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Abstract. — We introduce ‘canonical’ classes in the Selmer groups of certain Galois representations with a
conjugate-symplectic symmetry. They are images of special cycles in unitary Shimura varieties, and defined
uniquely up to a scalar. The construction is a slight refinement of one of Y. Liu, based on the conjectural
modularity of Kudla’s theta series of special cycles. For 2-dimensional representations, Theta cycles are
(the Selmer images of) Heegner points. In general, they conjecturally exhibit an analogous strong relation
with the Beilinson–Bloch–Kato conjectures in rank 1, for which we gather the available evidence.
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1. Introduction

The purpose of this largely expository note is to introduce certain Selmer classes of algebraic cy-
cles, and discuss their relation to the Beilinson–Bloch–Kato (BBK) conjectures. These classes, called
Theta cycles, should play an analogous role to Heegner points on elliptic curves, in that the Bloch–
Kato Selmer group H 1

f (E ,ρ) of a relevant Galois representation ρ should be 1-dimensional precisely
when its Theta cycle is nonzero (cf. [BST21, Kim23] and references therein for the case elliptic
curves). Moreover, the BBK conjectures, reviewed in § 2, predict that the 1-dimensionality of the
Selmer group is equivalent to the (complex or, for suitable primes, p-adic) L-function of ρ vanishing
too̧rder 1 at the center, and Theta cycles allow to approach this conjecture.

The following theorem summarises the state of our knowledge on the topic. Unexplained notions
or loose formulations will be defined and made precise in the main body of the paper.

We fix a rational prime p and denote by Q◦ ⊂ Qp the extension of Q generated by all roots of

unity, and we fix an embedding ι◦ : Q◦ ,→C. We set Σ := {ι : Qp ,→C | ι|Q◦ = ι◦}.

Research supported by ISF grant 1963/20 and BSF grant 2018250. This work was partly written while the author was in
residence at MSRI/SLMath (Berkeley, CA), supported by NSF grant DMS-1928930.
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Theorem A. — Let E be a CM field with Galois group GE , and let

ρ : GE →GLn(Qp )

be an irreducible, geometric Galois representation of weight −1 and even dimension n. Suppose that ρ
is conjugate-symplectic, automorphic, and has minimal regular Hodge–Tate weights.

If n ⩾ 4, assume that the maximal totally real subfield F of E is not Q, and that Hypothesis 4.1 on the
cohomology of unitary Shimura varieties holds.

1. Assume Hypothesis 4.3 on the modularity of generating series of special cycles. The construction
of § 4.3 attaches to ρ a pair (Λρ,Θρ), well-defined up to isomorphism, consisting of a Qp -line Λρ
together with a Qp -linear map

Θρ : Λρ→H 1
f (E ,ρ),

whose image is spanned by classes of algebraic cycles.
2. Suppose that E and ρ are ‘mildly ramified’ and that ρ is crystalline at p-adic places.

(a) Assume Hypothesis 4.3, as well as Conjecture 5.3 on the injectivity of certain Abel–Jacobi
maps, and that p is unramified in E. For any ι ∈Σ, denote by Lι(ρ, s) the complex L-function
of ρ with respect to ι. Then(1)

ords=0Lι(ρ, s) = 1 =⇒ Θρ ̸= 0.

(b) Suppose that E/F is totally split above p, that p > n, and that for every place w|p of E,
the representation ρw is Panchishkin–ordinary. Denote byXF the Qp -scheme of continuous
p-adic characters of GF that are unramified outside p, by m⊂O (XF ) the ideal of functions
vanishing at 1, and by Lp (ρ) ∈ O (XF ) the p-adic L-function of ρ. Then

ordmLp (ρ) = 1 =⇒ Hypothesis 4.3 holds and Θρ ̸= 0.

3. Assume Hypothesis 4.3 and that ρ has ‘sufficiently large’ image. Then

Θρ ̸= 0 =⇒ dimQp
H 1

f (E ,ρ) = 1.

Examples of representations ρ satisfying the general assumptions of the theorem arise from
symmetric powers of elliptic curves: namely, if A is a modular elliptic curve over F with rational
Tate module VpA, then by [NT] one may consider the natural representation ρA,n of GE on
Symn−1VpAE (1− n/2) (see [DL24, § 1.4] for more details); in particular, for n = 2 we obtain the
representation VpAE already studied (when F =Q) by Gross–Zagier, Perrin-Riou and Kolyvagin in
the 1980s.

Part 1 of the theorem, which builds on constructions of Kudla and Y. Liu, is the main focus of
this note; it is explained in § 4, after reviewing the representation-theoretic preliminaries in § 3. The
construction is canonical up to a representation-theoretic choice described in Remark 3.5. (How-
ever, there is a ‘standard’ choice, and part 3 of the theorem indicates that this ambiguity is quite
innocuous.)

In § 5, we state a pair of formulas for the Bloch–Bĕılinson and the Nekovář heights of Theta cycles,
which are essentially reformulations of a breakthrough result of Li and Liu [LL21,LL22], and of its

(1)The order of vanishing of Lι(ρ, s) at s = 0 is conjecturally independent of ι, cf. Conjecture 2.2.
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p-adic analogue by Liu and the author [DL24]. They imply the assertions of Part 2, and take the
shape

〈Θρ(λ),Θρ∗(1)(λ
′)〉⋆ = c⋆ · L

′
⋆(ρ, 0) · ζ⋆(λ,λ′),

where ‘⋆’ stands for the relevant decorations, c⋆ are constants, and ζ⋆ are canonical trivialisations of
Λρ⊗Λρ∗(1).

Part 3 is the subject of [Dis] (itself relying on forthcoming work of Jetchev–Nekovář–Skinner),
on which we only give some brief remarks in § 5.4; in particular, we sketch the relevance of the
perspective proposed here for the results obtained there.

All the constructions and results should have analogues in the odd-dimensional case, in the sym-
plectic case, and for more general Hodge–Tate types. We hope to return to some of these topics in
future work.

Acknowledgements. — It will be clear to the reader that this note is little more than an attempt to
look from the Galois side, and the multiplicity-one side, at ideas of Kudla and Liu. I would like to
thank Yifeng Liu for all I have learned from him during our collaboration, and Elad Zelingher for a
remark that sparked it. I am also grateful to Yannan Qiu and Eitan Sayag for helpful conversations
or correspondence, and to Chao Li and Yifeng Liu for many useful comments on a first draft.

This text is based on a talk given at the Second JNT Biennial Conference in Cetraro, Italy, in
July 2022, and I would like to thank the organisers for the opportunity to speak there. One of
the participants reminded me of Tate’s similarly named ‘θ-cycles’ in the theory of mod- p modular
forms [Joc82, § 7]: besides the context, the capitalisation should also dispel any risk of confusion.
Homonymous objects also occur in neuroscience, in connection with a pattern of brain activity
typical of “a drowsy state transitional from wake to sleep” [McN19, pp. 60-61]; I am grateful to the
Cetraro audience for not indulging in this confusion either.

2. The conjecture of Bĕılinson–Bloch–Kato–Perrin-Riou

Let E be a number field with Galois group GE , and let

ρ : GE →GLn(Qp )

be an irreducible Galois representation that is geometric in the sense of [FM95], and pure of weight
−1 at all finite places (in the sense of [DL24, Definition A.11] – where at non- p-adic places, we take
the functor of [Tat79, (4.2.1)] in place of the functor WD(·) of loc. cit.).

Example. — The Galois representations attached to modular (eigencusp)forms are geometric and
pure, see [Sai97,Sai00]; the weight depends on the choice of normalisation, but if the modular form
has even weight, a suitable cyclotomic twist of its Galois representation has weight −1.

2.1. Chow and Selmer groups. — A typical source of representations as above is the cohomology
of algebraic varieties. In fact, define a motivation of ρ to be an element of(2)

Motρ := lim−→
(X ,k)

Motρ(X , k), where Motρ(X , k) :=Hom Qp [GE ]
(H 2k−1

ét
(XE ,Qp (k)),ρ),

(2)Throughout this paper, if R→ R′ is a ring map that can be understood from the context, and X is an R-scheme or an
R-module, we write XR′ :=X ⊗R R′.
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and the limit runs over all pairs consisting of a smooth proper variety X/E and an integer k ⩾ 1 (this
is a directed system by Künneth’s fromula). We refer to (X , k) as a source of f ∈Motρ if f is in the
image of Motρ(X , k). We say that ρ is motivic if Motρ is nonzero. According to the conjecture of
Fontaine–Mazur, every geometric irreducible Galois representation is motivic.

To a representation ρ as above is attached its Bloch–Kato [BK90] Selmer group H 1
f (E ,ρ).(3) To

a variety X/E as above is attached its Chow group Chk (X ) of codimension-k algebraic cycles on
X up to rational equivalence (with coefficients in Q). A central object of arithmetic interest is its
subgroup Chk (X )0

Qp
:= Ker [Chk (X ) → H 2k

ét (XE ,Qp (k))] (where the map is the cycle class). It is

endowed with an Abel–Jacobi map

AJ: Chk (X )0
Qp
→H 1(E , H 2k−1

ét
(XE ,Qp (k)))

(see [Nek93, § 5.1]) whose image is conjectured to land in H 1
f (E , H 2k−1

ét
(XE ,Qp (k))). We can define

an analogue of the image of AJ for the representation ρ by

H 1
f (E ,ρ)mot :=
∑

f ′∈Motρ

f ′∗AJ(Chk (X )0
Qp
)∩H 1

f (E ,ρ)⊂H 1
f (E ,ρ),

where we have denoted by (X , k) any source of the motivation f ′. By an evocative abuse of nomen-
clature, we refer to elements of H 1

f (E ,ρ)mot as cycles.

Remark 2.1. — If ρ=H 2k0−1
ét

(X0,E ,Qp (k0)) for a variety X0 and an integer k0, then we expect that

H 1
f (E ,ρ)mot =AJ(Chk0(X0)

0
Qp
). This equality is implied by the Tate conjecture [Tat65, Conjecture

1] for X ×X0.

2.2. The conjecture. — We say thatρ is (Panchishkin-) ordinary (see [Nek93, § 6.7], [PR92, § 2.3.1]
for more details) if for each place w|p, there is a (necessarily unique) exact sequence of De Rham GEw

-
representations 0→ ρ+w → ρ|GEw

→ ρ−w → 0, such that Fil0DdR(ρ
+
w ) = DdR(ρ

−
w )/Fil0 = 0. For any

subfield F ⊂ E , let
XF := SpecZpJGal(F∞/F )K⊗Zp

Qp ,

where F∞/F is the abelian extension with Gal(F∞/F ) isomorphic (via class field theory) to the

maximal Zp -free quotient of F ×\A×F /cOF
p,×

.
One can conjecturally attach to ρ entire L-functions

Lι(ρ, s)

for ι : L ,→C and, (at least) if ρ is ordinary, a p-adic L-function

Lp (ρ) ∈ O (XF )

interpolating suitable modifications of the L-values Lι(ρ⊗χ|GE
, 0) for finite-order characters χ ∈XF

(see [PR95], at least when taking F =Q).

(3)N.B.: the subscript f has nothing to do with names of objects elsewhere in this text. Galois cohomology and Selmer
groups are usually defined for representations with coefficients in finite extensions of Qp . However, it is well-known that

we can write ρ = ρ0 ⊗L Qp for some finite extension L ⊂ Qp of Qp and some representation ρ0 : GE → GLn(L) (and

similarly for the other representations considered in this paper). Then we define H 1
f (E ,ρ) :=H 1

f (E ,ρ0)⊗L Qp .
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Denote by m = mF ⊂ O (XF ) the maximal ideal of functions vanishing at the character 1 of
Gal(F∞/F ), and by ordm the corresponding valuation. The integer ordmLp (ρ) is conjecturally inde-
pendent of the choice of F .

Conjecture 2.2 (Bĕılinson, Bloch–Kato, Perrin-Riou [Bĕı84, BK90, PR95])
Let ρ : GE →GLn(Qp ) be an irreducible geometric representation of weight −1. Let r ⩾ 0 be an

integer. The following conditions are equivalent:

(a)∞ for any ι : Qp ,→C, we have
ords=0Lι(ρ, s) = r ;

(b) dimQp
H 1

f (E ,ρ)mot = dimQp
H 1

f (E ,ρ) = r .

If moreover ρ is ordinary and ρ+,∗
w (1)

GEw = 0 for every w|p, then the above conditions are equivalent
to

(a)p ordmLp (ρ) = r ;

Remark 2.3. — The first equality in (b) generalises the conjectural finiteness of the p∞-torsion in
the Tate–Shafarevich group of an elliptic curve. The extra condition in (a)p serves to avoid the
phenomenon of exceptional zeros, cf. [Ben14].

In the following pages, under some restrictions onρwe will define elements in H 1
f (E ,ρ)mot whose

nonvanishing is conjecturally equivalent to the conditions of Conjecture 2.2 with r = 1. The con-
struction will be automorphic; in the next section, we give the representation-theoretic background.

3. Descent and theta correspondence

Suppose for the rest of this paper that E is a CM field with totally real subfield F . We denote by
c ∈Gal(E/F ) the complex conjugation, and by η : F ×\A×→ {±1} the quadratic character attached
to E/F .

3.1. p-adic automorphic representations. — We denote by A the adèles of F ; if S is a finite set
of places of F , we denote by AS the adèles of F away from S. If G is a group over F and v is a
place of F , we write Gv :=G(Fv ); if S a finite set of places of F , we write GS :=

∏

v∈S G(FS ). (For
notational purposes, we will identify a place of Q with the set of places of F above it.) We denote by
ψ : F \A→C× the standard additive character withψ∞(x) = e2πiTrF∞/R x , and we setψE :=ψ◦TrE/F .
We view ψ|A∞ as valued in Q◦ via the embedding ι◦.

Unitary groups. — Fix a positive integer n. For a place v of F , we denote by Vv be the set of isomor-
phism classes of (nondegenerate) Ev/Fv -hermitian spaces of dimension n; this consists of one element
if v splits in E , of two elements if v is finite nonsplit, and of n+1 elements if v is real. We denote by
V + the set of isomorphism classes of E/F -hermitian spaces of dimension n that are positive definite
at all archimedean place, and byV − the set of isomorphism classes of E/F -hermitian spaces of dimen-
sion n that are positive definite at all archimedean place but one, at which the signature is (n− 1,1).
We denote by V ◦ the set of isomorphism classes of AE/A-hermitian spaces of dimension n such that
for all but finitely many places v, the Hasse–Witt invariant ε(Vv ) := ηv ((−1)(

n
2) detVv ) = +1, and

that Vv is positive definite at all archimedean places. We put ε(V ) :=
∏

v ε(Vv ), and writeV ◦,ε ⊂V ◦

for the set of spaces with ε(V ) = ε ∈ {±}.
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We have a natural identification V ◦,+ = V +. We will mostly be interested in V ◦,−, which we
refer to as the set of incoherent E/F -hermitian spaces, cf. [Gro21]. If V ∈ V ◦,−, then for every
archimedean place v of F , there exists a unique V (v) ∈ V − over F such that V (v)w ∼=Vw if w ̸= v.

For V ∈ V , let HV = U(V ); if V ∈ V ◦ with ε(V ) = −1, we still use the notation HV (A
S ) :=

∏

v /∈S HVv
, HVv

:=U(Vv )(Fv ), and we refer to (the symbol)

HV

as an incoherent unitary group.
Suppose from now on that n = 2r is even. We define the quasisplit unitary group over F

G=U(W ),

where W = E n equipped with the skew-hermitian form
�

1r
−1r

�

(here 1r is the identity matrix of
size r ).

Definition 3.1. — 1. A relevant complex automorphic representation Π of GLn(AE ) is an irre-
ducible cuspidal automorphic representation satisfying:

(i) Π ◦ c∼=Π∨;
(ii) for every archimedean place w of E , the representationΠw is induced from the character

argn−1 ⊗ argn−3 ⊗ . . .⊗ arg1−n of the torus (C×)n = (E×w )
n ⊂GLn(Ew ); here arg(z) :=

z/|z |.
2. A possibly relevant complex automorphic representation π of G(A) is an irreducible cusp-

idal automorphic representation such that for every archimedean place v of F , the repre-
sentation πv is the holomorphic discrete series representation of Harish-Chandra parameter
{ n−1

2 , n−3
2 , . . . , 3−n

2 , 1−n
2 }. We say that π is relevant if it is possibly relevant and stable as defined

at the beginning of § 3.2 below.
3. Let V ∈ V ◦,− and let v be an archimedean place of F . A possibly relevant complex cuspidal au-

tomorphic representation σ of HV (v)(A) is an irreducible cuspidal automorphic representation
such that σv is one of the n discrete series representation of HV (v)v

= U (n − 1,1) of Harish-

Chandra parameter { n−1
2 , n−3

2 , . . . , 3−n
2 , 1−n

2 }, and for every other archimedean place v ′ ̸= v of
F , we have σv ′ = 1 (as a representation of HV (v)v′

= U (n)). We say that σ is relevant if it is
possibly relevant and stable.

Definition 3.2. — 1. A relevant p-adic automorphic representation Π of GLn(AE ) is a represen-
tation of GLn(A

∞
E ) on a Qp -vector space, such that for every ι : Qp ,→ C, the representation

ιΠ is the finite component of a (unique up to isomorphism) relevant complex automorphic
representation Πι.

2. A possibly relevant, respectively relevant p-adic automorphic representation π of G(A) is rep-
resentation of G(A∞) on a Qp -vector space, such that for every ι : Qp ,→C, the representation
ιπ is the finite component of a (unique up to isomorphism) possibly relevant, respectively rel-
evant, complex automorphic representation πι of G(A).

3. Let V ∈ V ◦,−. A possibly relevant, respectively relevant, p-adic automorphic representation σ
of HV (A) is representation of HV (A

∞) on a Qp -vector space, such that for every ι : Qp ,→C
and every archimedean place v of F , the representation ισ is the finite component of a (unique
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up to isomorphism) possibly relevant, respectively relevant, complex automorphic representa-
tion σ ι,(v) of HV (v)(A).

3.2. Automorphic descent. — For a place v of F , we denote by BCv the base-change map from
L-packets of tempered representations of Gv to tempered representations of GLn(Ev ), which is in-
jective by [Mok15, Lemma 2.2.1]. We denote by BCG and BCHV

the base-change maps from au-
tomorphic representations of the unitary groups G(A) or HV (A) to automorphic representations
of GLn(AE ), respectively; we simply write BC when there is no risk of confusion. We say that a
cuspidal automorphic representation of a unitary group is stable if its base-change is still cuspidal.

Remark 3.3. — We have the following properties of the base-change maps.

(a) By [LTX+22, Proposition C.3.1], ifΠ is a relevant representation ofGLn(AE ), then: the preim-
age of Π under BCHV

consists of relevant representations of HV (A); the preimage of Π under
BCG contains a relevant representation of G(A).

(b) If v is a finite place, the base-change maps may be defined for representations with coefficients
over Qp , compatibly with any extensions of scalars ι : Qp ,→C.

(c) As a consequence of (a) and (b), BC extends to a map from relevant p-adic automorphic repre-
sentations of G(A) and HV (A) to relevant p-adic automorphic representations of GLn(AE ).

Descent to a quasisplit unitary group. — We fix the auxiliary choice of a Borel subgroup B ⊂ G
with torus T and unipotent radical N, and (the T-orbit of) a generic linear homomorphism
Ψ : N(F )\N(A)→ C×; we call this choice (N,Ψ) a Whittaker datum. A relevant complex or p-adic
automorphic representation π of G(A) is called Ψ-generic if it for every finite place, πv is Ψv -generic
in the sense that it has a non-vanishing (Nv ,Ψ|Nv

)-Whittaker functional .

Proposition 3.4. — Let Π be a relevant p-adic automorphic representation of GLn(AE ). Then there
exists a relevant p-adic automorphic representation π of G(A), unique up to isomorphism, which is Ψ-
generic and satisfies BC(π) =Π.

Proof. — By [GRS11] and [Mor18], for each ι there exists a relevant cuspidal automorphic repre-
sentation πι of G(A) that is Ψ-generic and satisfies BC(πι) = Πι. By [Var17, Ato17], for each finite
place v, each local L-packet of Gv contains a unique Ψ-generic representation, which (together with
the injectivity of BCv ) implies that πι is unique up to isomorphism. Then by Remark 3.3 (b), the
collection (πι) arises from a well-defined relevant p-adic automorphic representationπ of G(A).

Remark 3.5. — Our construction of Theta cycles will be based on the choice of a relevant represen-
tation π with BC(π) =Π, which is not unique. For definiteness, we may pick a Whittaker datum Ψ
(for which, as explained in [KMSW, § 0.2.2, § 1.6.1], there is a standard choice), and take π to be the
Ψ-generic representation given by Proposition 3.4.

3.3. Theta correspondence. — Let π be a relevant p-adic representation of G with BC(π) = Π.
We will need to further transfer π to a representation of unitary groups HV for V ∈ V ◦,−.

Local correspondence and duality. — We first review the local theory. Let v be a finite place of F ,
and let C be either Qp or C. For Vv ∈ Vv , letωVv

=ωVv ,ψv
be the Weil representation of HVv

×Gv

(with respect to the character ψv ) over C , a model of which is recalled in § 4.2 below.
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Whenever □ is some smooth admissible representation of a group G?, we denote by □∨ the con-
tragredient, and by ( , )□ the natural pairing on □×□∨.

The first part of the following result (for nonsplit finite places) is known as theta dichotomy.

Proposition 3.6. — Let πv be an tempered irreducible admissible representation of Gv over C = Qp

or C =C.

1. There exists a unique Vv ∈ Vv such that

σ∨v := (π∨v ⊗ωVv
)Gv
̸= 0.

2. The representation σ∨v is tempered and irreducible. Its contragredient σv satisfies BC(σv ) =
BC(πv ), and the space

Hom HVv
×Gv
(σv ⊗π

∨
v ⊗ωVv

,C )

is 1-dimensional over C .
3. The representation (πv ⊗ω∨Vv

)Gv
is canonically identified with σv .

4. Denote by ϑ each of the projection maps π∨v ⊗ωVv
→ σ∨v , πv ⊗ω∨Vv

→ σv . Then the map

ζv (ϕ,φ, f ;ϕ′,φ′, f ′) := (ϑ(ϕ,φ), f )σ∨v · (ϑ(ϕ
′,φ′), f ′)σv

defines a canonical generator

ζv ∈Hom Gv×HVv
(π∨v ⊗ωVv

⊗σv ,C )⊗C Hom Gv×HVv
(πv ⊗ω

∨
Vv
⊗ (σ∨v ,C ),

with the property that ifπv and σv are unramified and ϕ,φ, f ,ϕ′,φ′, f ′ are spherical vectors, then

ζv (ϕ,φ, f ;ϕ′,φ′, f ′) = (ϕ,ϕ′)π∨v · (φ,φ′)ω∨v ( f , f ′)σv
.

Proof. — We drop all subscripts v. We start by recalling the first two statements. Consider first the
case that v is finite and E is a field. Then σ∨V = (π

∨⊗ωV )G is the (a priori, ‘big’) theta lift of π∨ as
defined in [Har07, (2.1.5.1)]. By the local theta dichotomy proved in Theorem 2.1.7 (iv) ibid. and
[GG11, Theorem 3.10], there is exactly one V ∈ V such that σ∨V is nonzero; we fix this V and drop
it from then notation. Then the other properties of σ := (σ∨)∨ are consequences of [GI16, Theorem
4.1] (which collects results from [Wal90, GT16,GS12, GI14]). For the case E = F ⊕ F , see [Mín08].

We now turn to the other two statements. For a character χ : F ×→C×, let

(3.1) bn(χ ) :=
n
∏

i=1

L(i ,χηi−1).

If C =C, then we have a canonical element

ζ̆ ∈Hom G(π
∨⊗ωV ,C)⊗C Hom G(π⊗ω

∨
V ,C)

given by

(3.2) ζ̆ (ϕ,φ;ϕ′,φ′) :=
bn(1)

L(1/2,Π)

∫

G
(gϕ,ϕ′)π∨ · (ω(g )φ,φ′)ω d g ,

where d g is the measure of [DL24, § 2.1 (G7)],Π := BC(π). It is a generator by [HKS96, § 6], where
the regularisation of the integral is also taken care of. (For the well-known comparison between the
definition in loc. cit. and the one given here, see [Sak17, Lemma 3.1.2].) When π (hence σ ) are
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unramified and all the vectors are spherical, by [Yam14, Proposition 7.1, (7.2)] we have

(3.3) ζ̆ (ϕ,φ;ϕ′,φ′) = (ϕ,ϕ′)π∨ · (φ,φ′)ω∨ .

If C =Qp , then for any ι ∈ Σ we have a tetralinear form ζ̆ ι as above, and by [DL24, Lemma 3.30],

there is a ζ̆ ∈ Hom G(π
∨ ⊗ωV ,Qp )⊗Qp

Hom G(π ⊗ω∨V ,Qp ) such that ζ ⊗Qp ,ι 1 = ζ
ι for every

ι ∈Σ.
Now, we may view ζ̆ as a map

(3.4) ζ̆ : (π∨⊗ωV )G ⊗ (π⊗ω
∨
V )G→C

that is, by inspection, invariant under the diagonal action of H on both factors. It follows that ζ̆
gives the duality of our third statement. The fourth statement then follows from the definitions and
(3.3).

Remark 3.7. — A more symmetrically defined exalinear form would be

(ϕ,φ, f ;ϕ′,φ′, f ′) 7→
∫

HV

∫

G
(gϕ,ϕ′)π∨ · (ω(h, g )φ,φ′)ω · (h f , f ′)σ d g d h,

where the integral in d g is regularised as remarked after (3.2). If σ is a discrete series, the integral in
d h converges and its value equals that of ζv , times the formal degree of σ – for which [BP21] gives
a formula in terms of adjoint gamma factors. In general, regularising the integral in d h amounts to
regularising the inner product of two matrix coefficients of σ . A regularisation has been proposed
by Qiu [Qiu12a,Qiu12b]; however the definition of the resulting generalised formal degree is partly
conjectural, and no precise (even conjectural) formula for it appears in the literature.

Global correspondence. — We have the following global variant of Proposition 3.6.

Proposition 3.8. — Let Π be a relevant p-adic automorphic representation of GLn(AE ), and set ε =
ε(1/2,Π). LetRΠ,G be the set of isomorphism classes of relevant automorphic representations π of G(A)
with BC(π) =Π, and letRΠ,H be the set of pairs (V ,σ), with V ∈ V ◦,ε and σ an isomorphism class of
relevant p-adic automorphic representations of HV (A).

The relation

(3.5) HomGV (A∞)×HV (A∞)
(π∞,∨⊗ω∞V ⊗σ

∞,Qp ) ̸= 0

defines a bijection betweenRΠ,G andRΠ,H.

Proof. — Take any ι : Qp ,→C. After base-change to C via ι, givenπ, the existence of V with ϵ(V ) =
ε(1/2,Π) and of a representation σ∞,ι of HV (A

∞) satisfying (3.5) follows from the explicit form of
theta dichotomy in terms of the doubling epsilon factors of [Har07], whose product over all places
coincides with the standard central epsilon factor of Π by [LR05]. Again by [LTX+22, Proposition
C.3.1], we have that σ∞,ι is the finite component of relevant automorphic representation σ ι; and as
in Remark 3.3 (c), the collection σ ι arises from a relevant p-adic automorphic representation σ .

The bijective property of the resulting map RG → RH follows from [GI16, Theorem 4.1 (iv)]
and the following archimedean fact (see [NZ01] or [PT02, Theorem 4.1 (4)]): if v |∞ and πv is the
holomorphic discrete series of U ( n

2 , n
2 ) with Harish–Chandra parameter { n−1

2 , n−3
2 , . . . , 3−n

2 , 1−n
2 },

thenπv has a nonzero theta lift to HVv
, with Vv ∈ Vv , exactly for Vv positive-definite, in which case

the theta lift σv is the trivial representation of HVv
.
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4. Theta cycles

4.1. Assumptions on the Galois representation. — Let again ρ : GE →GLn(Qp ) be irreducible,

geometric, and of weight −1. We denote by ρc : GE → GLn(Qp ) the representation defined by
ρc(g ) = ρ(c g c−1), where c ∈ GE is any fixed lift of c. (A different choice of lift would yield an
isomorphic representation.)

We suppose from now on that the following conditions are satisfied:

1. ρ is conjugate-symplectic in the sense that there exists a perfect pairing

ρ⊗Qp
ρc→Qp (1)

such that for the induced map u : ρc → ρ∗(1) (where ∗ denotes the linear dual) and its conjugate-
dual u∗(1)c : ρc→ ρc,∗(1)c = ρ∗(1), we have u =−u∗(1)c;

2. n = 2r is even;
3. for every place w|p of E and every embedding ȷ : Ew ,→Cp , the ȷ-Hodge–Tate weights(4) of ρ

are the n integers {−r,−r + 1, . . . , r − 1};
4. ρ is automorphic in the sense that for each ι : Qp ,→ C, there is a cuspidal automorphic repre-

sentation Πι of GLn(AE ) such that Lι(ρ, s) = L(Πι, s + 1/2);

Associated automorphic representations. — A collection (Πι)ι : Qp ,→C as in Condition 4 is uniquely

determined up to isomorphism if it exists, by the multiplicity-one theorem for automorphic forms
on GLn ; it is conjectured to always exist. Moreover, every Πι is relevant in the sense of Definition
3.1.1, where Condition 1 implies property (i) in the definition, and Condition 3 implies property
(ii). It is then clear that (Πι)ι arises from a unique (up to isomorphism) relevant p-adic automorphic
representation

Π=Πρ
of GLn(AE ) (Definition 3.2.1). We denote by π = πρ the relevant p-adic representation of G(A)
associated with Π as in Proposition 3.4,(5) and by

(V ,σ) = (Vρ,σρ)

the pair associated with π as in Proposition 3.8. We also put H=HV .

4.2. Models of the representations. — We now fix some concrete models of the representations
ω, π, and σ .

Weil representations. — We fix the well-known model of the representation ω = ⊗′v ∤∞ωV ,v on

S (V r
A∞ ,Qp ) associated with ψ, on which H(A∞) acts by right translations, whereas the action

of G(A∞) is recalled in [DL24, §4.1 (H7)].
Denote by † the involution on G given by conjugation by the element

�

1r
−1r

�

inside GLn(E);
it acts on any G(R)-module for any E -algebra R. The representation ω† is a model of the Weil
representation attached to ψ−1.

Siegel-hermitian modular forms and their q-expansion. — The representation π may be realised in
spaces of hermitian modular forms, which we briefly review.

(4)Our convention is that the cyclotomic character has weight −1.
(5)As noted in Remark 3.5, any other relevant π with BC(π) =Π would be equally good.
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In [DL24, § 2.2], we have defined the following objects.(6)

– A C-vector spaceHC =A
[r ]
r,hol

of holomorphic forms for the group G.

– For any Qp -algebra R, an R-moduleHR =H
[r ]

r ⊗Qp
R of (classical) p-adic automorphic forms

for G, such that for each ι : Qp ,→C, we have an isomorphism

HQp
⊗ι C→HC, Φ⊗ 1 7→ Φι.

In fact, only the case where E/F is totally split above p was considered in [DL24], where
H [r ]

r is the direct limit, over open compact subgroups U ⊂G(A∞), of subspaces of sections
of a certain line bundle on a Siegel hermitian variety Σ(U )/Qp

; let us explain why the splitting
condition is not necessary for our purposes. Define a p-adic CM type of E to be a set Φ of
[F : Q] embeddings i : E ,→Qp such that i ∈ Φ if and only if i ◦ c /∈ Φ; in the totally split case,
the choice of a p-adic CM type is equivalent to the choice of a set PCM as in [DL24, §2.1 (F2)],
which intervenes in the construction of Σ(U ) as a moduli scheme by fixing a signature type for
test objects in the sense of [LTX+22, Definition 3.4.3]. However, this construction, and the
comparison with complex Siegel hermitian varieties of [DL24, Lemma 2.1], go through with
any p-adic CM type Φ (with the innocuous difference that, in general, Σ(U ) and H [r ]

r will
only be defined over a finite extension of Qp in Qp ).

– A space SFR = SFr (R) of formal q -expansions with coefficients in the (arbitrary) ring R, and a
Siegel–Fourier expansion map q∞ = qan

r :HC→ SFC. By the argument at the end of the proof
of [DL24, Proposition 4.18] (based on Lemma 2.11 ibid.), we deduce a Qp -linear q -expansion
map

qp :HQp
→ SFQp

satisfying ιqp (Φ) = qC(Φ
ι) for every Φ ∈HQ◦p and every embedding ι ∈Σ.

By [DL24, Lemma 3.14] (based on [Mok15]), for a relevant p-adic automorphic representation
π, the space HomG(A∞)(π,HQp

) is 1-dimensional, and π∨,† is also relevant. We identify π = πρ
with the corresponding subspace ofHQp

. Then πρ∗(1) is isomorphic to π∨,†.

Moreover, for any ring R, let SFR be the space of those formal expansions
∑

T∈Hermr (F )+
cT (a) q

T , cT ∈C∞(GLr (A
∞
E ), R)

satisfying ctacTa(y) = cT (ay) for all a ∈GLr (E); then we have a q -expansion map

q :HQp
→ SFQp

characterised by qΦ(y) = |det y|rE q(m(y)Φ). Since M(A∞) acts transitively on the set of connected
components of Σ(U )Qp

for every open compact subgroup U ⊂G(A∞), the map q
p

is injective.

Shimura varieties and their cohomology. — We assume from now on that ϵ(ρ) =−1. (The opposite
case will be trivial for our purposes in Definition 4.5 below.) Then V ∈ V ◦,−, and we have an inverse
system

(XK )K⊂H(A∞)

(6)In this discussion, most new notation will be introduced by equalities whose right-hand sides reproduce the correspond-
ing notation in [DL24].
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of (n−1)-dimensional smooth varieties over E , with the property that for every archimedean place w
of F , with underlying place v of F , the variety XV ,K ×E ,w C is isomorphic to the complex Shimura
variety XV (v),wK associated with the unitary group HV (v) and the Shimura datum attached to w
that is the complex conjugate to the one defined in [Liu21, § C.1] (and thus coincides with the one
specified in [LTX+22, § 3.2] and used in [LL21, DL24]); see also [Gro21, ST].

From now on we assume that each XK is projective, which is the case if and only if either F ̸=Q,
or n = 2, F =Q and ϵ(Vv ) =−1 for some finite place v. In fact, in the remaining non-compact case
for n = 2, the curve XK (closely related to a classical modular curve) can be canonically compactified
by adding finitely many cusps; in this case the constructions make sense, and the theorems hold true,
after replacing XK by its compactification.

Let
H 2r−1

ét
(XE ,Qp (r )) := lim←−

K⊂H(A∞)

H 2r−1
ét
(XK ,E ,Qp (r )),

where the transition maps are pushforwards. For each K , we have a spherical Hecke algebra for H
acting on XK ; let mρ,K be the Hecke ideal denoted by mR

π in [LL21, Definition 6.8]. We denote by

Mρ,K :=H 2r−1
ét
(XK ,E ,Qp (r ))mρ,K

the localisation, and we set

Mρ := lim←−
K

Mρ,K ⊂H 2r−1
ét
(XE ,Qp (r )).

We will assume the following hypothesis, which is a special case of [LL21, Hypothesis 6.6] (it is
known for n = 2, and it is expected to be confirmed in general in a sequel to [KSZ]).

Hypothesis 4.1. — For each open compact K ⊂ H(A∞), we have a Hecke- and Galois-equivariant
decomposition

(4.1) Mρ,K
∼=
⊕

σ ′
ρ⊗σ ′∨,K ,

where the direct sum runs over the isomorphism classes of relevant p-adic automorphic representation σ ′

of HV (A) with BC(σ ′) =Π.

We thus have an H(A∞)-equivariant map

(4.2) σ −→Hom Qp [GE ]
(H 2r−1

ét
(XE ,Qp (r )),ρ),

and we identify σ with the image of this map. We also put Mσ ,K := ρ⊗σ∨,K ⊂H 2r−1
ét
(XK ,E ,Qp (r )),

and

(4.3) Mσ := lim←−
K

Mσ ,K ⊂Mρ ⊂H 2r−1
ét
(XE ,Qp (r )).

Then σ =Hom Qp [GE ]
(Mσ ,ρ) := lim−→K

Hom Qp [GE ]
(Mσ ,K ,ρ).

Denote by Fil• ⊂ H 2r
ét (XK ,Qp (r )) the filtration induced by the Hochschild–Serre spectral se-

quence H i (E , H 2r−i
ét
(XK ,Qp (r ))) ⇒ H 2r

ét (XK ,Qp (r )). By the argument for [DL24, Lemma 4.7],
we have a canonical Hecke-equivariant projection

H 2r
ét (XK ,Qp (r ))/Fil2)→H 1(E, Mρ,K ).
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Lemma 4.2. — The image of the composition

[−]ρ : Chr (XK )
0
Qp

AJ
−→H 2r

ét (XK ,Qp (r ))/Fil2→H 1(E, Mρ,K )

is contained in H 1
f (E, Mρ,K )

Proof. — As in [DL24, Lemma 4.24], using [NN16, Theorem B] in place of [Nek00] for p-adic
places.

4.3. Construction. — We proceed in four steps. The first three steps follow works of Kudla and
collaborators [Kud97, Kud03, KRY06], and of Liu and collaborators [Liu11a, DL24].

0. Special cycles in X . — For each x ∈ V r
A∞ and each open compact K ⊂ H(A∞), we have a

codimension-r special cycle
Z(x)K ∈Chr (XK )

defined in [Liu11a, § 3A]. Putting
T (x) := ((xi , x j )V )i j ,

where ( , )v is the hermitian form on V , we recall the definition in two basic cases. Denote by
Hermr (F )

+ the set of r× r matrices over E that satisfy T c = T t and that are totally positive semidef-
inite. First, Z(x)K = 0 if T (x) /∈ Hermr (F )

+. Second, assume that T (x) ∈ Hermr (F )
+ is positive

definite. Let Vx ⊂ V be the incoherent hermitian space that is (place by place) the orthogonal
complement of the span of (x1, . . . , xr ). The corresponding embedding U(Vx ) ,→U(V ) of incoher-
ent unitary groups. induces a map of towers of Shimura varieties αx : XVx

→ XV ; then we define
Z(x)K ∈Chr (XV ,K ) to be the class of the image cycle.

1. Theta kernel. — The special cycles just defined may be assembled into a generating series. Let
φ ∈ω. For every K ⊂HV (A

∞) fixing φ, we define

qΘ(φ)ρ,K (a) := vol(K)
∑

x∈K\V r
A∞

φ(xa)[Z(x)K]ρ qT (x),

where vol(K) is as in [LL21, Definition 3.8]. Then qΘ(φ)ρ,K is an element of H 1
f (E , Mρ,K )⊗Qp

SFQp
,

and the construction is compatible under pushforward in the tower XK . (The reason why we prefer
our Θ(φ)−,ρ to be compatible with pushforwards rather than pullbacks is that this allows to pair
them, in Step 3, with elements of the automorphic representation σ under the identification (4.2).)

The following conjecture, which is a variant of [DL24, Hypothesis 4.16], asserts the modularity
of the generating series, and from now on we will assume it holds.

Hypothesis 4.3. — For every φ ∈ω and any K ⊂HV (A
∞) fixing φ, there exists a unique

Θ(φ)ρ,K ∈H 1
f (E , Mρ,K )⊗Qp

HQp

such that
q

p
(Θ(φ)K ,ρ) =

qΘ(φ)ρ,K .

Remark 4.4. — A recent piece of evidence for this modularity conjecture is provided in [DL24,
Theorem 4.20], which is recalled as part of Theorem 5.5.2; moreover,(7) an analogous conjecture

(7)I am grateful to Yifeng Liu for bringing this to my attention.
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for orthogonal Shimura varieties can be deduced from [Kud21]. Hypothesis 4.3 is implied by the
variant for Chow groups of [LL21, Hypothesis 4.5]. See Remark 4.6 ibid. for comments on the
supporting evidence for that conjecture until then, to which we should add the recent [Xia22]. For
the history, which traces back to the work of Gross–Kohnen–Zagier on generating series of Heegner
points [GKZ87], see [Li23, Remark 3.5.5], cf. also ibid. § 6.4.

2. Arithmetic theta lifts. — Denote by Φ 7→ Φπ the Hecke-eigenprojection HQp
→ π, and by

〈 , 〉π∨ : π∨⊗π→Qp the canonical duality. (We also use the same names for any base-change.)
Then for every ϕ ∈π∨, we may define

(4.4) Θ(ϕ,φ)K := 〈ϕ,Θ(φ)K ,ρ,π〉π∨ ∈H 1
f (E , Mρ,K ).

Since the map (ϕ,φ) 7→ Θ(ϕ,φ)K is equivariant under the action of Qp[K\HV (A
∞)/K], Proposi-

tion 3.8 implies that Θ(ϕ,φ)K belongs to the subspace H 1
f (E , Mσ ,K )⊂H 1

f (E , Mρ,K ).

3. Theta cycles. — For every f ∈ σ ,ϕ ∈π∨, and any K ⊂HV (A
∞) fixing f and φ, we define

Θρ(ϕ,φ, f ) := f∗Θ(ϕ,φ)K ∈H 1
f (E ,ρ).

The following definition then satisfies the first property asserted in Theorem A.

Definition 4.5. — Let ρ be a Galois representation satisfying the assumptions of § 4.1.
If ϵ(ρ) = +1, we may put Λρ =Qp and Θρ := 0.
If ϵ(ρ) = −1, assume that F ̸= Q and that Hypotheses 4.1 and 4.3 hold, and let π, V , σ be as

above. Then we define
Λρ := (π∨⊗ω⊗σ)G(A∞)×H(A∞),

and
Θρ : Λρ→H 1

f (E ,ρ),

[(ϕ,φ, f )] 7→Θρ(ϕ,φ, f ).

Remark 4.6. — Suppose that n = 2 and that ρ=VpAE for a modular abelian variety A of GL2-type
over F . Then the image of Θρ consists of classes of Heegner points. This follows by comparing the
height formulas for the two objects in [YZZ12] and [Liu11b], against the backdrop of [Nek07]. A
direct comparison is also possible: for n = 2, all the Z(x) are CM points on unitary Shimura curves,
which can be related along the lines of [Car86, § 4] to the modular curves and the quaternionic
Shimura curves used to construct Heegner points in [GZ86, YZZ12].

5. Relation to L-functions and Selmer groups

We continue to denote by ρ a Galois representation satisfying the assumptions of § 4.1.

5.1. Complex and p-adic L-functions. — For every ι : Qp ,→ C, and every finite-order character

χ ′ : GE →Q×p , we have the L-function

Lι(ρ⊗χ
′, s) = L(s + 1/2,Πι⊗ ιχ ′),

which is holomorphic and has a functional equation with center at s = 0 and sign ϵ(ρ).
At least under the following assumption, we also have a p-adic L-function.
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Assumption 5.1. — The extension E/F is totally split above p, and for every place w|p of E, the repre-
sentation ρw is crystalline and Panchishkin-ordinary.

We need to make the auxiliary choice of an isomorphismα : π∨,†→πρ∗(1) (whereπ=πρ,πρ∗(1) ⊂
HQp

), which yields for each ι : Qp ,→C, an element Pρ,ι = Pρ,α,ι(ρ) ∈C× such that

ι(ϕ†
1 ,ϕ2)π∨ =

((αϕ1)
ι,†,ϕι2)Pet

Pρ,ι

for every ϕ1 ∈π∨,†, ϕ2 ∈π; here

(ϕ,ϕ′)Pet :=
∫

G(F )\G(A)
ϕ(g )ϕ′(g )d g

where d g is the measure of [DL24, § 2.1 (G7)].
For a character χ of GF , we put χE := χ|GE

, and bn(χ ) :=
∏

v ∤∞ bn(χv ), where the factors are as
in (3.1); we also define a constant

c∞ =
�

(−1)r 2−r 2−rπr 2 Γ (1) · · ·Γ (r )
Γ (r + 1) · · ·Γ (2r )

�[F :Q]

.

Finally, we denote byK (XF ) the fraction field of O (XF ).

Proposition 5.2. — Suppose that ρ satisfies Assumption 5.1. There is a meromorphic function

Lp (ρ) = Lp,α(ρ) ∈K (XF )

characterised by the following property: for every finite-order character χ ∈XF (Qp ) and every embed-

ding ι : Qp ,→C, we have

ιLp (ρ)(χ ) = ιep (ρ,χ ) ·
c∞Lι(ρ⊗χE , 0)

bn(χ )Pρ,ι
.

Here, ιep (ρ,χ ) =
∏

w|v |p ιew,ι(ρ,χ ) ∈ ιQp , in which the product ranges over the p-adic places of E and
of F , and

ιew (ρ,χ ) := γ (ιWD(ρ+w ⊗χE ,w ),ψE ,w )
−1 bn,v (χ )

Lι(ρw ⊗χE ,w )
.

where the Deligne–Langlands γ -factor and Fontaine’s functor ιWD are as recalled in [Dis23, (1.1.4)].

Proof. — This follows by multiplying the incomplete p-adic L-function of [DL24, Theorem 1.4] by
local L-factors at ramified and p-adic places, as in the proof of Proposition 3.39 ibid.(8)

5.2. Pairings. — Let ρ be a representation satisfying the assumptions of Definition 4.5, and let πρ,
V , σρ, Λρ, and Θρ be the associated objects. We denote by πv and σv the local components of πρ
and σρ at the place v (which are well-defined up to isomorphism).

Dual Theta cycles. — The representation ρ∗(1) also satisfies those assumptions, and we have the cor-
responding map

Θρ∗(1) : Λρ∗(1)→H 1
f (E ,ρ∗(1)).

(8)Before [DL24], a p-adic L-function that extends Lp (ρ) to a larger space was constructed in [EHLS20]; the rationality
property proved there is weaker than stated here.
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Pairings. — Let 〈 , 〉 : Mρ ⊗ Mρ∗(1) → Qp (1) be the pairing induced by Poincaré duality. Then we
define a pairing

(5.1) ( , )σ : σρ⊗σρ∗(1)→Qp

by ( f , f ′)σ := f ◦ u( f ′∗(1)), where f ′∗(1) : ρ∗σ∗(1)(1)→M ∗ρ∗(1)(1) is the transpose, and u : M ∗ρ∗(1)(1)→
Mρ is the isomorphism induced by 〈 , 〉. Thus σρ∗(1) is identified with σ∨ρ = σ

∨.
We also have a canonical pairing onω⊗ω† defined by

(5.2) (φ,φ′)σ =
∫

V r
A∞

φ(x)φ′(x)d x

for the product of ψ-selfdual measures. Thus ω† is identified with ω∨. Similarly, if we denote
ι□ := □⊗Qp ,ι C, and complex conjugation in C by a bar, we have ιω = ω∨. Let vol(H∞) be the

volume of H(F∞) for the measure denoted 1
b2r (0)

d h♮v in [LL21, Definition 3.8], which is a rational
number by [DZ, Lemma 2.2.1].

Then:

– for every isomorphism α : π∨,†
ρ →πρ∗(1), we have a pairing

(5.3) ζα := vol(H∞) · ⊗v ∤∞ζv ◦ ( )
† ◦ jα : Λρ⊗Λρ∗(1)→Qp ,

where jα identifies the factorπ∨
ρ∗(1) ofΛρ⊗Λρ∗(1)withπ†

ρ via the dual of α, and ( )† mapsπ†
ρ⊗ω

to πρ⊗ω† =πρ⊗ω∨;

– for every ι ∈Σwe have an identification jι : ιπ
∨
ρ∗(1)

∼=−→ ιπρ via the restriction of ( , )Pet to πιρ⊗
πρ∗(1). Then we obtain a pairing

ζι := vol(H∞) · ⊗v ∤∞ζv ◦ ( ) ◦ jι : ιΛρ⊗ ιΛρ∗(1)→C

where ( )maps ιπρ⊗ ιω to ιπρ⊗ ιω = ιπρ⊗ ιω∨.

p-adic height pairing. — Assume that ρ is Panchishkin-ordinary. Then the construction of Nekovář
[Nek93] (see [DL24, § 4.2] for a verification of the assumptions) yields a p-adic height pairing

〈 , 〉 : H 1
f (E ,ρ)⊗H 1

f (E ,ρ∗(1))→ ΓF ⊗̂Qp .

Complex height pairings. — On the other hand, assume that p is unramified in E , and let K◦p =
∏

v |p Hv ⊂ Hp be a product ot maximal hyperspecial subgroups. Then for open compact K p ⊂
H(Ap∞), setting K := K pK◦p ⊂ H(A∞), the variety XK has good reduction at all p-adic places.
Define

Chr (XK )
〈p〉 ⊂Chr (XK )

0

to be the Q-subspace of algebraic cycles whose class in H 2r (XK ,Ew
,Qp (r )) is trivial for every finite

place w ∤ p of E . Li and Liu [LL21] observed that the construction of Bĕılinson [Bĕı87] uncondi-
tionally defines a height pairing

(5.4) 〈 , 〉BB : Chr (XK )
〈p〉
C ⊗C Chr (XK )

〈p〉
C →C⊗Q Qp

that is C-linear in the first factor and C-antilinear in the second factor. (It is conjectured that the
pairing takes values in C⊂C⊗Q Qp ; this turns out to be the case in the application to Theta cycles.)
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In order to descend this pairing to Selmer groups, we need to assume a case of a standard conjecture
on the injectivity of Abel–Jacobi maps. Whenever K ⊂ H(A∞) is an open compact subgroup that
is understood from the context, denote mρ =mρ,K , mρ∗(1) =mρ∗(1),K

Conjecture 5.3. — For ρ? ∈ {ρ,ρ∗(1)} and for each open compact subgroup K p ⊂H(Ap∞), the Abel–
Jacobi map

(5.5) AJp,K p K◦p
:
�

Chr (XK p K◦p
)〈p〉
Qp

�

mρ?

→H 1
f (E , Mρ?,K p K◦p

)

is injective.

Assume that ρ is crystalline at all p-adic places. Fix a maximal hyperspecial subgroup K◦p ⊂
H(Ap∞), and assume that Conjecture 5.3 holds. Denote by H 1

f (E , Mρ?,K p K◦p
)X the image of (5.5),

and let
H 1

f (E ,ρ?)
XK◦p :=
∑

σ ′,K p

∑

f ′∈(σ ′)K
p K p

f ′∗H 1
f (E , Mρ?,K p K◦p

)X

where the first sum is as in (4.1) for ρ?. Then for every ι : Qp ,→C and every K = K pK◦p , we have a
pairing

(5.6) 〈 , 〉ιK : H 1
f (E , Mρ,K )

X ⊗Qp
H 1

f (E , Mρ∗(1),K )
X ⊗Qp ,ι C→C⊗Q Qp

transported from (5.4) via the maps AJp,K p K◦p
⊗ι 1. We may deduce from it a pairing

(5.7) 〈 , 〉ι : H 1
f (E ,ρ)

XK◦p ⊗Qp
H 1

f (E ,ρ∗(1))
XK◦p ⊗Qp ,ι C→C⊗Q Qp

defined as follows.
For i = 1,2 let

ci = fi ,∗AJp,K c ′i
for some K =K pK◦p , some fi ∈ σK

i , and some

c ′1 ∈
�

Chr (XK p K◦p
)〈p〉
Qp

�

mρ

, c ′2 ∈
�

Chr (XK p K◦p
)〈p〉
Qp

�

mρ∗(1)

.

If σ1 ̸∼= σ∨2 , we put

(5.8) 〈c1, c2〉
ι := 0.

If σ1
∼= σ∨2 , we have the pairing ( , )σ1

of (5.1) on σ1⊗σ2, through which we identify σ2 = σ
∨
1 . Let

tK ( f1⊗ f2) ∈Hom (σ∨,K
1 ,σK

2 ) = End (σ∨,K
1 ) = End Qp [GE ]

(Mσ1,K )

be given by
tK ( f1⊗ f2)(v1) = vol(K) · (v1, f1)σ1

· f2,

and let

(5.9) t( f1⊗ f2)(v1) = vol(K) · tK ( f1⊗ f2);

the normalising volume factor makes t into a well-defined map σ1 ⊗ σ∨1 → End Qp [GE ]
(Mσ1

). The

existence of a Hecke correspondence acting as t( f1⊗ f2) implies that the action of t( f1⊗ f2) on Selmer
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groups preserves the subspace H 1
f (E , Mσ1,K )

XK◦p . Then we define

(5.10) 〈c1, c2〉
ι := 〈t( f1⊗ f2)c

′
1, c ′2〉

ι
K .

The definition of (5.7) in the general case follows from (5.8), (5.10) by bilinearity.

Remark 5.4. — In the p-adic case, we also have ΓF ⊗̂Qp -valued Nekovář pairings 〈 , 〉K analogous
to (5.6) (whose construction takes as input the pairing on Mρ,K ⊗Mρ∗(1),K deduced from Poincaré
duality). The analogous formula to (5.10) holds true as a consequence of the definitions and the
projection formula [DZ, Lemma A.2.5].

5.3. The height formulas. — We may now state the main known results on Theta cycles. They
parallel those of [GZ86, PR87, Kol88] on Heegner points.

We will say that E and ρ are mildly ramified if E andπρ satisfy the hypotheses of [DL24, Assump-
tion 1.6], except possibly for the ones about p-adic places.

Theorem 5.5. — Suppose that F ̸=Q or n = 2, that E andρ are mildly ramified, and thatρ is crystalline
at all p-adic places. Assume Hypotheses 4.1.

1. Assume the Modularity Hypothesis 4.3, Conjecture 5.3, and that p is unramified in E. Then for
every λ ∈Λρ, λ′ ∈Λρ∗(1) and for every ι ∈Σ, we have

〈Θρ(λ),Θρ∗(1)(λ
′)〉ι =

c∞L′ι(ρ, 0)
bn(1)

· ζι(λ,λ′)

in C.
2. Suppose that Assumption 5.1 holds and that p > n. Let α : π∨,†

ρ
∼=πρ∗(1). Then:

– if the order of vanishing of Lp,α(ρ) at 1 is one, then the Modularity Hypothesis 4.3 holds, and
for every λ ∈Λρ, λ′ ∈Λρ∗(1), we have

〈Θρ(λ),Θρ∗(1)(λ
′)〉= ep (ρ,1)−1 · dLp,α(ρ)(1) · ζα(λ,λ′).

in ΓF ⊗̂Qp = T ∗1XF .
– if the order of vanishing of Lp,α(ρ) at 1 is not one and the Modularity Hypothesis 4.3 holds,

then for every λ ∈Λρ, λ′ ∈Λρ∗(1), we have

〈Θρ(λ),Θρ∗(1)(λ
′)〉= 0.

Proof. — Writeλ= [(ϕ,φ, f )], λ′ = [(ϕ′,φ′, f ′)]. Consider the p-adic case. The modularity result is
[DL24, Theorem 4.20], after projection H 1

f (E , Mρ)→H 1
f (E , Mσ ′) for any relevant σ ′ with BC(σ ′) =

Π; but this is equivalent to the modularity in H 1
f (E ,ρ) by Hypothesis 4.3.

For the first height formula, by the definitions and Remark 5.4, it is equivalent to prove

(5.11) 〈t( f ⊗ f ′∨)Θ(ϕ,φ),Θ(ϕ′,φ′)〉= ep (ρ,1)−1 · dLp,α(ρ)(1) · ζ̆α(t( f ⊗ f ′∨)ϑ(ϕ,φ′);ϑ(ϕ′,φ′))

where the Θ’s are the arithmetic theta liftings for ρ and ρ∗(1) as in (4.4), and

ζ̆α = vol(H∞) · ⊗v ∤∞ζ̆v ◦ ( )
† ◦ jα

is defined analogously to (5.3) based on the pairings (3.4). Pick a K ⊂ HV (A
∞) fixing f , f ′,φ,φ′,

and let T ∈ H (H(A∞)) be a Hecke operator acting as vol(K)−1t( f ⊗ f ′∨) on σ∨. Then (5.11) is
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equivalent to [DL24, Theorem 1.8 (1)] in level K for

(ϕ,Tφ;ϕ′,φ′).

(Note that our definitions of the arithmetic theta lifts Θ(−,−) differ from those of [DL24] by a
factor vol(K); in the height formula, one factor is accounted for by (5.9), and another one by the
normalisation of height pairings in loc. cit.. The term vol♮(K) in [DL24] equals our vol(H∞)vol(K):
this difference is accounted for by the factor vol(H∞) in the pairing ζα.)

The p-adic height vanishing formula is likewise equivalent to [DL24, Theorem 1.8 (2)].
The complex case is similarly reduced to [LL22, Theorem 1.8]. As ρ is crystalline at all w|p, the

representations Πw , σw , πw are unramified, so that we can take representatives ( f ,ϕ,φ; f ′,ϕ′,φ′)
of λ,λ′ ̸= 0 that are fixed by a maximal hyperspecial K◦p . Then the fact that 〈 , 〉ι is well-defined on
Theta cycles follows from the definitions and [LL21, Proposition 6.10 (3)].

Part 2 of Theorem A is then an immediate consequence of Theorem 5.5. For a beautiful exposition
of some key aspects of the proofs of the formulas in [LL21, LL22, DL24], see [Li23].

The proof of Theorem 5.5 suggests that from the point of view of height formulas, Theta cycles
offer no material advantage over previous constructions. This is not so from the point of view of
Euler systems, as we explain next.

5.4. An Euler system. — The main technique for bounding Selmer groups is that of Euler systems,
originally introduced by Kolyvagin to study Heegner points [Kol88, Kol90]. Roughly speaking, an
Euler system for a representationρ of GE is a collection of integral Selmer classes defined over certain
abelian extensions of ρ and satisfying certain compatibility relations; the (one) class defined over E
itself is called the base class of the Euler system.

In a forthcoming work, Jetchev–Nekovář–Skinner theorise a variant of this notion, that we shall
call a JNS Euler system. It is adapted to conjugate-symplectic representations over CM fields, where
the abelian extensions are ring class fields ramified at the primes of E split over the totally real sub-
field F (see [Ski]). Their main result is that if ρ has ‘sufficiently large’ image, then the existence of
a JNS Euler system with nontrivial base class z implies that z generates the Selmer group of ρ: for
a precise statement (when F = Q), see [ACR23, Theorem 8.3 and Remark 8.4], where JNS Euler
systems are called ‘split anticyclotomic Euler systems’ (ibid., Definition 8.1).

The following is the main result of [Dis]. Granted the results of Jetchev–Nekovář–Skinner, it
implies part 3 of Theorem A.

Theorem 5.6. — Let ρ : GE →GLn(Qp ) be a representation satisfying the assumptions of § 4.1. Then
for any λ ∈Λρ, there exists a JNS Euler system based on Θρ(λ).

Multiplicity-one principles are remarkably useful to prove relations between special cycles and,
in particular, compatibility relations in Selmer groups – as first observed in [YZZ12] and [LSZ22].
The proof of Theorem 5.6 is no exception: this is the main technical advantage of having constructed
a cycle depending on one parameter only.
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