for ? ∈ {∅,∨}, let

π?p(fp,Kp) := lim
N→∞

π?p(fp,Kp,N ) ∈ End(πp).

(This does not depend on the integer 1 ≤ r ≤ N ! implicit in (11.3.5).) Let

πp(f
⋆
p,Kp

) := πp(fp,Kp) ◦ (π∨p (f0,p,Kp))
∨,
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where (−)∨ denotes the transpose with respect to (, )πp . Then by the definition in § 11.3.3, we

have

Tr
h◦Zπ⊠Zπ∨
(,)π

(πp(fp)πp(f
⋆
p,Kp

)) = Jπ,Kp(f
p) (12.3.4)

On the other hand, it is clear from the definitions that

Trα(,)π(π
p(fp)πp(f

⋆
p,Kp

)) = ⊗v∤pJπv(fp) · lim
N→∞

Jπp(f
⋆
p,Kp,N ) (12.3.5)

Now by Lemma 3.5.6, f⋆p,Kp,N
matches the function f ′p,K′

p,N
attached to UN !

tp as in Lemma 5.3.5.

By the definitions and Corollary 5.3.4, we then have

lim
N→∞

Jπp(f
⋆
p,Kp,N ) = lim

N→∞
IΠp(f

′
p,K′

p,N
) = ep(MΠ). (12.3.6)

(Recall that ep(MΠ) is the product of the factors e(Πv,1v) of (5.3.5).) Thus by (12.3.4), (12.3.5),

(12.3.6), the identity (12.3.2) for fp is equivalent to (12.3.3) for τ = πp(fp)πp(f
⋆
p,Kp

). This com-

pletes the proof. □

We may now prove Theorem D based on the comparison of relative-trace formulas in Theorem

12.1.2.

Proof of Theorem D. By Lemma 12.3.1, it suffices to prove

Jπ,Kp(f
p) =

1

4
∂Lp(MΠ) · ⊗v∤pJπv(fp) (12.3.7)

for any fp such that ⊗v∤pJπv(fp) ̸= 0.

Let S, Kp, fp, f ′p be as in Lemma 12.2.2. By construction, ⊗v∤pJπv(fp) ̸= 0, the elements fp

and f ′p match (geometrically), and Theorem 12.1.2 is applicable and it gives

JKp(fp) = ∂IK′
p
(f ′p).

By Theorem 11.5.3 and Proposition 7.3.1 (2), we have an equality of spectral expansions∑
π∈C (H\G)ordKp

Jπ,Kp(f
p) =

∑
Π∈C (G′)her,ord,VKp

∂IΠ,Kp
(f ′p),

but by construction only the terms corresponding to π and Π may be nonzero. We deduce that

Jπ,Kp(f
p) =

1

4
∂Lp(MΠ) · ⊗v∤pIΠv(f

′p),

which is equivalent to the desired factorization (12.3.7) by the (spectral) matching of fp and f ′p.

□

Proof of Theorem C. The main implication follows immediately from Theorem D, upon choosing

the unique distinguished π such that Π = BC(π). The strengthened implication then follows

from [LTX+22] (or [LaSk] under a different condition), as observed in Remark 1.3.2. □
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