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Abstract. — Let G be the group (GL2 ×GU(1))/GL1 over a totally real field F , and let X be a Hida family
for G. Revisiting a construction of Howard and Fouquet, we construct an explicit sectionP of a sheaf of Selmer
groups overX . We show, answering a question of Howard, thatP is a universal Heegner class, in the sense that
it interpolates geometrically defined Heegner classes at all the relevant classical points of X . We also propose a
‘Bertolini–Darmon’ conjecture for the leading term ofP at classical points.

We then prove that the p-adic height of P is given by the cyclotomic derivative of a p-adic L-function. This
formula over X (which is an identity of functionals on some universal ordinary automorphic representations)
specialises at classical points to all the Gross–Zagier formulas for G that may be expected from representation-
theoretic considerations.

Combined with a result of Fouquet, the formula implies the p-adic analogue of the Beilinson–Bloch–Kato
conjecture in analytic rank one, for the selfdual motives attached to Hilbert modular forms and their twists by
CM Hecke characters. It also implies one half of the first example of a non-abelian Iwasawa main conjecture
for derivatives, in 2[F : Q] variables. Other applications include two different generic non-vanishing results for
Heegner classes and p-adic heights.
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1. Introduction and statements of the main results

A beautiful construction of Heegner and Birch, based on the modularity of elliptic curves and the
theory of complex multiplication, attaches to an elliptic curve A/Q and an imaginary quadratic field E
a point P ∈ A(E). The work of Gross–Zagier [GZ86] related the height of P to the derivative of the L-
function L′(AE , 1), with striking applications to the Birch and Swinnerton-Dyer conjecture. An analogous
result in p-adic coefficients was proved by Perrin-Riou [PR87a] soon thereafter, if A has good ordinary
reduction at the prime p.

The decade following those works saw a pair of similar results, by Nekovář [Nek95] and Zhang
[Zha97], relating Heegner cycles on Kuga–Sato varieties to ( p-adic) L-functions of higher-weight modular
forms. We may single out two major innovations in the approach to Heegner points and Gross–Zagier
formulas since then,(1) both answering the question of what ‘other’ Heegner points there are and how
they fit together.

The first one starts from the observation by Mazur [Maz84] and Perrin-Riou [PR87b] that Heegner
points should vary p-adically in anticyclotomic families, in the same way that the L-function of the elliptic
curve AE does; this observation inspired Howard [How05] to prove a generalisation to such families of
Perrin-Riou’s formula. Howard later significantly expanded the scope of Mazur and Perrin-Riou’s idea by
proving that the Kummer classes of Heegner points also vary in Hida families of modular forms [How07];
the question of the relation of the resulting ‘big’ classes to Heegner cycles was left open.

The second innovation was the observation by Gross [Gro04] that Heegner points can be viewed as
elements of spaces of H′-invariant linear functionals on an automorphic representation of (G×H)′ (these
reductive groups will be defined below),(2) so that the tools of representation theory may be brought

(1)Two other recent ideas that our work does not touch upon are nevertheless too important to be ignored: the conjecture of
Darmon and Guitart–Madseu–Şengün that there should exist Heegner points attached to any quadratic extension of number fields
(see [Dar01], [GMŞ15]), and the formulas for the p-adic logarithms of Heegner points of [BDP13, LZZ18].
(2)N.B.: the notation G used in the informal abstract differs from the notation of the paper.
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in to conceive and prove more general formulas: a programme whose main achievement, in complex
coefficients, is the work of Yuan–Zhang–Zhang [YZZ12] on Heegner points on Shimura curves.

In this work, we combine those two approaches. We construct Heegner classes for the Galois represen-
tation over a Hida family for (G×H)′, show that they specialise to (cohomological) Heegner cycles at all
classical points, and prove a formula for their p-adic heights that is universal in the sense that it specialises
to all the p-adic formulas suggested by the framework of Gross. (The analogous complex Gross–Zagier
formulas are not currently known(3) for motives of higher weight.) We obtain various applications to the
arithmetic of motives attached to Hilbert modular forms.

In the rest of this first section we state our main theorems, and complete the discussion of their history.
We begin in § 1.1 by presenting the results concerning the p-adic Bĕılinson–Bloch–Kato conjecture

(Theorem A); they are applications of the general p-adic Gross–Zagier formula for a fixed representation,
stated as Theorem B in § 1.2.

In § 1.3 we outline the construction and properties of the universal family of Heegner classes (Theorem
C), referring to the “Bertolini–Darmon” conjecture of § 7.3 for a further study of its classical specialisa-
tions. In § 1.4 we state the universal formula of the title (Theorem D); a complementary ‘Waldspurger’
analogue will be proved in § 7.2 (Theorem H).

Finally, in § 1.5 we discuss some further applications: the first non-abelian example of an Iwasawa
main conjecture for derivatives of p-adic L-functions (Theorem E); and two results on the generic non-
vanishing of p-adic heights and Heegner cycles: one for CM motives (Theorem F), the other for Hida
families containing a rank-0 elliptic curve with split multiplicative reduction (Theorem G). A further
application, to a criterion for certain Bloch–Kato Selmer groups to be of rank zero, will appear separately.

1.1. The p-adic Bĕılinson–Bloch–Kato conjecture in analytic rank 1. — The primary motivation for
our work comes from the generalisations of the Birch and Swinnerton-Dyer (BSD) conjecture and its p-
adic analogue, as proposed by Bĕılinson, Bloch–Kato, and Perrin-Riou [Bĕı84,BK90,PR95]. Recall that if
A/Q is an elliptic curve, (BSD) is equivalent to the following statements. Denote by ran and L∗(A, 1) the
order of vanishing and leading term of L(A, s) at s = 1. Then L∗(A, 1)> 0 and for every prime p,

(a) the Selmer group Sel(Vp A) := (lim←−n
Selpn (A))⊗Zp

Qp has dimension equal to ran;
(b) the divisible part of X(A)[p∞] vanishes;
(c) the p-adic valuations of L∗(A, 1)/ΩARA and |X(A)[p∞]|

∏

v ∤∞ cv (A) are equal.

1.1.1. Selmer groups according to Bloch–Kato and Nekovář. — If E is a number field and V is a geometric
p-adic representation of its Galois group GE , Bloch and Kato [BK90] have proposed an analogue

H 1
f (E ,V )

of the Selmer group of A; it is an L-vector-subspace (where L is the field of scalars for V ) of the first Galois
cohomology group of V , consisting of those classes satisfying certain local conditions. According to the
resulting variant of the conjecture of Bĕılinson [Bĕı84], the dimension dimL H 1

f (E ,V ) should equal the

order of vanishing of the L-function L(V ∗(1), s) at s = 0.(4)

Another definition of Selmer groups was proposed by Greenberg when V satisfies an ordinariness
condition at the places above a prime p; specialised to the cases of interest to us, it recovers the Bloch–
Kato Selmer groups. Nekovář observed that a variation of Greenberg’s definition works well in p-adic
families, and developed this observation into the theory of Selmer complexes [Nek06], that provides the
foundation for the present work (§ 5). For nice p-adic families of GE -representations, the theory allows

(3)See however the very recent [Qiu]. (Note added during revision.)
(4)Provided V contains no copies of the trivial representation. Of course in general the meromorphic continuation of L(V , s) is
itself conjectural. Note that when V is self-dual, or E is a CM field and V is conjugate-self-dual, we have L(V , s) = L(V ∗(1), s).
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to define groups
eH

i
f (E ,V ).

for all i .

1.1.2. The p-adic Bĕılinson–Bloch–Kato conjecture for Hilbert modular forms. — Our main arithmetic re-
sults concern the p-adic analogue of the Bĕılinson–Bloch–Kato conjecture for the Galois representations
attached to Hilbert modular forms and their twists by Hecke characters of CM fields.

Fix throughout the rest of this paper a rational prime p. Let F be a totally real field, let E be a CM
quadratic extension of F , and let

G0 :=ResF /QGL2, H :=ResE/QGm .

Let L be a finite extension of Qp splitting F . A pair of cohomological weights for G0 and H is a pair of
tuples w := (w; (wσ )σ : F ,→L), l = (l ; (lσ )σ : F ,→L), each consisting of [F : Q]+1 integers of the same parity,
such that wσ ≥ 2 for all σ : F ,→ L. In this paper we will only consider cohomological weights and there-
fore omit the adjective ‘cohomological’. By a “Hilbert modular form over L of weight w” (respectively
a “Hecke character of E over L of weight l ”) we mean a cuspidal automorphic representation of G0(A)
(respectively H(A)) over L of weight w (respectively weight l ) as defined in Definition 2.4.1 below.

If π0 is a Hilbert modular form and χ a Hecke character over L, we denote by Π0 = π0 ⊗ χ the
associated representation of G0 ×H. We denote by Vπ0

and Vχ the corresponding 2- (respectively 1-)
dimensional representations of GF (respectively GE ), normalised so that L(Vπ0

, s) = L(s + 1/2,π0), and
we let

V :=VΠ0
:=Vπ0|GE

⊗Vχ .

Let ωπ0
be the central character of π0 and let ωχ := χ |F ×A∞ . If ωπ0

ωχ = 1, then V is conjugate-self-dual
and pure of weight −1, and the epsilon factor ϵ(V ) ∈ {±1}.

Let ΓF := F ×A∞/F ×Ô p,×
F (identified with the Galois group of the maximal abelian extension of F un-

ramified outside p by class field theory), and let

EZ/L := Spec (ZpJΓF KL).

(We will also simply write EZ for EZ/Qp
.) Suppose that π0 is ordinary in the sense of Definition 2.4.3;

equivalently, for all v |p the associated GFv
-representation Vπ0,v reduces nontrivially as

0→V +
π0,v →Vπ0,v

→V −π0,v → 0,

and GFv
acts on V +

π0,v by the product of the cyclotomic character χcyc and a character α◦v valued in p-adic
units. We may attach to V a meromorphic p-adic L-function

Lp (V(π0,χ ), s) ∈K (EZ/L)

where the variable s ∈ EZ/L may be thought of as a p-adic character of ΓF ; we use the synonym χF ,s when
we want to emphasise such nature of s , and we denote by “s = 0” the trivial character χF ,0 = 1.(5) More
precisely, working in terms of the multivariable functionLp (V ♯) of Theorem 1.4.1 below, we may define
Lp (V(π,χ )) as the restriction

(1.1.1) Lp (V(π,χ ), s) :=Lp (V
♯)(zs )

where zs corresponds to the family of representations Vπ|GE
⊗χχF ,s |GE

.
If ϵ(V ) =−1, thenLp (V(π0,χ ), 0) = 0 and we denote byL ′p (V(π0,χ ), 0) = dLp ((V(π0,χ ))(0) ∈ T0EZ/L =

ΓF ⊗̂L its first derivative.

(5)Other authors consider p-adic L-functions of a variable s ′ ∈ Zp . In our language this corresponds to restricting Lp (V , s) along

the embedding Zp = SpecZpJZpKQp
(Qp )→EZ/L(Qp ), s ′ 7→ χ s ′

cyc,F where χcyc,F = (1.9.1) is the cyclotomic character of F .
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Theorem A. — Let π0 be a Hilbert modular form over L of weight w, and let χ be a Hecke character of E
over L of weight l . Let V :=Vπ0|GE

⊗Vχ . Suppose that:

(wt) |lσ |< wσ for all σ : F ,→ L;
(sd) ωπ0

ωχ = 1 (which implies w + l = 0);
(ϵ) ϵ(V ) =−1;
(ord) π0 is ordinary;
(n-exc) V is not exceptional: for no place w|v |p of E is V −w :=V −

π0,v |GEw
⊗χw the trivial representation.

1. We have
L ′p (V(π,χ ), 0) ̸= 0 =⇒ dimL

eH
1
f (E ,V )≥ 1,

and we can exhibit an explicit nonzero element of eH
1
f (E ,V ) = H 1

f (E ,V ), whose p-adic height (cf.
Proposition 5.3.3) is also non-zero.

2. Let T ⊂ V be a stable lattice. If L ′p (V(π,χ ), 0) ̸= 0 and moreover the conditions of [Fou13, Theorem
B.(i)] are satisfied, then:

(a) we have

dimL
eH

1
f (E ,V ) = 1;

(b) let RT ∈ OL⊗̂Zp
ΓF be the regulator of the height pairing (1.2.12) on eH

1
f (E ,T )× eH

1
f (E ,T ∗(1)).

Then
L ′p (V(π,χ ), 0)⪰Zp

RT · | eH
2
f (E ,T )tors|

in L⊗̂ΓF .

In the last formula we have used the following suggestive notation.

Notation. — For a domain A with fraction field K and two A-submodules m1, m2 of a K -vector space M
we write m1 ⪰A m2 if m1 ⊆ m2; the notation is extended to the case where some mi is an element of M ,
in which case we interpret it as Ami .

Part 1 will be an immediate consequence of Theorem B, the Jacquet–Langlands correspondence, and
the observation following (1.2.5) below. For a list of previous results in the direction of part 1 we refer
to the discussion following Theorem B. Let us note, for now, that an analogue of this result in complex
coefficients is not known.

Part 2 follows from invoking the results of Fouquet in [Fou13], that generalise the bounds on Tate–
Shafarevich groups of elliptic curves obtained by Kolyvagin using the methods of Euler systems.

Remark 1.1.1. — Condition (n-exc) guarantees thatLp (V(π,χ ), s) has no exceptional zeros at s = 0, and it

is equivalent to the identity eH
1
f (E ,V ) =H 1

f (E ,V ). We will also equivalently say thatΠ is not exceptional.
For a characterisation of this condition, see Lemma 6.4.6.

Remark 1.1.2. — In the simplest case where F =Q, π0 is a modular form with rational Fourier coeffi-
cients of weight wσ = 2, and χ = 1, the representation Vπ0

=VpA is the rational p-adic Tate module of

an elliptic curve A/Q. In this case H 1
f (E ,V ) = Sel(Vp AE ), and letting T = Tp AE , the group eH

2
f (E ,T )tors

equals ([BF96, (1.36)]) the quotient of X(AE )[p
∞] by its divisible submodule X(AE )p-div.

The group X(AE )p-div, conjecturally 0, measures the failure of Sel(Vp AE ) to be generated by the classes
of points in A(E). We do not address in this paper the analogous conjecture from [BK90] that H 1

f (E ,V )
should be generated by the classes of algebraic cycles. Nevertheless our construction of a generator is
sufficiently geometric to provide a good starting point to establish this conjecture, cf. Remark 6.2.2.

1.1.3. A variant for selfdual Hilbert modular forms. — Suppose that π0 is an ordinary Hilbert modular
form, ωπ0

= 1 (so that w = 0), and ϵ(Vπ0
) = −1. Assume that either [F : Q] is odd or there is a place
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v ∤ p∞ of F such thatπ0,v is not a principal series. Suppose that for no v |p isπ0,v the Steinberg represen-
tation. Let Lp (Vπ0

, s) be the p-adic L-function of Vπ0
constructed in [Dim13]. If L′p (Vπ0

, 0) ̸= 0, then the
conclusions (1) and (2a) of the previous theorem hold with (E ,V ) replaced by (F ,Vπ0

). (This is proved by
a standard argument based on the choice of a suitable auxiliary E to reduce to the previous theorem.) A
similar remark (at least for part (1)) applies when π0 has CM by E , cf. the proof of Theorem F in § 7.1.4

1.1.4. Addendum to the historical overview: higher-rank cases. — The general overview sketched in our
opening page ignored a third important theme: Gross’s framework has been generalised in [GGP12] to
study special cycles attached to other pairs of groups (G, H). Several works have explored the consequences
towards the Bĕılinson–Bloch–Kato conjecture of the possible non-vanishing of those cycles, most notably
[LTXZZ]. On the other hand, non-vanishing criteria in terms of L-functions have been obtained in a
considerably more limited set of cases, mostly related to triple-product L-functions [YZZ, Xue19, DR14,
BSV, BCF20].(6) The relation with cyclotomic p-adic L-functions has not been studied beyond Heegner
cycles.

1.2. The p-adic Gross–Zagier formula for arbitrary weight. — Theorem A, like analogous previous
results [PR87a,Nek95,Dis15, Shn16,Dis17,Dis/a], is an application of an explicit formula for the p-adic
heights of a certain Selmer class (here rather a collection of classes). When the weights are trivial, that is
w = (0; (2, . . . , 2)) and l = (0; (0, . . . , 0)), this is the class of a Heegner 0-cycle coming from CM points on
quaternionic Shimura curves; this is the case studied in [Dis17,Dis/a], and earlier in complex coefficients
by Yuan–Zhang–Zhang [YZZ12]. In general, it is the class of a 0-cycle supported at CM points, with
coefficients in a local system corresponding to the weight of the representation. The specific choice of
the (tower of) Shimura curves is dictated by the local root numbers of V , see the discussion preceding
Definition 1.2.1.

1.2.1. Algebraic groups and Shimura varieties. — Let B be a quaternion algebra over FA (where A denotes
the adèles of Q) with ramification set Σ⊔{v |∞} satisfying |Σ| ≡ [F : Q]− 1 (mod 2). Then G(A) := B×

is not the points of an algebraic group ‘G’ over Q, but we will still find convenient to use this suggestive
notation and refer to G as an incoherent algebraic group over Q (see § 2.1.1 for a more formal treatment).
Let H = ResE/QGm as above, and let Z := ResF /QGm , that admits natural central embeddings in G and
H.

The list of (coherent or incoherent) groups of interest in this paper, often denoted collectively by G∗,
is

(1.2.1) G, H, G×H, (G×H)′ := (G×H)/Z, H′ :=H/Z,

where Z is embedded diagonally in the product group.(7) We suppose that for every v ∈ Σ, Ev/Fv is
nonsplit. Then there is unique B×-conjugacy class of FA-embeddings EA ,→ B, of which we fix one. It
induces an embedding e: H ,→G.

To the above groups and suitable Shimura data (§ 2.3.1), we associate corresponding towers of com-
pactified Shimura varieties X∗, respectively denoted

(1.2.2) X/F , Y/E , X ×F Y/E , Z/E , Y ′/E .

They are curves except for Y , Y ′ that have dimension 0. The embedding e induces a diagonal embedding
H′ ,→ (G×H)′, hence a morphism of Shimura varieties

e′ : Y ′→ Z .

(6)In a related context, see also the very recent breakthrough of Li–Liu [LL21]. (Note added during revision.)
(7)In fact, the (incoherent) group that truly underlies our constructions is (G×Z H)′ = {(g , h) | νG(g ) = νH(h)} (where ν? : ?→ Z
arises from the reduced norm map of B (for ?=G) or from the norm of E/F (for ?=H). That is, the universal Heegner class and
the other associated objects described below descend to the ordinary eigenvariety for (G×Z H)′ (a quotient of the one for (G×H)′).
Nevertheless, for the sake of simplicity we will content ourselves with working with (G×H)′.
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1.2.2. p-adic automorphic representations. — It is more natural to parametrise “cohomological automor-
phic representations over a p-adic field L” of a group G∗ by irreducible algebraic representations W of
G∗.

(8)

Let G∗,∞ be G∗(Qp ) with the Zariski topology (and for later purposes let G∗, p := G∗(Qp ) with the
p-adic topology, G∗ :=G∗, p ×G∗,∞). We redefine throughout this work

G∗(A) :=G∗(A
∞)×G∗,∞.

Let W be an (algebraic) representation of G∗,∞ over L, and letW be the corresponding étale local system
on the tower X∗. Then we define a (cuspidal, cohomological) automorphic representation of G∗(A) over L
of weight W to be a representation

Π=Π∞⊗W

of G∗(A) occurring in H •(X∗,E ,W ∨)⊗W .(9) (Here and in the rest of the paper, groups and Hecke algebras
act on Shimura varieties and their homology on the right, on cohomology and on automorphic forms on
the left. Left and right algebraic representations W are identified via w.g := g−1.w.)

1.2.3. Automorphic and Galois representations. — Let Π = π⊗ χ be a cuspidal automorphic represen-
tation of (G×H)′(A) over L of weight W =WG ⊗WH. Let V = VΠ = Vπ|GE

⊗Vχ be the associated
GE -representation.

For a smooth proper variety Z ′ of dimension d over a characteristic-zero field F ′ and a p-adic local
systemW ′, define

Hi (Z
′,W ′) :=H 2d−i

ét
(Z ′,W ′(d ))

for all 0≤ i ≤ 2d . For each level K ⊂ (G×H)′(A∞), let ZK := ZK ×Spec E Spec E . We use the notation

Hi (ZK ,W ) :=Hi (ZK ,W )⊗W ∨

and similarly for the other Shimura varieties over F , E , E under consideration. Thanks to work of Carayol
we can construct an injection (an isomorphism unless V is decomposable) of (G×H)′(A)-representations

(1.2.3) Π ,→ lim−→
K

Hom L[GE ]
(H1(ZK ,W ),VΠ).

1.2.4. Heegner cycles. — Suppose that W satisfies (wt), then W H ′∞ ∼=WH ′∞ is 1-dimensional, and e′ in-
duces a canonical system of maps

H0(Y
′

V ′ , L)→H0(ZK ,W )
for all V ′ ⊂H′(A∞)∩K . The image∆◦W , f∞

∈H0(ZK ,W ) of the normalised fundamental class

[Y ′V ′] = |Y
′(E)|−1 ·

∑

y∈Y ′(E)

[y] ∈ lim←−
V ′

H0(Y
′

V , L)

is well-defined and (after a modification if W is trivial) belongs to the kernel H0(ZK ,W )0 of H0(ZK ,W )→
H0(ZK ,W ). The images of ∆◦W , f∞

under the Abel–Jacobi maps AJ: H0(ZK ,W )0 → H 1(E , H1(ZK ,W ))
are compatible under pushforward along the tower ZK and invariant under the H′(A)-action, hence they
define an element

PW := limAJ(∆◦W ,−) ∈ lim←−
K

H 1(E , H1(ZK ,W )H ′(A))

Via (1.2.3), PW defines an H′(A)-invariant functional

(1.2.4) PΠ : ΠH ′∞ →H 1(GE ,VΠ),

(8)See Definition 2.4.1: the W /L of interest to us are in bijection with (finite) GL-orbits of cohomological ‘numerical’ weights as
defined above. From now on all numerical or representation-theoretic weights will be tacitly understood to be cohomological.
(9)This approach is inspired by the work of Emerton [Eme06].
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whose image should lie in H 1
f (E ,VΠ)⊂H 1(E ,VΠ) (see Remark 6.2.2 for a stronger conjecture). We show

in Proposition 6.4.7 that this is the case if Bp is split and Π is ordinary and not exceptional, which we
define to mean that Bp is split and the Jacquet–Langlands transfer Π0 of Π to G0 ×H (which is thus the
‘identity’ at p) satisfies those properties.

Our formula will give a criterion for the nonvanishing of PΠ.

1.2.5. Multiplicity one. — Representation theory provides a necessary condition. The space

(Π)∗,H
′(A) =Hom H′(A)(Π, L)

is known, by a theorem of Waldspurger, Tunnell, and H. Saito [Tun83, Sai93], to be nonzero if and only
if the following condition is satisfied for all v:

(ϵv ) Define ϵ(Bv ) :=+1 (respectively−1) if Bv is split (respectively nonsplit). Let ϵ(Vv ) :=
∏

w|v ϵ(Vw ),
χv (−1) :=

∏

w|v χw (−1); then

(1.2.5) ϵG
v (V ) := ϵ(Vv )χv (−1)ηv (−1)ϵ(Bv ) = +1.

If this is the case, (Π)∗,H′(A) is 1-dimensional and moreover the global root number ϵ(V ) =−1. Conversely,
if V is as in Theorem A and in particular satisfies ϵ(V ) = −1, there exists a unique incoherent totally
definite quaternion algebra B verifying (ϵv ).

The conditions (ϵv ) for a finite v generalise the classical “Heegner condition”. For v |p, ifπ is ordinary
the condition (ϵv ) is satisfied unless v is nonsplit in E and π is exceptional at v (Lemma 6.4.6). The
condition (ϵ∞) is equivalent to (wt).

Definition 1.2.1. — We say thatΠ is locally distinguished by H′, or simply locally distinguished, if it satisfies
conditions (ϵv ) for all v.

1.2.6. Local toric periods. — Assume thatΠ is locally distinguished, and letΠ∨ denote the contragredient
representation of Π. Then we know an explicit a generator of

(1.2.6) Π∗,H
′(A)⊗ (Π∨)∗,H′(A)

as a product of local pairings, which we now define. The pair PΠ ⊗ PΠ∨ will be measured against this
generator.

For v a finite place of F , let Πv be the local component of Π, a representation of (B×v × E×v )/F ×v ⊃
H ′v := E×v /F ×v ; let d tv be a Haar measure on H ′v . For v =∞, let Π∞ = W and let d t∞ be a formal
symbol synonymous with a constant vol(H ′∞, d t∞) ∈ L. In all cases, let Π∗,H

′
v

v :=Hom H ′v (Πv , L) and let
( , )v be an invariant pairing on Πv ⊗Π∨v .

Let Vv (respectively Vπ,v ) be the restriction to GEv
:=

∏

w|v GE ,w (respectively GFv
) of the Galois

representation associated withΠ (respectivelyπ) if v is finite, and the Hodge structure associated with W
(reps. WG) if v =∞. Let us also introduce the convenient notation

“V(π,χ ),v := (Vπ,v ⊗ IndEv
Fv
χv )⊖ ad(Vπ)(1)”

(to be thought of as referring to a ‘virtual motive’).
Let η : F ×A /F ×→{±1} be the character associated with E/F , and let

(1.2.7) L (V(π,χ ),v , 0) :=
ζF ,v (2)L(Vv , 0)

L(1,ηv )L(ad(Vπ,v ), 1)
·

(

1 if v is finite

π−[F :Q] if v =∞
∈ L.

Then

Qv,(,)v ,d tv
( f1,v , f2,v ) :=L (V(π,χ ),v , 0)−1

∫

H ′v

(Πv (t ) f1,v , f2,v )v d tv
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is an explicit generator of Π∗,H
′
v

v ⊗L (Π
∨
v )
∗,H ′v . Here for v ∤∞ the integral is absolutely convergent (after

making any choice of L ,→C), and for v =∞ we understand
∫

H ′∞

Π∞(t )d t∞ := vol(H ′∞, d t∞) · pH ′∞ : W →WH ′∞ =W H ′∞ ,

where pH ′∞ is the natural projection.
Given f3,v , f4,v ∈Πv ⊗Π∨v such that ( f3,v , f4,v )v ̸= 0, the quantity

(1.2.8) Qv,d tv

�

f1,v ⊗ f2,v

f3,v ⊗ f4,v

�

:=
Qv,(,)v ,d tv

( f1,v , f2,v )

( f3,v , f4,v )v

is independent of the choice of ( , )v ; it equals vol(O ×E ,v/O
×
F ,v , d tv ) if all the data are unramified.

Fix a choice of measures d tv such that for d t =
∏

v d tv ,

(1.2.9) vol(H′(Q)\H′(A), d t ) := vol(H′(Q)\H′(A∞),
∏

v ∤∞ d tv ) · vol(H ′∞, d t∞) = 1.

Then we define for f1 ∈ΠH ′ , f2 ∈Π∨H ′ , f3 ∈Π, f4 ∈Π∨ such that
∏

v ( f3,v , f4,v )v ̸= 0:

Q
�

f1⊗ f2
f3⊗ f4

�

:=
∏

v
Qv,d tv

�

f1,v ⊗ f2,v

f3,v ⊗ f4,v

�

.

1.2.7. Global pairings and p-adic heights. — Let V ι :=VΠ∨ . Fix a Galois-equivariant pairing

(1.2.10) V ⊗V ι→ L(1).

Poincaré duality provides a canonical Galois- and Hecke- equivariant pairing H1(ZK ,W )⊗H1(ZK ,W ∨)→
L(1). Via (1.2.3) and (1.2.10), it induces dual pairings ( , )KΠ : ΠK ⊗Π∨,K → L for all K . Letting LK be the
Hodge bundle on ZK , the following pairing ((4.1.7) in the text) is well defined:

( , )Π := lim
K
(dimW · deg(LK ))

−1 · ( , )ΠK : Π⊗Π∨→ L.

On the other hand, if π is ordinary the restriction Vw of V to GEw
, w|p, is reducible

(1.2.11) 0→V +
w →Vw →V −w → 0,

and there is an analogous reduction for V ι such that V +
w and V ι,+

w are exact orthogonal of each other under
(1.2.10). These data allow to define a height pairing

(1.2.12) hV : eH
1
f (E ,V )⊗ eH

1
f (E ,V ι)→ L⊗̂ΓF

on Nekovář’s Selmer groups as in Proposition 5.3.3. When W is trivial, the representation V =VpAE⊗χ
is a factor of the Tate module of an abelian variety, and (under (n-exc)) the pairing hV coincides with all
other p-adic height pairings on abelian varieties defined in the literature: see [Dis17] for a review.

1.2.8. The formula. — We can now state the p-adic Gross–Zagier formula for V .

Theorem B. — Let Π=π⊗χ be an ordinary, locally distinguished, non-exceptional automorphic represen-
tation of (G×H)′(A) over L. Let V =VΠ.

The image of PΠ lies in H 1
f (E ,V ), and for all f1 ∈ΠH ′∞ , f2 ∈Π∨H ′∞ , f3 ∈Π, f4 ∈Π∨ such that ( f3, f4)Π ̸= 0,

we have
hV (PΠ( f1), PΠ∨( f2))

( f3, f4)Π
= ep∞(V(π,χ ))

−1 ·L ′p (V(π,χ ), 0) ·Q
�

f1⊗ f2
f3⊗ f4

�

,

where ep∞(V(π,χ )) ∈ L× is the p-interpolation factor forLp (V(π,χ ), s) defined in (1.4.6) below.

When G = GL2/Q, V is crystalline at p, p splits in E , χ is unramified and the fi are newforms, a
version of this result was proved by Perrin-Riou [PR87a] when W is trivial, and by Nekovář [Nek95]
and Shnidman [Shn16]when W has even weights. The general case with trivial W was proved in [Dis17,
Dis/a].
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Remark 1.2.2. — Establishing Gross–Zagier formulas in this generality has proven useful for arithmetic
applications, such as those in [Tia14, BD20, BT20] and Theorem F below.

Explicit versions of the formula can be obtained by evaluating the functional Q at well-chosen fi . This
is a local problem, solved in [CST14].

Remark 1.2.3. — For a variant of Theorem B that is valid in the exceptional case as well, see Theorem
Bord. That variant is often trivially 0= 0 in the exceptional case, but not always, and indeed Remark 7.3.4
sketches a new proof of the Greenberg–Stevens theorem [GS93] based on it. For a further discussion
going beyond any trivial or non-trivial vanishing, see Remark 1.3.3 and § 7.3.

1.3. The universal Heegner classes. — We explain the interpolation of the Heegner cycles PΠ as Π
varies over a Hida family for (G×H)′.

Suppose from now on that Bp is split and fix an isomorphism GQp
∼= ResFp/Qp

GL2, giving a model of

G (hence (G×H)′) over Z(p). We let NG,0 :=
�

1 OF , p
1

�

⊂G(Qp ) and N0 be the image of NG,0 in (G×H )′p .
Finally we denote by Up the usual operator in the Iwahori–Hecke algebra of (G×H )′p , and by Up∞ its
product with (

� p
1

�

, 1) ∈ (G×H )′∞.
For a localisation M of a finite Zp -module M◦ on which the operator Up∞ acts (on the left or the right),

we denote by Mord the image of M under Hida’s ordinary projector

eord = limUn!
p∞.

1.3.1. Hida families for (G×H)′. — Pick an arbitrary (G×H)′(Zp )-stable lattice W ◦ ⊂W , yieding a
sub-local systemW ◦ ⊂W . Then we define, for any K =K p Kp with Kp ⊃N0,

(1.3.1) M ◦W ,K := (H 1(ZK ,W ◦)⊗ (W ◦,∨)N0
)ord, MW ,K :=M ◦W ,K ⊗OL

L.

Let K p ⊂ (G×H)′(Ap∞) be an open compact subgroup. Consider the ordinary completed homology
of ZK p

MK p := ( lim←−
Kp⊃N0

M ◦K p Kp
)⊗Zp

Qp ,

where M ◦K =(1.3.1) with W the trivial representation, and the limit is over K such that Kp ⊃ N0 (“level
Γ 1

1 (p
∞)”). By the work of Hida, MK p is a finite flat module over a certain weight algebra Λ = ΛK p ≃

Qp[∆]⊗Zp
ZpJT1, . . . ,T2[F :Q]+1+δF , p

K where∆ is a finite group and δF , p is the Leopoldt defect of F .

Let Tsph,ord
K p ,Qp

⊂ EndΛ(MK p ) be the image of the algebra generated by the spherical Hecke operators and

the operators Uv , v |p. The ‘ordinary eigenvariety’

E ord = E ord
K p := SpecTsph,ord

K p ,Qp

contains a dense subset E ord,cl (more precisely a reduced 0-dimensional ind-subscheme) of regular points,
in bijection with the set of GQp

-orbits of those ordinary automorphic representations Π of (G×H)′ over

Qp such that ΠK p ̸= 0.
Let us fix an irreducible component

X ⊂E ord
K p

that is a Hida family for (G×H)′. We letX cl :=X ∩E ord,cl.

Definition 1.3.1. — A Hida familyX for (G×H)′ is said to be locally distinguished (by H′) if it satisfies
the conditions

(ϵv )
′ for every (equivalently,(10) one) classical point z ∈ X (of weight satisfying (wt)), the Galois repre-

sentation Vz attached to the representation Πz satisfies (ϵv )

(10)By [Dis20b, Corollary 5.3.3].
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for all v ∤ p∞.

1.3.2. Sheaves on X . — The Hida family X comes with a coherent sheafMK p corresponding to MK p ;
moreover in fact for each K p ′ ⊂K p the module MK p ′ gives rise to a coherent OX -module

MK p ′

with OX -linear Hecke- and Galois actions. Fix an arbitrary K p ′ ⊂ K p , ‘sufficiently large’ at the places
in Σ.(11) Let S be a finite set of primes, not containing those above p, such that all data G, H,K p ′ are
unramified outside S p. Let GE ,S p be the Galois group of the maximal extension of E unramified outside
S p. We prove in the text that the following statements are true up to replacing X by an open subset
containingX cl:

– there exists a locally free sheaf V of rank 2 with a GE ,S p -action, such that for all z ∈ X cl, the
representation V|z is associated with Πz via the Langlands correspondence;

– for each w|p there is an exact sequence of OX [GE ,w]-modules

(1.3.2) 0→V +w →Vw →V
−

w → 0,

where the V ±w are line bundles overX , specialising to (1.2.11) at all z ∈X cl;
– assume from now on thatX is locally distinguished. There is a locally free OX -module

ΠK p ′,ord
H ′Σ

interpolating the spaces of (E×Σ /F ×Σ )-coinvariants, K p ′-invariants of Πord
z for z ∈X cl;

– we have a map of Hecke modules over OX

(1.3.3) ΠK p ′,ord
H ′Σ

→HomOX [GE ,S p ]
(M H ′Σ

K p ′ ,V )

whose specialisations overX cl are deduced by (1.2.3).

1.3.3. The universal Heegner class. — We construct in the appendix (Proposition A.2.4) an operator γ ord
H ′ ,

that is the key to the interpolation of Heegner cycles. It is a limit of of Hecke operators at p∞, inter-
twining toric and ordinary parts:

H1(ZK p ,W )H ′
·γ ord

H ′−→H1(ZK p ,W )ord =M ord
W ,K p

ΠK p

H ′
γ ord

H ′
·

←−ΠK p ,ord.

Consider the class
P ord

W ,K p ′ := PW ,K p ′ γ ord
H ′ ∈H 1(GE ,S p , MW ,K p ′).

It is invariant under H′(Ap∞), hence:

– as K p ′ varies, it defines an H′(Ap∞)-invariant functional

(1.3.4) P ord
Π = PW ◦ γ

ord
H ′ : Πord→H 1(E ,VΠ)

and in fact, as we shall prove, valued in H 1
f (E ,VΠ).

– restricting (without loss of generality as we will see in a moment) to the case where W is trivial, its
localisation overX defines a global sectionPK p ′ of H 1(GE ,S p ,M H ′Σ

K p ′).

Using Nekovář’s theory of Selmer complexes we show that the universal class PK p ′ is a section of a

sheaf of Selmer groups eH
1
f (E ,M H ′Σ

K p ′), where the subscript f signifies a local condition at p coming from
(1.3.2), and for Selmer groups we use E in place of GE ,S p for short. Then by (1.3.3) the classPK p ′ defines

(11)In the sense that for each z ∈X cl, v ∈Σ, the finite-dimensional constituent Πz,v of Πz is fixed by Kv .
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a map of OX -modules

PK p ′ : ΠK p ′,ord
H ′Σ

→ eH
1
f (E ,V ).

When G=GL2/Q, the value ofPK p ′ on a family of newforms is the class originally defined by Howard
in [How07]. (The statement that the fibre ofPK p ′ at all classical points lands in the Selmer group is in new
even in the context of [How07].) There, Howard asked whether his class interpolates Heegner cycles at
all classical points ofX . The first part of the following theorem summarises the results described above.
The second part, whose proof is simple and direct, provides an affirmative answer to the generalisation of
Howard’s question.(12)

Theorem C. — LetX be a locally distinguished Hida family for (G×H)′. There exist an open subsetX ′ ⊂X
containingX cl and a map

PK p ′ : ΠK p ′,ord
H ′Σ

→H 1
f (GE ,S p ,V )

of sheaves overX ′, satisfying the following properties:

1. PK p ′ is invariant under the action of the away-from- pΣ-Hecke algebra of H′;
2. for all z ∈X cl corresponding to a representation Πz satisfying (wt), denote by P ord

Πz ,K p ′ the restriction of

(1.3.4) to (Πz )
K ′p ,ord

H ′Σ
; then

PK p ′|z = P ord
Πz ,K p ′

under the natural map H 1(GE ,S p ,V )|z →H 1(GE ,S p ,VΠz
).

An answer to Howard’s question in its original context was earlier given by Castella ([Cas13], [Cas20])
by an indirect method, under the assumption that p splits in E .

Remark 1.3.2. — It follows from the results of [CV05] that, under mild conditions, the class P is non-
torsion overX , cf. the discussion after [Fou13, Theorem B].

Remark 1.3.3. — Theorem C is far from being the last word on P : first, the class P may vanish at

some classical points; second, we can consider its specialisation in Nekovář’s Selmer group eH
1
f (E ,VΠz

),
which equals H 1

f (E ,VΠz
) when z is not exceptional but is larger otherwise. In § 7.3, we address both

problems by proposing a conjecture for the order of vanishing and leading term of P at any classical
point, generalising conjectures by Bertolini–Darmon. The same Conjecture Pf will also give a prediction
for the leading terms of universal toric periods on distinguished Hida families for coherent quaternionic
groups, discussed in § 7.2, and in that case we will describe some new evidence in higher rank coming
from the ‘plectic’ world via [FG].

1.4. The universal formula. — We first recall the p-adic L-function constructed in [Dis/b], then state
our formula for the p-adic height ofPK p ′ .

At times we refer to the main body of the paper for the precise definition of some of the objects.

1.4.1. Dualities over Hida families. — The space E ord is endowed with an involution ι corresponding to
Πz 7→ Π∨z . Fix a locally distinguished Hida family X ; then the constructions of § 1.3 can be performed
overX . Denoting by (−)ι the pullback under ι of an object overX , we have dualities

(1.4.1) V ⊗V ι→OX (1)

interpolating (1.2.10). These data, together with their deformation to a Hida familyX ♯ for G×H, allow
to define a height pairing as in Proposition 5.3.4,

(1.4.2) hV /V ♯ : eH
1
f (E ,V )⊗OX

eH
1
f (E ,V ι)→N ∗

X /X ♯
∼= OX ⊗̂ΓF .

(12)The question in [How07] was phrased in terms of the Abel–Jacobi classes of Heegner cycles in a suitable Chow group, defined
in that case in [Nek95]; these classes are identical to the PΠ( f ) from (1.2.4): see [Nek95, § I.2].
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As usual after possibly restricting to an open subset containingX cl, we construct:

– pairings
(( , )) : ΠK p ′,ord

H ′Σ
⊗OX (Π

K p ′,ord
H ′Σ

)ι→OX

interpolating the p∞-modification ( , )ord
Π := (4.1.8) of (, )Π;

– O ×X -module maps

Q : (ΠK p ′,ord
H ′Σ

⊗O ×X Π
K p ′,ord,ι
H ′Σ

)⊗O ×X (Π
K p ′,ord
H ′Σ

⊗O ×X Π
K p ′,ord,ι
H ′Σ

)×,−1→KX

interpolating the p∞-modification Qord = (4.3.3) of Q. Here,KX is the sheaf of fractions of OX
and the superscript ‘×,−1’ denotes the subgroup of those f3⊗ f4 satisfying (( f3, f4)) ̸= 0 and suggests
the ‘denominator’ invariance of the pairing in the last two variables.

1.4.2. The p-adic L-function. — Let E ♯,ord
0 := E ord

G0×H be the ordinary eigenvariety for G0×H (see [Hid89,

Hid91]); for appropriate choices of tame levels, there is a map ιJL : E ord
G×H → E

ord
G0×H, which is a closed

immersion onto a union of irreducible components. Let X ♯
0 := ιJL(X ♯) ⊂ E ♯,ord. We recall the p-adic

L-function onX ♯ constructed in [Dis/b].
Let X ♯,cl

0 = ιJL(X ♯,cl) ⊂ X ♯
0 be the ind-scheme of classical points. If (x, y) ∈ X ♯,cl

0 (C) is a geometric

point corresponding to a closed point (x0, y0) ∈X
♯,cl

0 together with an embedding ι : Qp (x0, y0) ,→C, we
denote πx = π

ι
x0

,χy = χ
ι
y0

, which are complex automorphic representations of G0(A) and H(A) respec-

tively. We then denote V ♯
(x0,y0)

:=V(πx0
,χy0
) and let

L (V ♯
(x,y), 0) =

∏

v
ιL (V ♯

(x,y),v , 0)

be the product (defined by analytic continuation) of all of the factors (1.2.7).
Recall that if W is a complex Weil–Deligne representation of the Weil group of a local field Fv and

ψv : Fv →C× is a nontrivial character, the inverse Deligne–Langlands γ -factor is(13)

(1.4.3) γ (W ,ψv )
−1 = L(W )/ϵ(W ,ψv )L(W

∗(1)),

and ψE ,w =ψv ◦TrEw/Fv
.

If π = πx0
, χ = χy0

are as just above (with weights w = w x0
, l = l y0

), let ad(Vπ,v )(1)
++ :=

Hom (V −π,v ,V +
π,v ). Let ψ =

∏

v ψv : F \AF → C× be the standard additive character such that
ψ∞(·) = e2πiTrF∞/R(·); let ψE =

∏

w ψE ,w = ψ ◦ TrAE/AF
. For a place v |p of F , let dv be a generator

of the different ideal of Fv , and define

(1.4.4) ev (V(πx ,χy )
) = |dv |

−1/2

∏

w|v γ (ιWD(V +
π,v |GE ,w

⊗Vχ ,w ),ψE ,w )
−1

γ (ιWD(ad(Vπ,v )(1))++,ψv )−1
·L (V(πι,χ ι),v )

−1,

where ιWD is the functor from potentially semistable Galois representations to complex Weil–Deligne
representations of [Fon94]. Finally, we define

(1.4.5)
e∞(V(πι,χ ι)) := i (w+l )[F :Q],

ep∞(V(πι,χ ι)) := e∞(V(πι,χ ι)) ·
∏

v |p
ev (V(πι,χ ι)).

At least if w + l = 0, these belong to ιQp (x0, y0), and we may define

(1.4.6) ep∞(V(π,χ )) := ι
−1ep∞(V(πι,χ ι)).

The following is the main theorem of [Dis/b].

(13)The normalisations of L- and ϵ-factors are as in [Tat79].
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Theorem 1.4.1. — There exists a meromorphic function

Lp (V
♯) ∈K (X ♯

0 )

whose polar locus D does not intersectX cl
0 , uniquely characterised by the following property.

For each z = (x, y) ∈X ♯,cl
0 (C)−D(C) corresponding to an automorphic representationπx⊗χy of G0(A)×

H(A) of weight (w x , l y ) satisfying the conditions

|ly,σ |< wx,σ , |wx + ly | ≤ wx,σ − |ly,σ | − 2 for all σ : F ,→C,

we have

(1.4.7) Lp (V )(x, y) = ep∞(V(πx ,χy )
) ·L (V(πx ,χy )

, 0).

1.4.3. Main theorem. — Under the condition of local distinction of X , the function Lp (V ♯) vanishes
identically onX0. LetN ∗

X0/X
♯
0

=IX0
/I 2
X0
⊗O

X ♯0

OX0

∼= OX0
⊗̂ΓF be the conormal sheaf and let

d♯Lp (V ) := dX0/X
♯
0
Lp (V

♯) ∈K (X0)⊗̂ΓF =K (X )⊗̂ΓF

be the image ofLp (V ♯).

Theorem D. — Let X be a locally distinguished Hida family for (G×H)′. Abbreviate Π(ι) := ΠK p ′,ord,(ι)
H ′Σ

,
O := OX ,K :=KX .

Then there is an open subsetX ′ ⊂X containingX cl such that all of the above constructions can be made
overX ′, and

hV /V ♯(P ( f1),P ι( f2))

(( f3, f4))
= d♯Lp (V

♯) ·Q
�

f1⊗ f2
f3⊗ f4

�

,

an equality ofK ⊗̂Zp
ΓF -valued O -linear functionals on (Π⊗O Πι)⊗O × (Π⊗O Πι)×,−1.

The formula of the theorem in fact also holds at exceptional points z ∈X cl, see Theorem Bord.

1.5. Applications. — We turn to some arithmetic applications of the main theorems (in addition to
Theorem A).

1.5.1. On the Iwasawa Main Conjecture for derivatives. — We use the notation introduced after Theo-
rem A.

Theorem E. — LetX be a locally distinguished Hida family for (G×H)′, satisfying the further conditions of
[Fou13, Theorem B.(iii)]. LetX ′ ⊂X be the open subset of Theorem D; up to shrinkingX ′ we may assume
it is a regular scheme. LetR ⊂OX ′⊗̂ΓF be the regulator of the height pairing (1.4.2) overX ′. Then

d♯Lp (V )⪰OX ′ R · charOX ′ (
eH

2
f (E ,V )OX ′ -tors).

The proof, based on Theorem D and [Fou13, Theorem B.(iii)], is virtually identical to that of [Dis17,
Theorem D], based on Theorem C.4 ibid. and [Fou13, Theorem B.(ii)].

1.5.2. Generic non-vanishing of p-adic heights for self-dual CM motives. — It is conjectured that cyclotomic
p-adic height pairings are non-vanishing (and even non-degenerate). Results in this direction have been
quite rare. The next theorem generalises a variant of the main theorem of [BD20], to which we refer for
a discussion of the background.

Consider the set of locally algebraic Hecke characters

χ : E×\E×A →Qp (χ )
×.

satisfying the special self-duality condition

(1.5.1) χ|F ×A = η ·χcyc,F .
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This is precisely the set of classical points of the closed subspace

E ord,sd
H ⊂E ord

H :=
⋃

V p⊂H(Ap )

E ord
H,V p

cut out by the condition (1.5.1) on continuous characters. The space E ord,sd
H is a torsor for E ord

H′ ; in partic-
ular it is smooth of dimension [F : Q]. Let Y ⊂E ord,sd

H be an irreducible component; then there is a sign
ε ∈ {±1} such that for all x ∈Y cl, ϵ(1,χ ) = ε; we then say that Y cl has type ε.

Denote by h−E = hE/hF the relative class number of E/F and by DF the absolute discriminant of F .

Theorem F. — Let Y ⊂ E ord,sd
H be an irreducible component of type −1. Suppose that all primes v |p of F

split in E, the extension E/F is ramified, and p ∤ 2DF h−E .
Then, there exists a non-empty open subset Y ′ ⊂ Y such that for all y ∈ Y cl ∩ Y ′, the Selmer group

H 1
f (E ,χy ) is nonzero and the p-adic height pairing

h : H 1
f (E ,χy )⊗H 1

f (E ,χ−1
y (1))→Qp (y)⊗̂ΓF

is non-vanishing.

1.5.3. Non-vanishing of universal Heegner classes along some classical Hida families. — Part 3 of the fol-
lowing theorem is also a contribution to the non-vanishing conjecture for p-adic heights. Parts 1 and 2
provide, to the best of the author’s knowledge, the first piece of theoretical evidence towards conjectures
of Greenberg [Gre94] and Howard [How07].

Theorem G. — LetX0 be a Hida family for PGL2/Q, and letX ♯
0 be the Hida family for GL2/Q containing

X0. Denote by V0, V ♯
0 the associated rank-2 representations of GQ.

Suppose that X0 contains a point corresponding to an elliptic curve A with split multiplicative reduction
at p, satisfying L(A, 1) ̸= 0. Then:

1. a universal Heegner classP0 is nonvanishing alongX0;

2. the Selmer group eH
1
f (Q,V0) has generic rank 1, generated byP0;

3. the p-adic height pairing hV0/V
♯

0
is non-vanishing.

1.6. Outline of the proofs. — The basic strategy to prove the main results is very simple. When W is
trivial, Theorem B was proved in [Dis17, Dis/a] under some technical assumptions. As the set of points
of trivial weight inX cl satisfying those assumptions is still dense inX , this suffices to deduce Theorem
D once its terms are defined; by a multiplicity-one argument and an explicit local computation, this in
turn implies Theorem B for all W . Much of this work is therefore an exercise in p-adic interpolation to
construct the objects of §§ 1.3-1.4; the table of contents, and the internal references given so far, should
suffice to guide the reader through the paper.

The proof of Theorem C is completed in § 6.4.3 and the proof of Theorems B, D is completed in § 7.1,
where we also prove Theorem F. Theorem G is proved at the end of § 7.3 using a known case of the
conjecture made there. Constructions and calculations of a local nature are gathered in Appendix A.

We highlight some of the key tools we use (many have already been mentioned):

– Nekovář’s theory of Selmer complexes and p-adic heights ([Nek06], see also [Ven12, Appendix C]),
applied to Hida theory;

– the local Langlands correspondence in families as described in [Dis20b], that is necessary for the
interpolation of the terms Qv ;

– Emerton’s point of view [Eme06] on p-adic cohomological automorphic representations as having
a component at ‘infinity’ that is an algebraic representation of the relevant group; in our context,
this further allows to properly consider ‘incoherent’ reductive groups;

– the multiplicity-one result for H′(A)-invariant functionals;
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FIGURE 1. An illustration of the proof of Theorems B and D. Each of the (infinitely many)
floors corresponds to a representation Π as in Theorem B, each apartment to a quadruple f =
( f1, f2, f3, f4), and the building to a Hida family. A light being on indicates that the correspond-
ing Gross–Zagier formula is proven. On ‘most’ floors corresponding to a Π of trivial weight, all
lights are on by [Dis17, Dis/a]. In this paper, we construct the lift corresponding to the formula
of Theorem D, with doors (interpolation statements) onto special apartments in each floor (the
formulas of Theorem Bord in § 7.1.1, equivalent to Theorem B for certain special quadruples f).
As soon as the lights in a dense set of floors in the building are on, the light in the lift is on; this
allows to turn on the light in all the special apartments. Finally, the multiplicity-one principle
allows to propagate the electricity among different apartments on the same floor.

– the definition and study of semi-local operators at p∞, as the key to transitioning between ordinary
and anti-ordinary or toric parts of a module;

– the explicit evaluation of certain local toric periods in terms of gamma factors.

We view the framework introduced in the appendix as the main technical novelty contributed by the
present work, and we hope that the underlying approach will prove useful in many other contexts.(14)

Further directions. — We have not paid attention to the integral aspects; doing so may also remove the
need to restrict to open subsets ofX at various points, e.g. by restricting to newforms or using the local

(14)Cf. the work [Loe21] discussed in § 1.7 below.
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Langlands correspondence in integral families of Emerton, Helm, and Moss (see references in [Dis20b]).
(However, this would require imposing some residual irreducibility assumptions for the representation
Vv .) This may lead to non-vanishing results for higher-weight Heegner cycles, automorphic toric periods,
and L-values: an example we have in mind is the anticyclotomic non-vanishing result of [CH18], based
on a construction not unlike that of Theorem H.

In a different direction, all of the constructions of this paper could be generalised, with work, to the
context of eigenvarieties; the Gross–Zagier formulas should also extend to that context.

1.7. Related contemporary work. — After a first version of this paper was made publicly available, the
following partly related works have appeared.

– In [JLZ21], the authors construct universal Heegner classes for Coleman families of elliptic mod-
ular forms (with classical restrictions); then they prove that these classes interpolate the images of
Heegner cycles, by a method not dissimilar to that of the present work. Similar results are also
independently proved in [Ota20] in the ordinary case, and (by a different method) in [BL21] in the
case where p splits in the field of complex multiplications.

– In [BPS], the authors use [JLZ21, BL21] and a strategy similar to the one of the present paper to
prove the p-adic Gross–Zagier formula for critical-slope refinements of elliptic modular forms, con-
ditionally on work in preparation of Kobayashi on such formula for small-slope refinements. Their
idea is to deduce, from the latter, a p-adic Gross–Zagier formula in a Coleman family, within which
the objects considered by Kobayashi form a dense subset; then specialise the formula to other clas-
sical points.

– In [Loe21], Loeffler gives a method to construct p-adic families of cohomology classes attached
to inclusions of reductive groups H1 ⊂ H2 such that H2/H1 is a spherical variety. His local-at- p
construction vastly generalises the one of Proposition A.2.4. A difference is that in [Loe21], the
weight variation is not addressed (accordingly, that construction does not use the ‘infinite’ place).

1.8. Acknowledgements. — I would like to thank Joël Bellaiche, Ashay Burungale, Gaëtan Chenevier,
Olivier Fouquet, Ming-Lun Hsieh, David Loeffler, Michele Fornea, Jonathan Pottharst, Ye Tian, Rodolfo
Venerucci, and Sarah Zerbes for useful conversations or correspondence or mathoverflow answers. I am
also grateful to the referee for coaxing me to write § 7.3, and to Simone Dell’Ariccia for Figure 1. Finally,
I would like to thank Shouwu Zhang for a vague question he asked me in 2010; this paper may be a partial
answer.

1.9. Notation. — Throughout the paper we use the following notation unless otherwise noted.

– A is the ring of adèles of Q;
– the fields F and E are as in the introduction, η = ηE/F : F ×A /F ×→ {±1} is the associated quadratic

character, and we denote by E a fixed algebraic closure of E ;
– we denote by GE the absolute Galois group of a field E ; if E is a number field and S is a finite set of

places, we denote by GE ,S the Galois group of the maximal extension of E unramified outside S∞;
– for a place w of a number field E , we denote by ϖw a fixed uniformiser at w, and by qw the cardi-

nality of the residue field;
– the class field theory isomorphism is normalised by sending uniformisers to geometric Frobenii; for

E a number field (respectively a local field), we will then identify characters of GE with characters
of E×A /E× (respectively E×) without further comment;

– let µ ⊂ Q×p be the subgroup of roots of unity, and let 〈·〉p : Q×p → 1+ 2 pZp ⊂ Q×p be the unique
continuous character such that xp〈x〉−1

p has values in µ. The p-adic cyclotomic character of Q is

χcyc,Q(x) := |x|A∞〈xp〉p ,
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a character on A∞,×/Q×. If E is a number field, the p-adic cyclotomic character of E is the character

(1.9.1) χcyc,E = χcyc,Q ◦NE/Q : E×A∞/E×→Q×p .

2. Automorphic and Galois representations

In this section we define the basic set up regarding ordinary automorphic representations for our
groups, and the associated Galois representations.

2.1. Groups. — We introduce our notation on groups and related objects.

2.1.1. Incoherent reductive groups. — Let F be a global field. For the purposes of this discussion, a ‘coher-
ent’ reductive group over F is just a reductive algebraic group in the usual sense. The following notion is
probably appropriate only in the context of orthogonal or unitary groups, cf. [Gro]; we do not explicitly
restrict to that case just for the sake of brevity.

An F -incoherent reductive group G over F is a collection of reductive groups Gv/Fv , for v a place of
F , such that for each place w of F there is a coherent reductive group G(w)/F that is w-nearby to G in
the following sense: for each place v ̸= w, G(w)×F Fv

∼= Gv , and the groups G(w)×F Fw and Gw are
non-isomorphic inner forms of each other.

Let F /F0 be a finite extension of global fields. An F -incoherent reductive group G over F0 is a collection
of reductive groups Gv0

/F0,v0
, indexed by the places v0 of F0, satisfying the following. For each v0, we

may write Gv0
=ResFv0

/F0,v0
GF ,v0

:=
∏

v |v0
ResFv/F0,v0

GF ,v for a collection of reductive groups GF ,v/Fv that

forms an F -incoherent algebraic group GF over F . In this situation, we write G = ResF /F0
GF . We write

just ‘incoherent’ when F is unimportant or understood from context. We also write G(Fv0
) :=Gv0

(Fv0
)

for short.
By definition, for all but finitely many v0, the group Gv0

is unramified. In particular, if S is a finite set
of places of F0, it makes sense to consider the restricted tensor product G(AS ) :=

∏′
v0 /∈S G(Fv0

).
It will be convenient to consider a p-adic variant in the case where F = Q and GF ,∞ is anisotropic

modulo its centre (so that all its admissible representations are finite-dimensional). In this case we redefine,
for any finite set of finite places S,

G(AS ) :=G(AS∞)×G∞,

where G∞ :=Gp (Qp ) with the Zariski topology.
The main example of interest to us is the following: F is our totally real number field, F0 = Q, and

GFv
= B×v . The conditions are satisfied since, for each place w, there is a quaternion algebra B(w) over F

such that Bv
∼= B(w)v if and only if w ̸= v. Other examples are obtained as follows: if G is an incoherent

group and H is a coherent group, the product G×H (whose precise definition is left to the reader) is an
incoherent group.

2.1.2. Hecke algebras. — Let G be a coherent or incoherent reductive group over Q, A a ring.
If S is a finite set of primes of Q different from p, let

HG,A :=C∞c (G(A
p∞),A), H S

G :=C∞c (G(A
S p∞),A)

be the Hecke algebras. If U ⊂ G(A∞) is a compact open subgroup we let HG,U ,A and H S
G,U ,A be the

respective subalgebras of functions that are bi-U -invariant. If S is U -spherical in the sense that Uv is
maximal for all v /∈ S, we say thatH S

G,U is a spherical Hecke algebra.
If M is an A-module with a smooth A-module action by H = HG, H S

G , HG,U , or H S
G,U , we let

H (M )⊂ End A(M ) by the image ofH . We define the spherical Hecke algebra acting on M to be

H sph
G := lim←−

S,U

H S
G,U (M )⊂ End A(M )
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if the limit, taken over pairs (S, U ) such that S is U -spherical, stabilises. It is equipped with an involution
ι coming from the involution on G∗(A).

2.1.3. Subgroups of G∗. — We restrict, for the rest of this subsection, to the groups in (1.2.1), denoted
collectively by G∗. Assuming that Bp is split, we fix an identification G :=G(Qp )∼=GL2(Fp ) for the rest
of the paper, by which we obtain Zp -models G∗/Zp

for all of the groups G∗/Qp
.

Let NG ⊂G(Qp ) ∼=GL2(Fp ) be the subgroup of unipotent matrices. Let NH = {1} ⊂ H(Qp ), and for
? = ; (respectively ? = ′), let N(G×H)? := NG × {1} (respectively its image in (G×H)′(Qp )). Finally, let
NG∗,0

:=NG∗
∩G∗/Zp

(Zp ).
Let TG∗

⊂G∗(Qp ) be the maximal torus consisting of diagonal matrices when G∗ =G and compatible
with this choice when G∗ is any other group. Let TG,0 := TG∗

∩G∗(Zp ) the integral subgroup. Let T +G∗ ⊂
TG∗

be the normaliser of NG∗,0
in TG∗

, so that T +G :=
∏

v |p T +G,v with

T +G,v := {
� t1

t2

�

: v(t1)≥ v(t2)}.

2.1.4. Involutions. — We denote by ι the involutions onH sph
G induced by g 7→ g T,−1, and on H induced

by h 7→ h−1.
We also denote by ι the involution of TG∗

deduced by the involutions

(2.1.1) t 7→ t ι := t ν(t )−1,

where ν denotes the reduced norm if G∗ =G, the norm NE/F if G = H. It preserves the sub-semigroups
T +G∗ .

2.1.5. Congruence subgroups. — Let G = GL2(Fp ), H = E×p , H ′ = E×p /F ×p , (G ×H )′ := (G ×H )/F ×p
where F ×p is identified with the centre of G×H .

For r ∈N, define the compact subgroups U (ϖ r
v )⊂U 1

1 (ϖ
r
v )⊂GL2(Fv ) by

U 1
1 (ϖ

r
v ) := {

�

a b
c d

�

∈GL2(OF ,v ) : a− 1≡ d − 1≡ c ≡ 0 (modϖ r
v )},

U (ϖ r
v ) := {

�

a b
c d

�

∈GL2(OF ,v ) : a− 1≡ d − 1≡ b ≡ c ≡ 0 (modϖ r
v )}.

For each place v |p of F , we fix εv ∈ F ×v such that Ev = Fv (
p
εv ); for technical reasons it will be

convenient to assume that v(εv )≥ 1.
For r = (rv ) ∈N{v |p}, we define the compact open subgroups VF ,v,rv

:= 1+ϖ rv
v OF ,v ⊂ F ×v and

Vp,r =
∏

v |p
Vv,rv

⊂H =
∏

v |p
E×v , Up,r =

∏

v |p
Uv,rv

⊂G =
∏

v |p
GL2(Fv )

as follows:

Vv,rv
:=

(

VF ,v,rv
(1+ϖ rvOE ,w ) if v splits in E

VF ,v,rv
(1+pεvϖ

rvOE ,w ) if v is nonsplit in E
,

Uv,rv
:=U 1

1 (ϖ
rv
v ).

We also define V ′p,r :=Vp,r F ×p /F ×p ⊂H ′, and

Kp,r ,Kp (p
r )⊂ (G×H )′

to be the images of Up,r ×Vp,r , Up (p
r )×Vp,r respectively.

We also denote
TG∗,r

:= TG∗
∩U∗, p (p

r ).

If pOF , p =
∏

v ϖ
ev
v OF ,v , we associate to an integer r the tuple r := (ev r )v |p . Denoting by U∗ any of

the symbols U ,V ,K , we then let U∗, p,r :=U∗, p,r , U∗, p (p
r ) :=U∗, p (p

r ).

2.2. Algebraic representations. — We set up some notation for algebraic representations of a (coherent
or incoherent) reductive group G over Q, then discuss in some more detail the situation for the groups of
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interest to us. Let L be an extension of Qp , W a finite-dimensional irreducible algebraic (left) representa-
tion of G over L. Throughout the paper, we tacitly identify left and right algebraic representations of G
via g .w = w.g−1.

2.2.1. Highest-weight character. — We suppose that G=G∗ is one of the groups of § 2.1. Let TG∗
⊂G∗ be

the fixed torus and let NG∗
⊂G∗ be the fixed unipotent subgroup. If W is an irreducible left (respectively

right) representation of G∗, we denote by σW the character by which TG∗
acts on the line of highest-weight

vectors W NG∗ (respectively highest-weight covectors WNG∗
).

The highest-weight character of W is related to that of its dual by

(2.2.1) σW ∨(t ) = σW (t
ι),

where ι is the involution (2.1.1).

2.2.2. Quaternionic special case. — Suppose that G(A∞) is the group of units of a quaternion algebra B∞

over A∞. Let L be an extension of Qp splitting F and Bp . A (cohomological) weight for G over L is a list
w = (w; (wσ )τ : F ,→L) of [F : Q]+1 integers of the same parity such that wσ ≥ 2 for all σ : F ,→ L. Denote
by Stdσ ∼= (L⊕2)∗ (respectively, Nmσ

∼= L) the standard (respectively, reduced norm) representation of
G(Qp ) = B×p factoring through (Bp⊗Fp ,σ L)× ∼=GL2(Fp⊗σ L). We associate to the weight w the algebraic
representation

WG,w :=
⊗

σ∈Hom (F ,L)

Symwσ−2Stdσ ⊗Nm
(w−wσ+2)/2
σ(2.2.2)

of G/Qp
, whose dual is WG,w∨ with w∨ = (−w; (wσ )).

Suppose for a moment that L/Qp is Galois, then Gal(L/Qp ) acts on the set of all weights w and, letting
L(w) ⊂ L be the fixed field of the stabiliser of w, the representation WG,w descends to a representation
over L(w). It is then convenient to use the following terminology: if W is an algebraic representation
of G over L and w is a cohomological weight over a finite extension L′/L, we say that W is of weight w
(with respect to L ,→ L′) if W ⊗L L′ ∼=WG,w .

Explicitly, WG,w may be described as the space of tuples p = (pσ )σ : F ,→L such that pσ ∈ L[xσ , yσ] is a
homogeneous polynomial of degree wσ − 2, with action on each σ -component by

(2.2.3) g . pσ (x, y) = det(σ g )
w−wσ+2

2 · pσ ((x, y)σ g ).

The representation WG,w admits a naturalOL-lattice, stable under the action of a maximal order in G(Qp ),

(2.2.4) W ∗,◦
G,w ⊂W ∗

G,w

consisting of tuples of polynomials with coefficients in OL.
If W =WG,w , we have σW :=⊗vσW ,v : Tv → L× with

(2.2.5) σW ,v :
� t1

t2

�

7→
∏

σ : Fv ,→L

σ(t1)
w+wσ−2

2 σ(t2)
w−wσ+2

2 .

By abuse of notation we still denote by σW =⊗σW ,v the algebraic character of F ×p defined by

σW ,v (x) := σw,v ((
x

1 )) .

2.2.3. Toric special case. — Let L be a finite extension of Qp splitting E . A cohomological weight for H
is a list l := (l , (lσ )σ : F ,→L) of [F : Q]+ 1 integers of the same parity. For each σ : F ,→ L, fix an arbitrary
extension σ ′ of σ to E (this choice will only intervene in the numerical labelling of representations of H).
We let

WH,l :=
⊗

σ∈Hom (F ,L)

σ ′ lσ ⊗σ ◦Nm
l−lσ

2
Ep/Fp

,(2.2.6)
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as a 1-dimensional vector space over L with action by H(Qp ) = E×p . After choosing an identification of this
space with L, it admits a lattice W ◦

H,l , stable under the action of O ×E , p . IfW is an algebraic representation
of H over L and l is a cohomological weight over a finite extension L′/L, we say that W is of weight l
(with respect to L ,→ L′) if W ⊗L L′ ∼=WH,l .

2.3. Shimura varieties and local systems. — We again write G∗ to denote any of the groups (1.2.1).

2.3.1. Shimura varieties. — For τ an infinite place of F , let Gτ = ResF /QGF (τ) be the τ-nearby group
as in § 2.1.1. Consider the Shimura datum (Gτ ,{hG,τ}), where hG,τ : S := ResC/RGm → GR the Hodge
cocharacter of [Car86a, §0.1]. Let hH : S → HR be the unique cocharacter such that eR ◦ hH = hG. By
products and projections we deduce Hodge cocharacters hG∗,τ

, hence Shimura data (G∗,τ , hG∗,τ
), for any

of the groups (1.2.1); from hH,τ we also obtain an extension of τ to an embedding τ : E ,→ C. Then we
obtain towers of Shimura varieties X∗,τ/τE∗, where the reflex field E∗ := E unless G∗ =G, in which case
E∗ = F . These data descend to E∗: there are towers

X∗/E∗

such that X∗ ×Spec E∗
SpecτE∗ = X∗,τ , see [YZZ12, § 3.1]. Throughout this paper, we will also use the

notation X ∗ :=X ×Spec E∗
Spec E∗.

We will use also the specific names (1.2.2) for those varieties; an explicit description of some of them is
as follows:

(2.3.1)
XU ,τ(C)∼= B(τ)×\h±×B∞×/U ∪{cusps}, YV (E

ab)∼= E×\E×A∞/V ,

ZK
∼=XU ×YV /∆U ,V , ∆U ,V := F ×A∞/F × · ((U ∩ F ×A∞)∩ (V ∩ F ×A∞))

if K ⊂ (G×H)′(A∞) is the image of U ×V .

2.3.2. Automorphic local systems. — Let W be an irreducible cohomological right algebraic representa-
tion of G∗ over L, let U∗ ⊂G∗(A

∞) be a sufficiently small (in the sense of Lemma 2.3.1 below) compact
open subgroup, let W ◦ ⊂W be a U∗, p -stable OL-lattice, and let U∗, p,n ⊂U∗, p be a subgroup acting trivially
on W ◦/pnW ◦.

Lemma 2.3.1. — If U p
∗ is sufficiently small (a condition independent of n), then:

1. The quotient Gn := U∗, p/U∗, p,n(ZG∗
(Q)∩U∗)p acts freely on XU p

∗ U∗, p,n
, hence X∗,U p

∗ U∗, p,n
→ X∗,U∗ is an

étale cover with Galois group G∗,n .
2. The group ZG∗

(Q)∩U∗ acts trivially on W ◦.

Proof. — The first assertion is [Car86a, Lemme 1.4.1.1] when G∗ =G (other cases are similar or easier).
For the second assertion, we may reduce to the caseG∗ =G orG∗ =H, with centre ZG∗

=ResE∗/Q
Gm . For

any U∗, the group ZG∗
(Q)∩U∗ has has finite index inO ×E∗ , therefore for sufficiently small U p

∗ it is contained

in the finite-index subgroup O ×,1
F := {z ∈ O ×F : NF /Q(z) = 1} ⊂ O ×E∗ . But since W is of cohomological

weight, the group O ×,1
F acts trivially.

Assume first that X∗ is compact. Then, by the lemma,

(X∗,U p
∗ U∗, p,n

×W ◦/pnW ◦)/G∗,n(2.3.2)

defines a locally constant étale OL/pnOL-moduleW nover X∗,U∗ . We let

W ◦ := (lim←−
n

W n),

an OL-local system on X∗,U∗ , and consider

W :=W ◦⊗OL
L.
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The L-local systemW is compatible with pullback in the tower {X∗,U∗} and, up to isomorphism, indepen-
dent of the choice of lattice W ◦. When X∗ is the compactification of a noncompact Shimura variety X ′∗
(essentially only when G=GL2/Q), we perform the above construction on X ′∗ and then push the resulting
sheaf forward to X∗.

2.4. Ordinary automorphic representations. — Keep the assumption that G∗ is one of the groups in
(1.2.1).

2.4.1. p-adic automorphic representations. — Let L be an extension of Qp , W a finite-dimensional irre-
ducible algebraic left representation of G∗,∞ =G∗(Qp ) over L.

Definition 2.4.1. — A (regular algebraic cuspidal) automorphic representation of G∗(A) over L of weight
W is an irreducible admissible locally algebraic representation π of

G∗(A) :=G(A∞)×G∗,∞

that can be factored as
π=π∞⊗W

such that G∗(A
∞) acts smoothly on π∞, G∗,∞ acts algebraically, and π occurs as a subrepresentation of

H•(X ∗,W
∨) = lim−→

U⊂G∗(A∞)

H •(X ∗,U ,W ∨)⊗W ,

where X∗ is the compactified Shimura variety attached to G∗, andW ∨ is the local system on X attached
to W ∨.

In the quaternionic or toric case, we say thatπ is of weight w (a cohomological weight for G over some
finite extension L′/L) if W is of weight w as defined after (2.2.2) (respectively (2.2.6)).(15)

We will use subscripts p, respectively∞, respectively p∞, to denote an element of G(A) in the copy
of G(Qp ) contained in G(A∞), respectively in the ‘algebraic copy’ G∞, respectively the diagonal copy in
the product of the previous two.

Remark 2.4.2. — The previous definition follows the work of Emerton ([Eme06]). It slightly departs
from it in that in [Eme06], one restricts to considering the action of the product of G(Ap∞) and the
diagonal copy of G(Qp ). While this is indeed the part that acts integrally, we do have use for the non-
integral action of each individual copy (cf. § A.2). The corresponding local notions are introduced in
Definition A.1.1.

2.4.2. Quaternionic special case and ordinarity. — Suppose that G∗ =G and Bp is split, or that G∗ =G0 =
ResF /QGL2 for a totally real field F . An automorphic representationπ over L of weight WG∗,w

is also said
to be of weight w.

Definition 2.4.3. — We say that an automorphic representation π of G∗(A) over L of classical weight
W =WG∗,w

is ordinary at v with unit character α◦v if there exists a smooth character αv of Tv such that
πv is the unique irreducible subrepresentation of Ind(αv · (| |v , | |−1

v )) and the locally algebraic character

α◦v := αvσW ,v : Tv → L×(2.4.1)

takes values in O ×L .(16)

(It follows from the parity conditions on the weights that the indicated subrepresentation is always
infinite-dimensional; moreover if πv is ordinary then the character αv of Tv is uniquely determined by
πv .) We say that π is ordinary if it is ordinary at all v |p.

(15)These notions depend of course on L ,→ L′; nevertheless they will only be used to impose conditions on the weights that are
invariant under the Galois group of L.
(16)This notion agrees with the notion of π being nearly ordinary as defined in the work of Hida (e.g. [Hid89]).
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Let v |p be a prime of F andϖv a uniformiser. For t ∈ T +v or x ∈ F ×v with v(x)≥ 0, define the double
coset operators

(2.4.2)

Ut := [U 1
1 (ϖ

r
v ) t U 1

1 (ϖ
r
v )v],

Ux :=U( x
1)

,

Uv :=Uϖv
,

which act on the N0-fixed vectors of any locally algebraic representation of GL2(Fv ) (see also § A.1 for
further details). Then π is ordinary at v with unit character α◦v if and only if, for sufficiently large r , the
space of U 1

1 (ϖ
r
v )-fixed vectors in the locally algebraic representation

πv ⊗L W

of GL2(Fv ) contains a (necessarily unique) line of eigenvectors for the diagonal action of the operators Ux ,
x ∈ F ×v , with eigenvalue α◦(x). Specifically, if wv ∈ πv is a Ux -eigenvector of eigenvalue αv (ϖv ), then
such line is

πord
v := Lwv ⊗W Nv

where W Nv is the line of highest-weight vectors of W .
If π is an automorphic representation that is ordinary at all v |p, extend α◦v to a character of T +v by the

formula (2.4.1), and let α◦ =
∏

v |p α
◦
v : T + =

∏

T +v → L×; then we define

(2.4.3) πord :=π p∞⊗⊗v |pπ
ord
v ,

as a smooth representation of G(Ap∞) and a locally algebraic representation of T + on which T + acts by
Ut 7→ α◦v (t ).

2.4.3. Toric special case. — Suppose now that E is a CM field and that G∗ = H := ResE/QGm . Then
a p-adic automorphic representation of H of weight WH,l is simply the space of scalar multiples of a
locally algebraic character χ : E×\E×A∞ → L× whose restriction to a sufficiently small open subgroup of
E×p coincides with the character of WH,l .

2.4.4. Convention. — We use the convention that all automorphic representations of H(A∞) are ordi-
nary, and that a representation π⊗χ of G×H of cohomological weight is cuspidal and ordinary if π and
χ are.

2.5. Galois representations. — Let G be as in § 2.4.2.

2.5.1. Galois representations attached to automorphic representations of G(A). — The following notation
is used throughout the paper: if V is a representation of GF and v is a prime of F , we denote by Vv the
restriction of V to a decomposition group at v.

Theorem 2.5.1 (Ohta, Carayol, Saito). — Let L be a finite extension of Qp , let W be an irreducible algebraic
representation of G over L, and let π be an automorphic representation of G(A∞) of weight W over L. Let
S be a finite set of non-archimedean places of F containing all the places at which π is ramified and the places
above p. There exists a 2-dimensional L-vector space Vπ and an absolutely irreducible Galois representation

ρ= ρπ : GF ,S →Aut(Vπ)

uniquely determined by the property that for every finite place v /∈ S of F ,

Tr(ρ(Frv )) = q−1
v λπv

(Tv )(2.5.1)

where Frv is a geometric Frobenius, Tv ∈ H
sph

GL2(Fv )
is the element corresponding to the double class

K0(1) (
ϖv

1 )K0(1), and λπv
:H sph

GL2(Fv )
→ L is the character giving the action on πK0(1)

v .
For a prime v of F , let ρv be the restriction of ρ to a decomposition group at v.
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1. The representation ρv is unramified for almost all v and potentially semistable for v |p. For every finite
place v, the Weil–Deligne representation rv attached to ρv is associated with πv via the local Langlands
correspondence normalised “à la Hecke” [Del73, § 3.2]:

L(s , rv ) = L(s + 1/2,πv ).

2. For every finite place v, rv satisfies the weight-monodromy conjecture: its monodromy filtration is pure
of weight w − 1. The monodromy filtration is trivial if and only if πv is not a special representation.

3. For any archimedean place v, the representation ρv is odd, that is if cv ∈GFv
is the complex conjugation,

detρv (cv ) =−1.
4. If W =WG,w with w = (w; (wσ )σ : F ,→L), then for each v |p and σ : Fv ,→ L,

– the σ -Hodge–Tate weights (17) of ρv ⊗L L are

−1−
w +wσ − 2

2
, −

w −wσ + 2

2
.

– if π is ordinary at v in the sense of Definition 2.4.3, then there is a unique exact sequence in the
category of GF ,v -representations

(2.5.2) 0→V +
π,v →Vπ,v →V −π,v → 0,

such that V ±π,v is 1-dimensional.
The Galois group GF ,v acts on V +

π,v by the character

α◦π,vχcyc,v : F ×v → L×,

where α◦π,v is (2.4.1).

Proof. — The construction and statements 1 and 2 for v |p are the main results of Carayol in [Car86a].
Statements 1 and 2 for v |p were proved by T. Saito [Sai09, Theorems 2.2, 2.4]. For the last two statements,
we refer to [TX16, Proposition 6.7] and references therein; note that in comparison with the notation of
[TX16], our ρ equals their ρ f (1), and our (w; w) is their (w − 2, k).

2.5.2. Realisation in the homology of Shimura varieties. — Let G∗ be again one of the groups of (1.2.1).
We introduce a new piece of notation. Let

GF ,E :=GF ×GE ,

and similarly for a finite set of places S, GF ,E ,S :=GF ,S ×GE ,S . If G∗ =G×H or (G×H)′, we redefine

GE∗
:=GF ,E .

(This is an abuse of notation, as we have not redefined E∗.) This product of Galois groups acts on the
homology X ∗: this is clear by the Künneth formula in the case of G×H, and follows from that case and
the Galois-invariance of the quotient map for (G×H)′.

The following is the main result of [Car86b] in the special caseG∗ =G; the general case may be deduced
from the special case together with the case G∗ =H (that is class field theory).

Proposition 2.5.2 (Carayol). — Let U∗ ⊂G∗(A
∞) be a compact open subgroup, W be an irreducible right

algebraic representation of G∗ over L,W the local system on X∗,U∗ associated with W . Let L′ be a sufficiently
large finite Galois extension of L.

(17)If V is a Hodge–Tate representation of GFv
over L and σ : Fv ,→ L, the σ -Hodge–Tate weights of V are the degrees in which the

graded module
(⊕nCv (n)⊗F v ,σ V )GFv

is nonzero; here Cv is a completion of F v and, in the tensor product, σ is extended to an isomorphism F v → L. In particular our
convention is that the Hodge–Tate weight of the cyclotomic character of Qp is −1.
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Then there is an isomorphism ofHG∗,U∗,L
[GE∗,S

]-modules

(2.5.3) Hd (X ∗,U∗ ,W )⊗L L′ ∼=
⊕

π

π∨,U∗ ⊗Vπ,

equivariant for the action of Gal(L′/L), where π runs through all equivalence classes of automorphic represen-
tations of G∗(A) of weight W over L′.

3. Sheaves on Hida families

We construct the universal Hecke- and Galois- modules over Hida families for (G×H)′ and prove a
local-global compatibility result. We claim no originality for the results of §§ 3.1-3.2.1.

3.1. Hida theory. — We let G∗ denote any of the groups G, H, (G×H), (G×H)′, and let r ∈N{v |p}.
We will use the notation from § 2.1. For U p

∗ ⊂G(Ap∞) we let X∗,U p
∗ ,r := X∗,U p

∗ U∗,r
be the corresponding

Shimura variety.
When M is a Zp -module with action by T +G∗ , arising as limit of ordinary parts of p-adic coadmissible

G∗(Qp )×G∗,∞-modules (see Definition A.1.2 and § A.1.3), we denote this action by

t 7→Ut

and adopt the notation of (2.4.2).

3.1.1. Weight spaces. — Let U p
∗ ⊂G∗(A

p∞) be a compact open subgroup, and define ZG∗,U
p
∗
⊂ ZG(Q) by

ZG,U p := ZG(Q)∩U p TG,0, ZH,V p :=H(Q)∩V p TH,0 = O
×
E ∩V p ,

Z(G×H)′,K p := the image in T(G×H)′ of ZG×H ,U p×V p := ZG,U p ×ZH,V p if K p is the image of U p ×V p .

In all cases, let T G∗,U
p
∗ ,0 := TG,0/ZG∗,U∗

, where □ denotes the closure for the p-adic topology, and let

T G∗,U
p
∗ ,r ⊂ T G,U p

∗ ,0 be the image of TG∗,U
p
∗ ,r . Let

Λ◦
G∗,U

p
∗

:= ZpJT G∗,0
K,

and for an irreducible algebraic representation W of G∗ consider the ideals

(3.1.1) IG∗,U
p
∗ ,W ,r,L := ([t ]−σ−1

W (t ))t∈T
G∗ ,U p

∗ ,r
)⊂Λ◦

G∗,U
p
∗
⊗OL

For each fixed W and varying r , the ideals IG∗,U
p
∗ ,W ,r form a fundamental system of neighbourhoods of

zero in Λ◦
G∗,U

p
∗
⊗OL, so that

(3.1.2) ΛG∗,U
p
∗

:=Λ◦
G∗,U

p
∗
⊗OL

L= (lim←−
r

ΛG∗,U
p
∗ ,W ,r )⊗OL

L

with

(3.1.3) Λ◦
G∗,U

p
∗ ,W ,r :=Λ◦

G∗,U
p
∗
/IG∗,U

p
∗ ,W ,r

∼= OL[T G∗,U
p
∗ ,0/T G∗,U

p
∗ ,r ],

where the isomorphism is given by [t ] 7→ σ−1
W (t )[t ]. When W =Qp , we omit W from the notation. We

also omit the subscript U p
∗ when it is unimportant or understood from context.

Writing T G∗,U
p
∗ ,0
∼=∆×Zd(G∗)

p for a finite torsion group∆, we have an isomorphism ΛG∗,U
p
∗
∼= Zp[∆]⊗

ZpJX1, . . .Xd(G∗)
K for an integer d(G∗) given by(18)

d(G) = d(H) = [F : Q]+ 1+δ, d((G×H)′) = 2[F : Q]+ 1+δ,

where δ = δF , p is the Leopoldt defect of F at p; see [Fou13, § 2.2.3.3] for d(G).

(18)We would have d((G×Z H)′ = 2[F : Q] for the group of the footnote after (1.2.1), which explains the way the number of variables
of Theorem E is counted in the abstract.
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Definition 3.1.1. — The weight space is

WG∗,U
p
∗

:= SpecΛG∗,U
p
∗
⊗Qp .

Let W be an irreducible cohomological algebraic representation of G∗. The zero-dimensional subscheme
of classical points of weight W and level r is

Wcl,W
G∗,U

p
∗ ,r

:= SpecΛG∗,U
p
∗ ,r,W .

The ind-subschemes of all classical points of weight W and of of all classical points are respectively

Wcl,W
G∗,U

p
∗

:=
⋃

r≥0

Wcl,W
G∗,U

p
∗ ,r

, Wcl
G∗,U

p
∗

:=
⋃

W

Wcl,W
G∗,U

p
∗

,

where as usual the union runs through the algebraic representations of cohomological weight.

3.1.2. Ordinary completed homology. — Let W be an irreducible right algebraic representation ofG∗(Qp )
over L, and fix a G(Zp )-stable OL-lattice W ◦ ⊂ W . Let W be the local system attached to W , and for
U p
∗ ⊂G∗(A

p∞), r ≥ 0 consider the ordinary parts

Hét
d (X ∗,U p

∗ U∗,r
,W ◦)ord := (H ét

d (X ∗,U p
∗ U∗,r

,W ◦)⊗OL[T
+

G∗
] (W

◦,∨)N0
)ord

Hét
d (X ∗,U p

∗ U∗,r
,W )ord =Hét

d (X ∗,U p
∗ U∗,r

,W ◦)ord⊗OL
L

with respect to the action of T +G∗ by Ut ⊗ t , as defined in § A.1.3. The ordinary completed homology of
XG∗,U

p
∗

is

M ◦
G∗,U

p
∗ ,W := lim←−

r

Hét
d (X ∗,U p

∗ U∗, p,r
,W ◦)ord,

an OL-module. It depends on the choice of lattice W ◦ ⊂W , whereas the L-vector space

MG∗,U
p
∗ ,W :=M ◦

G∗,U
p
∗ ,W ⊗OL

L

does not. WhenW =Qp is the trivial local system, we omit it from the notation, thus

MG∗,U
p
∗
=MG∗,U

p
∗ ,Qp

.

3.1.3. Independence of weight and Control Theorem. — For a Zp -algebra A, letH ord
G∗,U

p
∗ , p,A

:=A[TG∗
]⊗Zp [T

+
G∗ ,0]

Λ◦
G∗,U

p
∗

. For ?= S,;, sph, consider the ΛG∗,U
p
∗ ,A-algebra

H ?,ord
G∗,U

p
∗ ,A

:=H ?
G∗,U

p
∗ ,A
⊗AH

ord
G∗,U

p
∗ , p,A

.(3.1.4)

For every irreducible algebraic representation W over L and OL-algebra A, the space M ◦
G∗,U

p
∗ ,W
⊗A is a

module overH ord
G∗,U

p
∗ ,A

, where [t ] ∈A[T +G∗] acts by the double coset operator Ut .

The base ring A will be omitted from the notation when it can be understood from the context.
Let U∗,r =U p

∗ U∗,r, p be as in § 2.1 and let X∗,r :=X∗,U∗,r .

Proposition 3.1.2. — Let W be an irreducible right algebraic representation of G∗/Qp
over L,W the corre-

sponding local system. Then:

1. If G∗ =G, H, then M ◦
G∗,U

p
∗ ,W

is a projective Λ◦
G∗,U

p
∗
⊗OL-module of finite type. For all of the groups G∗,

the Λ◦(G×H)′ ⊗OL-module M ◦(G×H)′,K p ,W is of finite type, and M(G×H)′,K p ,W is a projective Λ(G×H)′ ⊗ L-
module of finite type.

2. We have naturalH ord
G∗,U

p
∗

-equivariant isomorphisms

(3.1.5) jW : MG∗,U
p
∗
⊗OL

∼=MG∗,U
p
∗ ,W .

3. Consider

(3.1.6) MG∗,U
p
∗ ,W ,r :=MG∗,U

p
∗
⊗Λ

G∗ ,U p
∗
ΛG∗,U

p
∗ ,W ,r .
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There is a naturalH ord
G∗,U

p
∗

-equivariant isomorphism

MG∗,U∗,W ,r
∼=Hd (X ∗,r ,W )ord.

Proof. — We first treat part 1 when W =Qp . Then we will deal with part 2, which implies that part 1
holds for any W .

If G∗ = G, the result is proved in [Hid09a, Thoerem 1.2, cf. also Remark 1.1]. If G∗ = H, U p
∗ =

V p , then the module under consideration is isomorphic to ZpJE×\E×A∞/V
pK, which is finite free over

Λ◦H,V p = ZpJO ×E ∩V p\O ×E , pK as O ×E ∩V p\O ×E , p ⊂ E×\E×A∞/V
p is a subgroup of finite index.

If G∗ =G×H, by the Künneth formula we have M ◦G×H,U p×V p =M ◦G,U p ⊗̂M ◦H,V p , which by the previous
results is a finite type projective module over Λ◦G×H = Λ

◦
G⊗̂Λ

◦
H. Finally, if G∗ = (G×H)′ and K p is the

image of U p ×V p , by the description of ZK in (2.3.1) we have

M ◦(G×H)′,K p = (M ◦G×H,U p×V p )/(F ×A∞/F × · ((U p ∩ F ×Ap∞)∩ (V p ∩ F ×Ap∞)))(3.1.7)

As M ◦G×H,U p×V p is a projective Λ◦G×H,U p×V p -module of finite type, the quotient M ◦G,×H,U p×V p/F , p× =
MG,×H,U p NG,0×V p ⊗Λ◦G×H

Λ◦(G×H)′ is a projective Λ◦(G×H)′,K p -module of finite type, and M ◦(G×H)′,K p is its quo-
tient by the free action of the finite group F ×A∞/F × · F ×p ((U p ∩ F ×Ap∞)∩ (V p ∩ F ×Ap∞))). After inverting p,
the quotient map admits a section, hence M(G×H)′,K p is projective over Λ(G×H)′ .

We now turn to part 2. As above it suffices to prove the result when G∗ = G, H. Let G∗ = G, and
suppose that W =W ∗

G,w . Let W ◦ ⊂W be the lattice of (2.2.4), r ≥ 1. We have a Λr -linear map

(3.1.8) jW ,r : H1(X r ,Z/p r Z)ord⊗Λr
W ◦,N0/p r →H1(X r ,W ◦/p rW ◦)

induced by cap product(19) via the isomorphism of Λr -modules H 0(X r ,W ◦/p rW ◦)∼=W ◦,N0/p r

The maps (3.1.8) are compatible with variation in r , and taking limits we obtain the map (3.1.5), which
Hida ([Hid88, § 8], [Hid09a, Theorem 2.4]) proved to be an isomorphism; the asserted equivariance
properties are clear from the construction.

When G∗ =H the construction is similar but easier, as each W is 1-dimensional and each of the analo-
gous maps jW ,r is an isomorphism.

Finally, we address part 3. As above we may reduce to the case W =Qp and G∗ =H or G∗ =G. The
former is clear, and the latter is, in view of part 2, equivalent to the statement

MG,U p ,W ⊗ΛG,U p ΛG,U p ,r
∼=Hd (X r ,W )◦,

which is the control theorem of [Hid09a, Theorem 1.2 (3)].

3.1.4. Ordinary eigenvarieties. — The space M ◦
G∗,U

p
∗

has the structure of anH ord
G∗,U

p
∗

-module (in particular

of Λ◦
G∗,U

p
∗

-module), and for ?= ;, sph and A a Zp -algebra, we let

Tsph,ord
G∗,U

p
∗ ,A

be the image of H ?,ord
G∗,U

p
∗ ,A

in End A(M
◦
G∗,U

p
∗
⊗ A), that is independent of the particular spherical Hecke

algebra chosen when ?= sph. When A= Zp we omit it from the notation.
We may now define

E ord
G∗,U

p
∗

:= SpecTsph,ord
G∗,U

p
∗ ,Qp

.

When G∗ =H, we will omit the superscript ‘ord’.
Let

κG∗
: E ord

G∗,U
p
∗
→WG∗,U

p
∗

.

(19)I am grateful to David Loeffler and Sarah Zerbes for explaining to me this point of view on the Control Theorem.
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Referring to Definition 3.1.1, the zero-dimensional (ind)-subscheme of classical points (respectively clas-
sical points of weight W , for an algebraic representation W of G∗, respectively classical points of weight
W and level r ) is

E ord,cl,(W )
G∗,U

p
∗ ,(r )

:=W
cl,(W )
G∗,U

p
∗ ,(r )
×W

G∗ ,U p
∗

,κ E
ord
G∗,U

p
∗

.

We denote by
MG∗,U

p
∗

the sheaf on E ord
G∗,U

p
∗

corresponding to MG∗,U
p
∗

.

Notation. — When G∗ = (G×H)′, we omit the subscripts, thus e.g. for K p ⊂ (G×H)′(Ap∞) we write

E ord
K p := E ord

(G×H)′,K p .

By (3.1.7), Tsph,ord
K p is a quotient of Tsph,ord

G×H,U p×V p and correspondingly we have a closed immersion

E ord
K p ,→E ord

G×H,U p×V p .(3.1.9)

Proposition 3.1.3. — The ring Tsph,ord
G∗,U

p
∗

is finite flat over Λ◦
G∗,U

p
∗

, hence semi-local. The maximal ideals of

Tsph,ord
G∗,U p are in bijection with GFp

-orbits of characters λ : Tsph,ord
G∗,U

p
∗
→ Fp .

Proof. — The first statement is easy for the group H and it is proved in [Hid09a] for the groupG. Together
they imply the statement for G×H and hence (G×H)′. As Tsph,ord

G∗,U p is topologically finitely generated over
Zp , the residue fields of its maximal ideals are finite extensions of Fp ; this implies the second statement.

Lemma 3.1.4. — Let W be an irreducible algebraic representation of G∗. The set E ord,cl,W
G∗,U∗

of classical points

of weight W is Zariski-dense in E ord
G∗,U

p
∗

.

Proof. — By the previous proposition, the map κG∗
is finite hence closed. Then the Zariski-density of

E ord,cl,W
G∗,U∗

= κ−1
G∗
(WW

G∗,U
p
∗
) reduces to the Zariski-density of WW

G∗,U
p
∗
⊂WG∗,U

p
∗

, which follows from (3.1.2);

cf. aso [SW99, Lemma 3.8].

3.1.5. Abelian case. — The structure of the eigenvariety for the abelian groups H :=ResE/QGm and Z=
ResF /QGm is very simple, and we make it explicit for the group H: we have

MH,V p := Ĥ0(Y V p ) = ZpJYV p (E)K⊗Qp ,

the set YV p (E) is a principal homogeneous space for ΓE ,V p :=H(Q)\H(A∞)/V p = E×\E×A∞/V
p , and

EH,V p = SpecZpJΓE ,V p KQp
.

(We omit the superscript ‘ord’ which is meaningless here.) The classical points E cl
H,V p ⊂ EH,V p (Qp )

parametrise locally algebraic characters of ΓE ,V p . Finally, the sheafMH,V p is a trivial line bundle, with
actions by GE given by the universal character

χuniv : GE → ΓE ,V p → ZpJΓEK×,(3.1.10)

and by H(A∞) given by the inverseχ−1
H,univ of the corresponding automorphic character. We may formally

write

MH,V p = χ−1
H,univ⊗χuniv(3.1.11)

as a tensor product of two trivial sheaves, the first one endowed with the H(A)-action only, and the second
one with the Galois action by χuniv only.
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3.1.6. Fibres of the sheavesM . — Let

(λp ,λp ) : Tsph,ord
G,U p →O (EG,U p )

be the tautological character, and define

(3.1.12)
α◦ : F ×p →O (EG,U p )×

x 7→ λp (Ux ).

Proposition 3.1.5. — Let x ∈ E ord,cl,W
G,U p be a classical point of weight W and level r . Then:

1. Let U :=U p Up,r , and letW be the local system on X associated with W . We have an isomorphism of
H ord

G,U p ,Qp (x)
-modules

(MG,U p )x ∼=H1(XU ,F ,WG,w )
ord⊗H sph

G,U p ,λx
Qp (x).

2. There exists a unique automorphic representation πx of G(A) over Qp (x) of spherical character λp
x ,

weight W , and unit character α◦x . It satisfies the property

(3.1.13) πord,U p

x
∼=Hom Qp (x)[GF ,S ]

((MG,U p )x ,ρx )

as leftH ord
G,U ⊗Qp (x)-modules.

Proof. — Part 1 follows from Proposition 3.1.2.3.
For part 2, fix an embedding Qp (x) ,→ Qp . By strong multiplicity-one, a representation π over Qp

with character λp
x is unique if it exists. By comparing part 1 with (2.5.3), we find that π exists and that for

such π property (3.1.13) holds after base-change to Qp . Let Vπ be the Galois representation associated
with π by Theorem 2.5.1, then by looking at Frobenius traces, we see that Vπ has a model Vπ over
Qp (x). It follows again from (2.5.3) that π := limU ′ Hom (H1(X U ,W ),Vπ) is a model of π that satisfies
(3.1.13).

In the rest of the paper, we will use without further comment the notation πx for the representation
of G(A) defined above, for x ∈ E ord,cl

G,U p .

Corollary 3.1.6. — Let z ∈ E ord,cl
K p be a classical point, and write z = (x, y) via (3.1.9) and L :=Qp (z). Let

ωx be the central character of πx , let χH,y be the character of H(A∞) obtained by specialising χH,univ, and let
χy be the corresponding locally algebraic character of GE ,S . Write L :=Qp (z). Then ωz := χy|FA∞,×ωx = 1,
and

MK p ,z
∼= ((π p,∨,

x )U
p ⊗L χ

−1, p
H,y )⊗L (Vx|GE ,S

⊗L[GE ,S]
χy )

asH KS
S,L ⊗L L[GE ,S]-modules. Here, GE ,S acts trivially on the first two tensor factors, and the natural action

ofH US×VS
G×H on the first two factors is extended trivially to the whole tensor product, and it factors to an action

ofH KS
S .

Proof. — Let λp
x,F and λp

y,F be the restrictions of the characters λx , λy to Z[F ×
AS p∞,×/K S p

F ], and let λF be

the restriction of λF ,xλF ,y to ∆′ = F ×
AS p∞,×/K S p

F . As this groups acts trivially on MK p by (3.1.7), we have
λF = 1. On the other hand λF equals the restriction of ωz to ∆′. We deduce that ωz factors through
C = F ×A∞/F ×FAS p∞KF ,S KF , p for some open compact KF , p ⊂ F ×p . By weak approximation, C = {1},
thereforeωz = 1.

By Proposition 3.1.5, (3.1.11), and (3.1.7), the asserted result holds provided we quotient the right-hand
side by the action of F ×A∞ , however this group acts byωz , hence trivially.

Proposition 3.1.7. — The natural map κ : E ord
K p →WK p is étale over a neighbourhood of the classical points

in Wcl
K p . In particular, the space E ord

K p is regular at all z ∈ E ord,cl
K p .
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Proof. — As κ is finite flat by Proposition 3.1.3, it suffices to check that the fibre of κ over any x ∈
Wcl

K p (Qp ) is isomorphic to Q
m
p for some m. By 3.1.2, 3.1.6 and (2.5.3), this fibre is the spectrum of the

image Ax ofH sph,ord
K p in

⊕

z∈κ−1(x)(Π
K p ,ord
z )⊕2, where the Πz form a list of distinct irreducible representa-

tions of (G×H)′(Ap∞) over Qp . By strong multiplicity-one, we have Ax
∼=⊕zQp . This proves étaleness.

As WK p is regular, we deuce that so is E ord
K p in a neighbourhood of classical points.

3.2. Galois representations in families. — We recall the existence of a universal family of Galois rep-
resentations overX .

3.2.1. Representations associated with irreducible pseudocharacters. — Recall that an n-dimensional
pseudocharacterof G over a scheme X is a function T : G → O (X ) that ‘looks like’ the trace of an
n-dimensional representation of G over O (X ), see [Rou96] for the precise definition. A pseudocharacter
T is said to be (absolutely) irreducible at a point x ∈X if, for any (equivalently, all) geometric point x of
X with image x, the pullback x∗T is not the sum of two pseudocharacters of dimensions k, n− k with
0 < k < n. The irreducibility locus of T is the set of points of X at which T is irreducible; it is open
([Che04, § 7.2.3]).

We start by proving that, if T is irreducible, a representation with trace T is essentially unique when
it exists.

Lemma 3.2.1. — Let X be an integral scheme and let V1, V2 be vector bundles of rank n > 0 over X .
Suppose that there is an isomorphism F : EndOX (V1)→ EndOX (V2). Then there is an invertible OX -module
L and an isomorphism

g : V1
∼= V2⊗L

inducing F in the sense that F (T )⊗ idL = gT g−1 for all sections T of EndOX (V1).

Proof. — By [KO74, Ch. IV], any automorphism of an Azumaya algebra (such as EndOX (Vi )) is Zariski-
locally inner. Therefore there exists an open cover {Ui} ofX and isomorphisms gi : Γ (Ui ,V1)→ Γ (Ui ,V2)
such that

F (T ) = gi T g−1
i(3.2.1)

for all T ∈ EndOX (Ui )
(V1). Let Ui j :=Ui ∩Uj and

ci j := g−1
i g j ,(3.2.2)

an automorphism of V1 over Ui j . By (3.2.1), ci j commutes with every T ∈ EndOX (Ui j )
(V1), hence it is

a scalar in OX (Ui j )
×. One verifies easily that the ci j form a cocycle in H 1(X ,O ×X ). Let L denote the

associated invertible sheaf, which is trivialised by the cover {Ui}. Then we may view gi : Γ (Ui ,V1) →
Γ (Ui ,V2⊗L ). By (3.2.2), the gi glue to the desired isomorphism g : V1

∼= V2⊗L .

Lemma 3.2.2. — Let X be an integral scheme and T : GF ,S → O (X ) an irreducible pseudocharacter of
dimension n. Let V1, V2 be representations of GF ,S with trace T . Then there exist a line bundle L with
trivial Galois action and a GF ,S -equivariant isomorphism

V1
∼= V2⊗L .

Proof. — Write G = GF ,S and letA := OX [G]/Ker (T ). By [Rou96, Theorem 5.1],A is an Azumaya
algebra of rank 4. By [Sal99, Corollary 2.9], the two natural injective maps αi :A → EndOX (Vi ) are
isomorphisms. Then we conclude by the previous lemma.

3.2.2. Galois representations in ordinary families. — We prove the analogue in Hida families of Theorem
2.5.1.
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Lemma 3.2.3. — Let λ : Tsph,ord
G,U p → Fp be a character. Then there is a unique semisimple representation

ρ : GF ,S →GL2(Fp ) such that Tr(ρ(Frv )) = q−1
v λ(Tv ) for all v /∈ S.

Proof. — The existence follows by lifting λ to the character λx associated with a classical point x (that is
possible thanks to Lemma 3.1.4), then taking the semisimplification of the reduction modulo p of a lattice
in the representation ρx := ρπx

of Theorem 2.5.1; the uniqueness is a consequence of the Brauer–Nesbitt
theorem.

By Proposition 3.1.3 we may decompose Tsph,ord
G,U p

∼=
∏

m Tsphord
G,U p ,m and consequently the generic fibre of

the associated schemes also decomposes as

E ord
G,U p

∼=
∐

E ord
G,U p ,m.(3.2.3)

We will say that a connected subset X ⊂ E ord
G,U p has residual representation ρ : GF → GL2(Fp ) if X is

contained in some E ord
G,U p ,m such that the character λm⊗Fp (m)

Fp associated with m is the character of ρ.

Proposition 3.2.4. — LetXG be an irreducible component of EG (that is, a Hida family). Then there exist:

– an open subsetX ′G ⊂XG containingX cl
G :=XG ∩E cl

G,U p ;
– a locally free OX ′G -module VG of rank two overX ′G, such that

VG,x
∼=Vπx

for all x ∈X cl
G ;

– a filtration

0→V +G,v →VG,v →V
−

G,v → 0,(3.2.4)

where the V ±G,v are locally free OX ′G -modules of rank 1, and GFv
acts on V +G,v by the character associated,

via local class field theory, with the character

(3.2.5) α◦|F ×v 〈 〉Fv

deduced from (3.1.12).

The representation VG is uniquely determined up to automorphisms and twisting by line bundles with
trivial Galois action.

The result is due to Hida and Wiles ([Fou13, § 3.2.3] and references therein), except for the existence
of (3.2.4) when the residual Galois representation ofXG is reducible.

Proof. — Let T : GF ,S → O (XG) be the pseudocharacter defined by T (Frv ) = q−1
v λ(Tv ), where

λ : Tsph
G,U p → O (XG) is the tautological character. Let X irr

G ⊂ XG be the (open) irreducibility locus. By
Theorem 2.5.1,X cl

G ⊂X
irr

G . By Lemma 3.2.2, a representation VG is unique up to Galois-trivial twists if
it exists. We show existence.

By [Rou96, Theorem 5.1],A := OX irr
G
[GF ,S]/Ker (T ) is an Azumaya algebra of rank 4 over EG′ and

the natural map
ρ : GF ,S →A

×

satisfies Tr ◦ ρ = T (where Tr is the reduced trace of A ). Let c ∈ GF ,S be a complex conjugation; we
have an isomorphism A = A (ρ(c)− 1)⊕A (ρ(c) + 1) =: V+1 ⊕V−1. Each of the c -eigen-summands
V±1 is a locally free OX irr

G
-module (since so isA ), whose rank is 2: indeed at any classical geometric point

x ∈X cl
G (Cp ), the specialisation ρx is odd, hence we can pick an isomorphismAx

∼=M2(Cp ) sending ρx (c)
to
�

1
−1

�

from which it is immediate that V±1,x has rank 2; since classical points are dense, we conclude
that V±1 also has rank 2.
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Let VG be either of V1,±. By [Sal99, Corollary 2.9 (a)], the natural map

A → EndOX irr
G

(VG)

is an isomorphism; we view it as an identification to obtain a representation ρ′ with trace T . As an
irreducible 2-dimensional Galois representation over a field is uniquely determined by its trace, the rep-
resentation VG,x is isomorphic to Vπx

.
We now show the existence of the filtration up to further restricting the base. Fix a place v |p of F , and

let detv : GFv
→O (X irr

G )
× be the character giving the action on detVG,v . Let V +0,v be the trivial sheaf OX irr

G

with GFv
-action by the character (3.2.5), V0,v := VG,v , V −0,v := (V +0,v )

−1(detv ). Finally, for ?=+,−.;, let

W ?
v :=HomOX ′G

(V +0,v ,V ?
0,v ).

Then for all x ∈X cl
G , by Theorem 2.5.1 we have exact sequences

(3.2.6) 0→W +
v,x =Qp (x)→Wx →W

−
v,x ,

which we wish to extend to a neighbourhood ofX cl
G . From a consideration of weights based on Theorem

2.5.1, we see that for all x ∈X cl
G , H 0(Fv ,W −v,x ) =H 2(Fv ,W −v,x ) = 0. Then from (3.2.6) we deduce

(3.2.7) H 2(Fv ,Wv,x ) = 0

for all x ∈X cl
G , and from the Euler–Poincaré formula and (3.2.6) we deduce that

(3.2.8) dimQp (x)
H 1(Fv ,W −v,x ) = 1+[Fv : Qp], H 1(Fv ,Wv,x ) = 1+ 2[Fv : Qp]

for all x ∈X cl
G .

By Proposition 5.2.3.3 below, (3.2.7) and (3.2.8) imply that the natural map

H 0(Fv ,W )⊗OX irr
G

Qp (x)→H 0(Fv ,Wv,x )∼=Qp (x)

is an isomorphism for all x ∈ X cl
G . Hence the sheaf L := H 0(Fv ,Wv ) is locally free of rank one in a

neighborhoodX ′G ⊂X
irr

G ofX cl
G . Defining

V +G,v :=L ⊗OX ′G
V +0,v ,

the natural map V +G,v → VG,v |X ′G
is injective, and its cokernel V −G,v has rank one at each x ∈ X cl

G . Up to
further restrictingX ′G, V −G,v is also locally free of rank one. It follows immediately from the construction
that the exact sequence

0→V +G,v →VG,v →V
−

G,v → 0

has the asserted properties.

Proposition 3.2.5. — In the situation of Proposition 3.2.4, the natural injective map

i : OX ′G → EndOX ′G [GF ,S ]
(VG)

is an isomorphism over an open subsetX ′′G ⊂XG containingX cl.

Proof. — By Theorem 2.5.1, ρx is absolutely irreducible for all x ∈ X cl
G . We deduce that for each x ∈

X cl
G , the map ix is an isomorphism. Then we may take for X ′′G the open complement of the support of

Coker(i).

3.3. Universal ordinary representation and local-global compatibility. — The idealised description
of what is achieved in this subsection would be to define a universal ordinary automorphic representation
of G(A∞) over an irreducible componentX of E ord

G ; then show that it decomposes as the product of the
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representations of the local groups B×v , for v ∤ p,(20) associated to V |GF ,v
by a local Langlands correspon-

dence in families. The definition should be an elaboration of

“ΠG := lim
U p ′

HomOX [GF ,E ]
(MU p ′ ,VG)”.(3.3.1)

For technical reasons, a few modifications are necessary:

– the local Langlands correspondence in families is not defined for the unit groups of division alge-
bras;(21) therefore we “remove” the components at the ramification primes Σ of B, in the following
way: we consider a component of E rather than EG, and we take H ′Σ-coinvariants in an analogue Π
of (3.3.1). For sufficiently large levels, this isolates a local factor of Π that is generically free of rank
one along locally distinguished Hida families;

– in the limit in (3.3.1), we fix an arbitrarily large finite set of primes Σ′, disjoint from Σ and from Sp ,
and we let only the Σ′-component of U p ′ shrink, so as to get a representation of B×Σ′ ;

– we replace the abstractly constructed V = VG⊗VH (where VH = χuniv) by a more geometric incar-
nation using the sheafM in ‘new’ level (with respect to the chosen irreducible component).

We use the correspondence studied in [Dis20b], with the caveat that strictly speaking the normalisation
chosen there differs by the one fixed here in Theorem 2.5.1.1 by a Tate twist. This is only a matter of
book-keeping, and in order to avoid excessive notational burden, we do not signal such Tate twists when
referring to the results of [Dis20b] in the rest of this paper.

3.3.1. Irreducible components. — LetXG ⊂E ord
G,U p be an irreducible component. Fix a place v of F not in

Σ∪ Sp . Recall that the v-level of a representation πv of GL2(Fv ) is the smallest m such that πU1(ϖ
m
v )

v ̸= 0,
where U1(ϖ

m
v ) = {

�

a b
c d

�

∈GL2(OF ,v ) : c ≡ d−1≡ 0 (modϖm
v OF ,v )}. Let mx,v be the v-level of x ∈X cl.

Lemma 3.3.1. — The function x 7→ mx,v is constant onX cl
G .

Proof. — By [Car86b], mx,v equals the conductor of the GFv
-representation Vx ; as all those Galois repre-

sentations are pure, we may conclude by [Sah17, Theorem 3.4].

We may then define the v-level mv of XG to be the common value of the mx,v for x ∈ X cl. By the
following lemma, it is not restrictive to make the following assumption: for all v /∈ Σ ∪ Sp , we have

Uv =U1(ϖ
mv (XG)
v ). (We say thatXG is a v-new component of E ord

G,U p .)

Lemma 3.3.2. — Let ′XG ⊂E ord
G,U p ′ be an irreducible component, and suppose that U p ′ =

∏

v ∤p U ′v . Let mv

be the level ofXG and let U p =
∏

v ∤p Uv , with Uv =U1(ϖ
mv
v )⊃U ′v for all v /∈Σ∪ Sp , and Uv =U ′v . There

exists a unique irreducible componentXG ⊂E ord
G,U p whose image under the natural embedding E ord

G,U p ⊂E ord
G,U p ′

is ′XG.

Proof. — Let x ′ ∈ ′X cl
G be any classical point. By [Car86a], its level (that is, the level of πx,v ) is mv if and

only if πx,v already occurs in the cohomology of XF at v-level mv , equivalently if and only if (the system
of Hecke- and Uv -eigenvalues associated with) πx,v occurs in a quotient ofMU p ; that is, if x ′ comes from
a point x of EG,U p . Let XG ⊂ E ord

G,U p be the irreducible component containing x, which is unique by
Proposition 3.1.7. As E ord

G,U p ⊂ E ord
G,U p ′ are equidimensional of the same dimension, the image of XG in

EG,U p ′ is an irreducible component, necessarily ′XG.

We now deal with the level at Σ.

Lemma 3.3.3. — Let v ∈Σ. There exists a compact open U ′v ⊂Uv such that for every classical point x ′ ∈XG,
we have πU ′v

x ′,v =πx ′,v , where πx,v is the local component at v of πx ⊗Qp .

(20)The action of B×p has already been traded for an action of the torus, subsumed into the EG-module structure
(21)There is an essential reason for this, namely the possible presence of Schur indices in representations of those groups.
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Proof. — Fix a classical point x ∈XG ⊂E ord
G,U p , and let U ′v ⊂Uv be such that πU ′v

x,v =πx,v . (This will hold
for sufficiently small U ′v asπx,v is finite-dimensional.) We show that U ′v satisfies the desired property at all
classical x ′ ∈XG. LetXv/Qp

be the Bernstein variety ofGL2(Fv ), a scheme over Qp (see [Dis20b], to which
we refer for more background). By [Dis20b, Theorem 3.2.1], the representation VG of GFv

gives a map
f :XG → Xv/Qp

, compatibly with the local Langlands correspondence in the sense that for all x ∈ XG,
f (x) is the point corresponding to the supercuspidal support of the representation π′x,v of GL2(Fv ) over
Qp (x) attached to the representation VG,x . Note that for classical points x, πx,v = JLv (π

′
x,v ⊗Qp (x)

Qp ),
where JLv is the Jacquet–Langlands correspondence.

After base-change to Qp , we may consider the finitely many maps fi :Xi →Xv/Qp
, where theXi are

the connected components ofXG,Qp
. The image of fi is contained in a connected componentXi ofXv/Qp

.

These components are in bijection with inertial classes of supercuspidal supports for GL2(Fv ), and for the
class σ = σi of Xi there are three possibilities:

– σ corresponds to the class of a supercuspidal representation σ0 of GL2(Fv ) over Qp . In this case,
there is an unramified characterω : F ×v →O (Xi )

× such that every y ′ ∈Xi corresponds to σ0⊗ωy ′ .
Hence for every classical x ′ ∈Xi , we have

πx ′,v
∼= JLv (σ0⊗ω fi (x ′)

) = JLv (σ0)⊗ω fi (x ′)
∼=πx,v ⊗ω fi (x ′)

.

Asω f (x ′) is unramified, it follows that πUv
x ′,v =πx ′,v .

– σ corresponds to the class of the supercuspidal support of St⊗ω0, where St is the Steinberg represen-
tation andω0 : F ×v →Q

×
p is a character. Then there exist a closed subset X′i ⊂Xi and an unramified

character ω : F ×v → O (Xi )
× such that every y ′ ∈ X′i corresponds to the supercuspidal support of

St⊗ω0ωy ′ , and such that every y ′ ∈ Xi −X′i corresponds to the support of an irreducible prin-
cipal series representation. It follows that for every classical x ′ ∈ Xi , the image fi (x

′) ∈ X′i (since
π′x,v ⊗Qp is in the domain of JLv ), and that πx ′,v = JLv (St⊗ω0ω fi (x ′)

) = ω0ω fi (x ′)
◦Nm. We

conclude as above.
– no element of the inertial class σ is the supercuspidal support of a special or supercuspidal represen-

tation. This case is excluded as only those representations are in the image of the Jacquet–Langlands
correspondence.

3.3.2. Galois representation from geometry. — Let U p ⊂G(Ap∞), V p ⊂H(Ap∞) be compact open sub-
groups. We will consider various compact open subgroups U p ⊂ U p

∗ ⊂G(Ap∞), and will correspond-
ingly denote by K p

∗ be the image of U p
∗ ×V p in (G×H)′(Ap∞). Let X be an irreducible component

of E ord
K p ⊂ E ord

G,U p × EH,V p , and let XG ⊂ E ord
G,U p be the irreducible component such that X ⊂ XG×H :=

XG×EH,V p .
Suppose from now on that X is locally distinguished by H′ (Definition 1.3.1). Let VG be the

OX ′′G
[GF ,S]-module constructed in Proposition 3.2.4 and Proposition 3.2.5, and let VH be the universal

character χuniv of GE ,S from (3.1.10). Let

X (0) :=X ∩ (X ′′G ×EH,V p )

an open subset, and consider the GF ,E ,S -representation

V ′ := (VG⊠VH)|X (0)

We define another sheaf V with GF ,E ,S -action, that will provide a more convenient and concrete sub-
stitute for V ′ on (an open subset of)X (0).

Let
U p

0
′ =UΣp

∏

v∈Σ
U ′v ,



THE UNIVERSAL p-ADIC GROSS–ZAGIER FORMULA 35

with U ′v as in Lemma 3.3.3. Let K p
0
′ = (U p

0
′×V p )F ×Ap∞/F ×Ap∞ , and let

V :=M H ′Σ
K p

0
′ ,

viewed a sheaf overX .

Lemma 3.3.4. — The sheaf V is a direct summand ofMK p
0
′ .

Proof. — The group H ′Σ =
∏

v∈Σ E×v /F ×v acts on the locally free sheafMK p
0
′ through a quotient by an

open subgroup. Since H ′Σ is compact, such a quotient is finite; therefore the inclusion V ⊂MK p
0
′ splits.

Proposition 3.3.5. — There is an open subsetX (1) ⊂X containing all classical points such that V is locally
free of rank 2 alongX (1). For every z = (x, y) ∈X cl we have

Vz
∼=Vx ⊗χy

as a GF ,E ,S -representation.

Proof. — By Corollary 3.1.6, for z = (x, y) ∈X cl we have

MK p
0 ,(x,y)

∼= (π∨, p,U p
0

x ⊗χ−1, p
y )⊗ (Vx ⊗χy )

(where the first pair of factors is a representations of G×H(Ap∞) and the second one is a a representation
of GE ). By Lemma 3.3.4, taking H ′Σ-invariants commutes with specialisation, and we find that

Vz
∼= (π∨,Σp,UΣp

0
x ⊗χ−1,Σp

y )⊗ (π∨x,Σ⊗χ
−1
y,Σ)

H ′Σ ⊗ (Vx ⊗χy ).(3.3.2)

The first factor is 1-dimensional by the theory of local newforms, and the second factor is 1-dimensional
by assumption (ϵv )

′.
Since the fibre-rank of V is 2 in the dense set X cl, there is an open neighbourhood of this set over

which V is locally free of rank 2.

Corollary 3.3.6. — There exist: an open subsetX (2) ⊂X (0) ∩X (1) containingX cl such that

EndOX (2) [GF ,E ,S ]
(V ) = OX (2) ,

an invertible sheafL overX (2) with trivial Galois action, and a GF ,E ,S -equivariant isomorphism of sheaves
onX (2)

V ∼=L ⊗V ′.

Proof. — By Proposition 3.3.5 and the construction of V ′, the representations V , V ′ have a common
trace T : GF ,E ,S → O (X (1)). Since this is an irreducible pseudocharacter, the assertions follow from
Lemma 3.2.2 and (the argument of) Proposition 3.2.5.

3.3.3. The universal ordinary representation. — In what follows, all sheavesMK p
∗

will be considered as
sheaves overX (or open subsets ofX ). Note that, as the action of H ′Σ onMG,MH commutes with the
Galois action, the sheavesMK p

∗
retain an action of GF ,E ,S .

We will use the following well-known fact.

Lemma 3.3.7. — Let R be a ring and let T : M →N be a map of free R-modules of the same rank. The set of
those x ∈ Spec R such that T ⊗R/px is an isomorphism is open in Spec R.

Proof. — The locus is the complement of V (detT ).

In what follows, similarly to § 2.1.5, if ‘?’ is any decoration, U p
? is a subgroup of G(Ap∞), and V p ⊂

H(Ap∞) is a fixed subgroup, we denote by K p
? ⊂ (G×H)′(Ap∞) the image of U p

? ×V p .
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Proposition 3.3.8. — Fix a finite set of primes Σ′ disjoint from Σ ∪ Sp , such that Uv is maximal for all
v /∈ Σ′ ∪Σ∪ Sp , and consider the setU of subgroups U p ′ =

∏

v ∤p U ′v ⊂ U p with U ′v as in Lemma 3.3.3 for
all v ∈Σ, and U ′v =Uv for all v /∈Σ′ ∪Σ∪ Sp . (In particular U ′0 ∈U .)

1. There exists a cofinal sequence (U p
i
′)i≥0 ⊂U , and open subsets Xi ⊂X (2) ⊂X containing X cl such

thatX j ⊂Xi for i ≤ j , satisfying the following: there are integers ri and GF ,E -equivariant maps

Ti : V ⊕ri = (M H ′Σ
K p

0
′)
⊕ri →M H ′Σ

K p
i
′

that are isomorphisms overXi .
2. For each U p ′ ∈ U , there is an open subset XU p ′ ⊂ X (2) containing X cl such that the restriction to
XU p ′ of

(3.3.3) ΠK p ′,ord
H ′Σ

:=HomOX [GF ,E ,S ]
(M H ′Σ

K p ′ ,V )

is a locally free OXU p ′
-module, and we have an isomorphism of locally free sheaves with Hecke- and

Galois- actions
M H ′Σ

K p ′
∼= (ΠK p ′,ord

H ′Σ
)∨⊗V .

Moreover ΠK p ′,ord
H ′Σ

⊂ΠK p ′′,ord
H ′Σ

for U p ′′ ⊂U p ′ via the natural projectionsM H ′Σ
K p ′′ →M

H ′Σ
K p ′ .

3. TheH K p ′

G×H,Σ′ -module ΠK p ′,ord
H ′Σ

is generated by ΠK p
0
′,ord

H ′Σ
overXU p ′ .

4. For each z = (x, y) ∈X cl, we have

(ΠK p ′,ord
H ′Σ

)z ∼= (π
U p ′,ord
x )H ′Σ ⊗χy ,

with the notation of (2.4.3).

Proof. — It suffices to prove part 1 for a sequence of subgroups U p
i
′ =

∏

v ∤p U ′i ,v that are B×S -conjugate
to a cofinal sequence (if U p

i
′′ = gi U p

i
′ g−1

i is cofinal and (U p
i
′,Ti ) satisfies the desired condition, then

(U p
i
′′, g−1

i ◦Ti ) also satisfies the desired condition). We thus take any sequence with U ′i ,v =U1(ϖ
mi ,v ) for

v /∈Σ′ ∪Σ∪ Sp , with mi ,v ≥ mv and such that minv∈Σ′ mi ,v →∞.
Let ri =

∏

v (1+mi ,v−mv ). By the local theory of oldforms of [Cas73] and the isomorphisms (3.3.2)
and

(MK p
i
′)

H ′Σ
z
∼= (π∨,Σp,UΣp

i
′

x ⊗χ−1,Σp
y )⊗ (π∨x,Σ⊗χ

−1
y,Σ)

H ′Σ ⊗ (Vx ⊗χy ),(3.3.4)

there are Hecke operators
Tv, jv

:M H ′Σ
K p

0
′ →M

H ′Σ
K p

i
′

such that the map Ti :=
∏

v∈S⊕ jv
Ti ,v, jv

is an isomorphism after specialisation at any z in the dense set
X cl. Hence Ti is an isomorphism in an open neighbourhood Xi of X cl (which we possibly shrink to
make sure it is contained in X (2)). Together with Lemma 3.3.7, this concludes the proof of part 1. Part
2 is a consequence of part 1 and the absolute irreducibility of V , in the special case U p ′ = U p

i
′, with

XU p ′ =Xi . The general case is deduced from the special case: if U p ′ ⊂ U p
i
′, letXU p ′ :=Xi and take on

both sides the locally free summands consisting of U p ′-invariants (for the first assertion) or coinvariants
(for the second assertion). For part 3, we may again reduce to the special case U p ′ = U p

i
′; then the space

ΠU p
i
′
is generated by the images of the transposes of various “oldforms” degeneracy maps Ti from part 1,

that are elements of the Hecke algebraH U p ′

G,S . Finally, part 4 follows from (3.3.4).

Definition 3.3.9 (Universal ordinary representation). — Let U be as in Proposition 3.3.8, and fix an
arbitrary U ′ ∈U . Let

X (3) :=XU p ′
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be as in Proposition 3.3.8, and let

ΠK p ′,ord
H ′Σ

:=HomOX (3) [GF ,E ,S ]
(M H ′Σ

K p ′ ,V )

as in (3.3.3). The universal ordinary representation

ΠK S p ,ord
H ′Σ

⊂ ′ΠK S p ,ord
H ′Σ

:= lim−→
U p ′′∈U

ΠK p ′′,ord,

is the OX (3)[(B×Σ′ × E×Σ′)/F ×Σ′]-submodule generated by ΠK p ′,ord
H ′Σ

.

3.3.4. Local-global compatibility. — The next theorem describes ΠK S p ′,ord
H ′Σ

, as a sheaf with an action by

B×Σ′ × EΣ∞,×, in terms of the local Langlands correspondence in families of [Dis20b], denoted by

VG 7→πG,Σ′(VG).

This correspondence attaches, to any family VG of representations of
∏

v∈Σ′ GFv
on a rank-2 locally free

sheaf over a Noetherian scheme Y /Q, a family of representations of GL2(FΣ′) on a torsion-free sheaf
over Y . The latter representation is co-Whittaker in the sense of [Dis20b, Definition 4.2.2]; in particular
it admits a unique Whittaker model.

Theorem 3.3.10 (Local-global compatibility). — Let

πG,Σ′(VG)

be the representation of GL2(FΣ′) over X (3) associated with VG by the local Langlands correspondence in
families for GL2(FΣ′) of [Dis20b]; let χH,univ,Σ′ be the pullback to X (3) of the sheaf χH,univ of (3.1.11), with
the H(A∞)-action restricted to E×Σ′ .

Then there exist an open subsetX (4) ⊂X (3) ⊂X containingX cl, a line bundleΠK S p ′,S,ord
H ′Σ

overX (4), and

an isomorphism of OX (4)[GL2(FΣ′)× E×Σ′]-modules

ΠK S p ′,ord
H ′Σ

∼= (πG,Σ′(VG)⊗OX (3) χH,univ,Σ′)⊗Π
K S p ′,S,ord
H ′Σ

.

Proof. — For ∗= ;,′, consider

∗π′G,Σ′ :=HomOX (3) [E
×
S ]
(χH,univ,S , ∗ΠK S p ,ord

H ′Σ
),

a torsion-free sheaf overX (3) with action by B×Σ′ =GL2(FΣ′). There is an obvious isomorphism

∗ΠK S p ,ord
H ′Σ

∼= ∗π′G,Σ′ ⊗χH,univ,Σ′ .(3.3.5)

By Proposition 3.3.8.4 and the local freeness of each ′ΠK p ′′

H ′Σ
nearX cl, the fibre of (′π′G,S )

U ′S at any z =

(x, y) ∈X cl equals πG,S (VG,x )
U ′′S ; by Proposition 3.3.8.3 the same is true if one replaces (π′G,Σ′)

U ′′
Σ′ by the

submodule (π′G,Σ′)
U ′′S . In conclusion, taking the limit over U p ′′ ∈ U we find that the smooth, finitely

generated, admissible OX (3)[GL2(FΣ′)]-module π′G,Σ′ satisfies

π′G,Σ′,(x,y)
∼=πG,Σ′(VG,x ).

for all (x, y) ∈X cl. Then by [Dis20b, Theorem 4.4.3], there exist an open subsetX (4) ⊂X (3) containing
X cl and a line bundle that we denote by ΠK S p ,S,ord

H ′Σ
, such that

π′G,Σ′
∼=πG,Σ′(VG)⊗Π

K S p ,S,ord
H ′Σ

.

Substituting in (3.3.5) gives the desired result.
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4. Pairings

4.1. Global dualities. — We construct Hecke- and/or Galois-equivariant duality pairings on the sheaves
constructed in the previous section. The results of this somewhat technical subsection are summarised in
Propositions 4.1.7, 4.1.8.

4.1.1. Pairings, symmetries and involutions. — If ε ∈ {±1}, R is a ring or sheaf of rings, and M , J are R-
modules, an R-bilinear pairing ( , ) : M⊗M → J is said to be ε-symmetric if it satisfies (m, m′) = ε ·(m′, m).
If R is equipped with an involution ι, denote by (·)ι both the functor ⊗R,ιR and the maps m 7→ m⊗ 1; an
(R, ι)-sesquilinear pairing ( , ) : M ⊗M ι → J is said to be ε-hermitian if it satisfies (m, n) = ε · ι((nι, mι)ι).
We will also use the prefix ‘skew-’ (respectively no prefix) if ε=−1 (respectively +1).

4.1.2. Involutions. — We denote by the same name ι the involutions on H sph
G∗

, H sph,ord
G∗

ΛG∗,U
p
∗

, E ord
G∗

deduced from those of § 2.1.4. If M is a module over any of the above rings (or sheaf of modules over any
of the above spaces), we let M ι = ι∗M .

Lemma 4.1.1. — Let W be an irreducible algebraic representation of G∗ over L.

1. We have σW ∨(t ) = σW (t
ι) for all t ∈ TG∗

.
2. If πord is the ordinary part of an automorphic representation of G∗(A

∞) over L of weight W , unram-
ified of level U S

∗ outside of a finite set of primes S, then there is an isomorphism of H sph,ord
G∗,U S -modules

π∨,U S
∗ ,ord ∼= (πU S

∗ ,ord)ι.
3. There is an identification

(E cl,W
G∗
)ι = E cl,W ∨

G∗

such that πord
ι(x) = (πx )

∨,ord.

Proof. — All results can be reduced to the case G∗ =H, which is trivial, or G∗ =G, that we address. Part
1 follows from the explicit description of σW in (2.2.5) and W ∨

G,(w;(wσ ))
∼=WG,(−w;(wσ ))

(see (A.4.2) below

for an explicit duality).
For part 2, we use π∨ = π ⊗ω−1 where ω is the central character of π, and verify the statement

separately for the spherical Hecke algebra and for the operators Ut . For the former, it is well known
that the spherical Hecke algebra is generated by operators T (z) and T (( x

1 )) = T (( 1 x )) for z, x ∈ F ×S ;
denoting by λπ?(·) the eigenvalue of T (·) on (π?)U S

, we then have λπ(z
ι) = λπ(z

−1) =ω(z)−1 = λπ∨(z),
and

λπ(((
x

1 )
ι) = λπ(x

−1(( 1 x )) =ω(x)
−1λπ((

x
1 )) = λπ∨((

x
1 ))

as desired.
For the operators Ut , we verify that ifπ is ordinary at v with unit character α◦v = αvσ

−1
W (as a character

of T +G,v ), then π∨ is ordinary at v with unit character

α◦,ιv : t 7→ α◦v (t
ι).

This follows from observing
π∨v
∼= Ind(αιv · (| |v , | |−1

v )),

α◦v (t
ι) = α◦v (t )α

◦
v (ν(t ))

−1 ∈ O ×F .

Finally, part 3 follows from parts 1 and 2.

4.1.3. Homological and cohomological dualities. — We shall define various pairings 〈 , 〉? in the (ordinary,
completed) homology of Shimura varieties, starting from the Poincaré duality pairings. Then we will use
them to construct corresponding pairings ( )? on spaces of representations, as follows.
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Construction 4.1.2. — Let A be a ring, G a group, and let M1, M2,V1,V2,A(d ) be A[G]-modules, projective
and of finite type over A; denote

V D :=Hom (V ,A(d )).

Let fi ∈ πi := Hom (Mi ,Vi ) be A[G]-maps, suppose we have fixed an identification V D
2
∼= V1; let 〈 , 〉 be a

perfect pairing M1×M2→ A(d ), inducing u〈,〉 : M D
2 → M1. Let f D

2 : V D
2
∼=V1→ M D

2 be the dual map, then
we define a pairing on π1×π2 by

(4.1.1) ( f1, f2)〈,〉 = f1 ◦ u〈,〉( f
D

2 ) ∈ End A[G](V1).

4.1.4. Homological dualities / 1. — Fix lattices W ◦ and W ∨,◦ on any right algebraic representation of G∗
over L, and denoted by 〈 , 〉W : W ⊗W ∨ → L the natural invariant pairing. This may not preserve the
lattices but it does so up to a bounded denominator which we denote by p−|W |.(22)

We may then consider the Poincaré duality pairings

(4.1.2) 〈, 〉U∗,W : Hd (X ∗,U∗ ,W )×Hd (X ∗,U∗ ,W
∨)→H0(X ∗,U∗ ,W ⊗W

∨)→ L(d ),

where the second map is induced by 〈, 〉W and summation over the connected components of X ∗,U∗ . These
pairings are integral up to a bounded denominator p−|W | and satisfy

〈xT , y〉U∗,W = 〈x, yT ι〉U∗,W

for any T inH p
G∗,U∗

, as well as the projection formula

(4.1.3) 〈pU ′∗/U∗,∗(x), y〉W ,U∗
= 〈x, p∗U ′∗ /U∗

(y)〉W ,U ′∗

for all pairs of levels U ′∗ ⊂U∗; here pU ′∗/U∗
: XU ′∗ →XU∗

is the projection.

4.1.5. Homological dualities / 2. — We start to promote and modify the Poincaré duality pairings. The
following lemma is clear.

Lemma 4.1.3. — Let R be a ring, S a finite R-algebra, M a finite S-module.

1. Suppose that S is étale over R. Then there is a natural isomorphism

α : Hom R(M , R)→Hom S (M , Hom R(S, R))→Hom S (M , S)

where the first map is λ 7→ (m 7→ (s 7→ λ(s m)). and the second one comes from the isomorphism S ∼=
Hom R(S, R) induced by the relative trace map.

2. Suppose that S = R[T ] for a finite abelian group T , then there is an isomorphism β : Hom R(M , R)→
Hom R[T ](M , R[T ]) given by λ 7→ (m 7→

∑

t λ(t m)[t−1]).

If S = R[T ] is étale over R then we have α(λ) = |T |−1β(λ).

If S = R[T ] for a finite abelian group T , one verifies that the isomorphism of the lemma is given by

〈 , 〉 7→ 〈〈 , 〉〉, 〈〈x, y〉〉 :=
∑

t∈T

〈x, t y〉[t−1].

We may apply case 2 of the lemma to

M =MH,V p ,r,W ⊗MH,V p ,r,W ∨ , R= L, S =ΛH,V p ,r :=Λ◦H,V p ,r ⊗OL
L∼= L[T H,0/T H,r ]

(with the isomorphism of (3.1.3)). We obtain, from the pairings 〈 , 〉Vr ,W , pairings

〈〈 , 〉〉V p ,W ,r : MH,V p ,W ,r ⊗ΛH,W ,r
M ι

H,V p ,W ∨,r →ΛH,V p ,W ,r ⊗ L,

(22)With respect to the model in (A.4.2), we have |W |= ordp

�

� k−2
(k−2+l )/2

�

�

for the representation (A.2.2) of G.
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and thanks to an easily verified compatibility, a well-defined pairing

(4.1.4)
〈〈 , 〉〉V p ,W : MH,V p ,W ⊗ΛH

M ι
H,V p ,W ∨ →ΛH⊗ L= OEH

⊗ L

x ⊗ y 7→ lim
r
〈〈xr , yr 〉〉V p ,W ,r .

4.1.6. Automorphic inner products. — Let

v(U∗) := vol(X∗,U∗(C))

where ‘vol’ denotes the volume with respect to the metric deduced from the hyperbolic metric
d xd y/2πy2 (using the complex uniformisation (2.3.1)), when G∗ = G, and the counting metric,
when G∗ = H. By [YZZ12, Lemma 3.1], v(U∗) ∈Q× and, when d = dimX∗ = 1, it equals the degree of
the Hodge bundle LU∗

defined as in loc.cit. We have

(4.1.5) degpU ′∗ ,U∗
= v(U ′∗ )/v(U∗) = ZG∗

(Q)∩U∗\U∗/U ′∗ ,

where the last equality can be easily seen e.g. from the complex uniformisation (2.3.1). We set for any
r ≥ 1

(4.1.6) v(U p
∗ ) :=

v(U p
∗ U∗,0(p

r )p )

pd r [F :Q]

where U∗,0(p
r )p ⊂G∗(Qp ) is a maximal compact subgroup if G∗ =H, H′, it is the group of those matrices

that are upper triangular modulo p r if G∗ =G, and it is deduced from those by product and quotient if
G∗ =G×H, (G×H)′. The right hand side of (4.1.6) is independent of r ≥ 1.

Let π be an automorphic representation of G∗(A
∞) of weight W ∗ over L, Vπ the corresponding GE∗

-
representation. Then we have an isomorphism Vπ∨

∼=V ∗π(1), hence we may use Construction 4.1.2 with
A= L, G =GE∗

, M1 =Hd (X ∗,U∗ ,W ), M2 =Hd (X ∗,U∗ ,W
∨), V1 =Vπ, V2 =Vπ∨ and the pairings (4.1.2).

Using (2.5.3), we obtain
( , )π,U∗

:= ( , )〈,〉U∗ ,W
: πU∗ ×π∨,U∗ → L.

One verifies thanks to (4.1.3) and (4.1.5) that the pairing

(4.1.7) ( , )π := lim
U∗
(dimW · v(U∗))

−1 · ( , )π,U∗
: π×π∨→ L.

is well-defined.
When G∗ = H, denoting π = χH, we may alternatively apply Construction 4.1.2 to A, M1, M2,V1,V2

as above and the image of the pairings 〈〈 , 〉〉V p ,rW under the map ΛH,r,W → L given by [t ] 7→ χH(t ), and
denote the resulting pairings on χH×χ−1

H by ( , )〈〈,〉〉χH,V p ,r
. As |T H,0/T H,r |·v(V p ) = v(V pVp,r ) by (4.1.5),

we have
( , )χH

= v(V p )−1( , )〈〈,〉〉χH,V p ,r
,

and in particular the right-hand side is independent of V p .
Assume for the rest of this subsection that G∗ =G,G×H, (G×H)′. Then we need a twist in order

to isolate the toric action and to obtain the ι-equivariance of the pairings under the action of the Up∞-
operators.

Let π = π∞⊗W be an ordinary representation of G∗(A). Using the transformation word
a defined in

Proposition A.2.1, we define a pairing

(4.1.8) ( f1, f2)
ord
π := dimW · (word

a f1, f2)π : πord×π∨,ord→ L.

See Lemma A.2.2 for its nondegeneracy.
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4.1.7. Homological dualities / 3. — Analogously to the previous paragraph, we define a twisted Poincaré
pairing

(4.1.9)
H1(X ∗,U p

∗ ,r ,W )ord⊗H1(X ∗,U p
∗ ,r ,W ∨)ord→ L(1)

〈x, y〉ord
U p
∗ ,W ,r

:= 〈x, yword
a 〉U p

∗ U∗, p,r ,W ,

of which we will especially consider the restriction to the ordinary parts of homology.

Lemma 4.1.4. — Let π be an ordinary representation of G∗(A), and identify

πord =Hom L[GE∗ ]
(H1(X ∗,U p

∗ ,r ,W )ord,Vπ)

for sufficiently large r similarly to Proposition 3.1.5. Then Construction 4.1.2 provides a pairing (, )〈,〉ord
W ,r

on

πord×π∨,ord; it is related to (4.1.8) by

(4.1.10) (, )ord
π = v(U∗)

−1 · (, )〈,〉ord
U∗,W ,r

.

Proof. — This follows by chasing the definitions.

By applying case 2 of Lemma 4.1.3 as in (4.1.4), corrected by a factor p r [F :Q],(23) we obtain from (4.1.9)
pairings

(4.1.11)

〈〈, 〉〉U p
∗ ,W ,r : H1(X ∗,U p

∗ ,r ,W )⊗Zp
H1(X ∗,U p

∗ ,r ,W ∨)→ΛG∗,U
p
∗ ,r (1)

x ⊗ y 7→ p r [F :Q]
∑

t∈T G∗,0
/T G∗,r

〈x, y〉ord
U p
∗ ,W ,r

Lemma 4.1.5. — The parings (4.1.11) satisfy 〈〈xr T , yr 〉〉W ,r = 〈〈xr , yr T ι〉〉U p
∗ ,W ,r for all T ∈H ord

G,r and all

xr ∈Hd (X ∗,U p
∗ ,r ,W ), yr ∈Hd (X ∗,U p

∗ ,r ,W ∨).
For z ∈MG∗,W , denote by zr its image in MG∗,W ,r :=Hd (X ∗,U p

∗ ,r ,W )ord. The pairing

(4.1.12)
〈〈 , 〉〉Λ,U p

∗ ,W : MG∗,U
p
∗ ,W ⊗H ord

G
M ι

G∗,U
p
∗ ,W ∨ →ΛG∗,U

p
∗
(d )⊗ L

〈〈x, y ι〉〉Λ,U p
∗ ,W := lim

r
〈〈xr , y ιr 〉〉U p

∗ ,W ,r

is well-defined.

The above construction is a minor variation on the one of [Fou13, § 2.2.4], to which we refer for the
proof of the lemma. As usual, when W =Qp we shall omit it from the notation.

Lemma 4.1.6. — The diagram

MG∗,U
p
∗ ,W ⊗H ◦

G∗
M ι

G∗,U
p
∗ ,W ∨

〈〈 , 〉〉
Λ,U p
∗ ,W // ΛG∗,U

p
∗
(d )⊗ L

MG∗,U
p
∗
⊗H ◦

G∗
M ι

G∗,U
p
∗

〈〈 , 〉〉
Λ,U p
∗ //

jW⊗ jW∨

OO

ΛG∗,U
p
∗
(d )⊗ L,

∼=

OO

where the left vertical map comes from Proposition 3.1.2.2 and the right vertical map is [t ] 7→ σ−1
W (t )[t ], is

commutative.

Proof. — For simplicity we write down the proof for the group G∗ =G and we drop the subscripts U p .
Poincaré duality and the pairings 〈 , 〉W preserve integral structures up to p−|W |. Then by construction it
suffices to show the identity

〈 jW ,r (x), jW ∨,r (y)〉
ord
W ≡ 〈x, y〉ord (mod p r−|W |OL)

(23)This factor accounts for the ‘K0(p
r )’-part of the level.
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for all r ≥ 1 and x, y in Hd (X r ,Zp ).
By definition in (3.1.8), we have

jW ,r (x) = x ⊗ ζ ⊗ ζ ∗

where ζr ∈W ◦,N0/p r and ζ ∗r ∈W ◦
N0
/p r are elements pairing to 1; we denote by ζ ∨r , ζ ∨,∗

r the analogous
elements for jW ∨,r . Then we need to show that

〈(x ⊗ ζr ⊗ ζ
∗
r )w

ord
a , y ⊗ ζ ∨r ⊗ ζ

∨∗
r 〉= 〈x, y〉.

By the definition of word
a in Proposition A.2.1, this reduces to the identity

〈ζr w0,ζ ∨r 〉 · 〈ζ
∗
r w0,ζ ∨,∗

r 〉= 〈ζr ,ζ ∗r 〉 · 〈ζ
∨
r ,ζ ∨,∗

r 〉= 1,

which can be immediately verified using an explicit model for the pairing such as given in (A.4.2).

4.1.8. Dualities over Hida families. — LetX be an irreducible component of E ord
K p . By Proposition 3.1.7,

the map E ord
K p → SpecΛQp

is étale in a neighbourhood X ′ of X cl, hence we may apply case 1 of Lemma
4.1.3 to deduce from (4.1.12) a pairing

(4.1.13) 〈〈 , 〉〉K p ord :MK p ord ⊗OX ′M
ι
K p ′ →OX ′(1).

We summarise the situation.

Proposition 4.1.7 (Duality). — LetX (5) ⊃X cl be the intersection of the subsetX (4) of Theorem 3.3.10 with
the locus where the mapX → SpecΛQp

is étale. There exist

– a perfect, GE -equivariant, skew-hermtian pairing

M H ′Σ
K p ′ ⊗OX (5)M

H ′Σ,ι
K p ′ →OX (5)(1).(4.1.14)

induced from (4.1.13);
– a perfect, GE -equivariant, skew-hermtian pairing

(4.1.15) V ⊗X (5) V
ι→OX (5)(1)..

– a perfect pairing

(( , )) := v(K p ′)−1 · ( , )〈〈,〉〉K p ′
: ΠK p ′

H ′Σ
⊗OX (5) (Π

K p ′

H ′Σ
)ι→OX (5) ,(4.1.16)

where ( , )〈〈,〉〉K p ′
is deduced from (4.1.14), (4.1.15) and the isomorphism of Proposition 3.3.8.2 via Con-

struction 4.1.2.

Proof. — Observe that the natural map

(M H ′Σ
K p ′)∗→ ((MK p ′)H ′Σ)

∗ = (M ∗
K p ′)H

′
Σ

(where ∗ denotes OX (5) -dual) is an isomorphism; as (4.1.13) is equivariant for the action of the full Hecke
algebra, this implies that its restriction (4.1.14) is perfect. It is skew-hermitian by Lemma 4.1.5 and the
fact that the Poincaré pairing (4.1.2), when W is trivial, is skew-symmetric.

We find the pairing (4.1.15) by specialising (4.1.14) to K p ′ = K p , and the pairing (4.1.16) as described.

4.1.9. Specialisations. — We describe the specialisation of the pairing ((, )) just constructed.
For each algebraic representation W of (G×H), denote by

X cl,W
r :=X ∩E cl,W

K p ,r ,

the set of classical points of weight W (omitted from the notation when W =Qp ) and level r . Denote by

a subscript ‘W , r ’ the pullbacks of sheaves or global sections from X (5) to X cl,W
r (which is a finite étale
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scheme over Qp ). We let

VW ,r := Γ (X cl,W
r ,VW ,r ), ΠK p ′,ord

H ′Σ,W ,r
:= Γ (X cl,W

r ,ΠK p ′,ord
H ′Σ

),

M H ′Σ
K p ′,W ,r := Γ (X cl,W

r ,M H ′Σ
K p ′) =H1(ZK p ′,r ,W )ord,H ′Σ ,

where the last equality is by Proposition 3.1.2.3. We denote

(( , ))W ,r := v(K p ′)−1 · ( , )〈〈,〉〉K p ′ ,W ,r
: ΠK p ′,ord

H ′Σ,W ,r
×ΠK p ′,ord,ι

H ′Σ,W ,r
→O (X cl,W

r ).

Proposition 4.1.8. — Let f1, respectively f2 be global(24) sections of ΠK p ′,ord
H ′Σ

= HomOX (5) [GF ,E ]
(M H ′Σ

K p ′ ,V ),

respectively (ΠK p ′,ord
H ′Σ

)ι. Let

f1,W ,r : M H ′Σ
K p ′,W ,r →VW ,r , f2,W ,r : (M H ′Σ

K p ′,W ,r )
ι→V ι

W ,r

be OX cl,W
r
[GF ,E ]-linear maps.

Let x ∈X cl,W
r , π :=π(x) and let

f1,x : H1(ZK p ′,r ,W )→Vπ, f2,x : H1(ZK p ′,r ,W ∨)→Vπ∨

be Qp (x)[GF ,E ]-linear maps.
The following hold.

1. Suppose that for i = 1,2, the map fi ,W ,r arises as the specialisation of fi . Then

(( f1, f2))|X cl,W
r
= (( f1,W ,r , f2,W ,r ))W ,r in O (X cl,W

r ).

2. Suppose that for i = 1,2, the map fi ,x factors through the projection

p? : H1(ZK p ′,r ,W ?)→H1(ZK p ′,r ,W ?)ord
H ′Σ
∼=H1(ZK p ′,r ,W )ord,H ′Σ =M H ′Σ

K p ′,W ,r ,

where ?= ; if i = 1, ?= ∨ if i = 2; and that fi ,x coincides with the specialisation of fi ,W ,r at x. Then

(4.1.17) (( f1, f2))W ,r (x) = ( f1,x , f2,x )
ord
π = dimW · (word

a f1, f2)π in Qp (x).

Proof. — We simplify the notation by omitting the superscripts H ′Σ and subscripts K p ′; moreover we
ignore the normalisations v(K p ′)−1 that are present in all of the pairings to be compared.

Part 1 follows from the definition (4.1.12) if W =Qp , and similarly we can also identify (( , ))W ,r with

the restriction toX cl,W
r of the pairing on functions on MW deduced from 〈〈 , 〉〉W via Construction 4.1.2.

By Lemma 4.1.6 this implies that the desired statement holds for all W .
For Part 2, let HW ,r := O (X cl,W

r ). First notice that, by the construction of case 1 of Lemma 4.1.3, the
diagram of HW ,r -modules

Hom HW ,r
(M ι

W ,r , HW ,r (1))Qp

��

u〈〈,〉〉W ,r // MW ,r

��
Hom (M ι

W ,r,ΛW ,r
,ΛW ,r (1))

u〈〈,〉〉Λ,W ,r // MW ,r

is commutative.
On the other hand, let x ∈XW ,r

cl and let αx be the associated character of T +. By definition in (4.1.11),
the pairing 〈〈, 〉〉Λ,W specialises, on MW ,r |x ⊗M ι

W ,r |x , to

(x, y) 7→
∑

t∈T 0/T r

〈x, t y〉ord
U p
∗ ,W ,r

[t−1](x) =
∑

t∈T 0/T r

αx (t )〈x, y〉ord
U p
∗ ,W ,r

α−1
x (t ) = p r [F :Q]|T 0/T r | · 〈x, y〉ord

U p
∗ ,W ,r

.

(24)The same statements hold with some extra notational burden if f1, f2 are only defined over an open subset ofX (5).
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It follows that u〈〈,〉〉W ,r
specialises at x to p−r [F :Q]|T 0/T r |−1u〈,〉′W ,r

, hence that the specialisation of ((, ))(x) =
v(K p ′)−1(, )〈〈,〉〉W ,r

(x) is

(, )〈,〉ord
W ,r

p r [F :Q]|T 0/T r |v(K p ′)
=

p r [F :Q] · v(K p ′K1
1 (p

r )p )(, )
ord
π

p r [F :Q][v(K p ′K1
1 (p r )p )/v(K p ′K0(p)rp )]v(K p ′K0(p r )p )

= (, )ord
π ,

where we have used |T 0/T r |= v(K p ′K0(p
r )p )/v(K

p ′K1
1 (p)

r
p ) (by (4.1.5)) and (4.1.10).

This establishes the first equality of (4.1.17); the second one is just a reminder of (4.1.8).

4.2. Local toric pairings. — Let F be a non-archimedean local field, E a quadratic étale algebra over F
with associated character η : F ×→ {±1}, B a quaternion algebra over F , G = B×, H = E×, H ′ = H/F ×,
and suppose given an embedding H ,→G

4.2.1. Definition of the pairing. — Let π be a smooth irreducible representation of G over a finite exten-
sion L of Qp , with a central character ω : F ×→ L×. Let χ : E×→ L× a character such that χ |F × ·ω = 1.
We identify χ with a representation Lχ of E× on L, and when more precision is needed we denote
by eχ the basis element corresponding to the character χ in Lχ . Let Π := π⊗ χ , a representation of
(G×H )′ = (G×H )/F × over L. We assume that π is essentially unitarisable, that is that for any embed-
ding ι : L ,→ C, a twist of ιπ is isomorphic to the space of smooth vectors of a unitary representations.
(This holds automatically ifπ arises as the local component of a cuspidal automorphic representation over
L.) Let π∨ be the smooth dual, Π∨ :=π∨⊗χ−1

Assume from now on that the modified local sign ϵ(Π) = (1.2.5) equals +1. Then, by the result of
Tunnell and Saito mentioned in the introduction, the space

Π∗,H
′
:=Hom H ′(Π, L).

has dimension 1 over L. Moreover the choices of an invariant pairing ( , ) on Π⊗Π∨ and a Haar measure
d t on H′ give a generator

Q =Q( , ),d t ∈Π
∗,H ′ ⊗L (Π

∨)∗,H
′

defined by the absolutely convergent integral

Q(,)( f1, f2) :=L (Vv , 0)−1 · ι−1
∫

E×/F ×
(ιΠ(t ) f1, ι f2)d t ;(4.2.1)

for any ι : L ,→C; hereL (Vv , 0) = (1.2.7).
Recall also from the introduction (1.2.8) that

(4.2.2) Qd t

�

f1⊗ f2
f3⊗ f4

�

:=
Q(,),d t ( f1, f2)

( f3, f4)
,

is independent of ( , ) whenever it is defined.
We study the pairing, or some of its variations, in a few different contexts.

4.2.2. Interpretation in the case E = F ⊕ F . — In this case G = GL2(F ), and the integral (4.2.1) has
an interpretation as product of zeta integrals. Let K (π) and K (π∨) be Kirillov models over L as in
[Dis17, § 2.3]. By [Dis17, Lemma 2.3.2], the L-line of invariant pairings onK (π)×K (π∨) is generated
by an element ( , ) such that, for each ι : L ,→C, we have

(4.2.3) ι( f , f ∨) =
ζ (2)

L(1,π×π∨)
·
∫

F ×
ι f (y)ι f ∨(y)d×y,
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where the integral is absolutely convergent (as ιπ is essentially unitarisable) and d×y is any L-valued Haar
measure. Identify E× with the diagonal torus in GL2(F ) and write χ = (χ1,χ2) according to the decom-
position E = F ⊕ F ; noting that χ2 =ω

−1χ1 and π=π∨⊗ω−1, we indentify Q(,),d t with

ιQ(,),d t ( f ⊗ eχ , f ∨⊗ eχ−1)
.= L(1/2, ιπE ⊗ ιχ )

−1
∫

E×/F ×
ιχ (t )(ιπ(t ) f , ι f ∨)|t |s d t |s=0(4.2.4)

= L(1/2, ιπ⊗ ιχ1)
−1
∫

F ×
ι f ∨(t )ιχ1(t )|t |

s d× t |s=0 · L(1/2, ιπ⊗ ιχ1)
−1
∫

F ×
ι f ∨(y)ιχ1(y)|y|

s d×y|s=0

= (L(1/2, ιπ⊗ ιχ1)
−1 · I (ι f , ιχ1, 1/2)) · (L(1/2,π⊗ ιχ1)

−1 · I (ι f ∨, ιχ1, 1/2)),

where I (·, ·, 1/2) is the zeta integral of [Dis20b, § 5.2] for GL2(F )×GL1(F ), and .= denotes an equality up
to constants in L× depending on the choices of measures.

4.2.3. Special line in the unramified case. — We study the first one in a short list of special cases in which
there are ‘canonical’ lines in Π, Π∨, on which the value of the pairings Q can be explicitly computed.

Lemma 4.2.1 ([Wal85, Lemme 14]). — Suppose that B is split, E/F is unramified, and both π and χ are
unramified. Let K ⊂ (G× E×)/F × be a maximal compact subgroup. Then

Q( , ),d t (v, w) = vol(O ×E /O
×
F , d t ) · (v, w)

for all v, respectively w, in the lines ΠK , respectively (Π∨)K .

4.2.4. Special line when B is nonsplit. — Suppose now that B is nonsplit and that Π is an irreducible
representation of (G × E×)/F × as above. Note that Π is finite-dimensional and H ′ is compact, so that
Π∨ = Π∗ and the natural maps ΠH ′ → ΠH ′ (= H ′-coinvariants) and Π∗,H

′ → (ΠH ′)∗ are isomorphisms.
Moreover the non-degenerate pairing ( , ) restricts to a non-degenerate pairing on ΠH ′ ⊗Π∨H ′ . Then we
may compare the restrictions of the pairings Q( , ) of ( , ) to the line ΠH ′ ⊗Π∨,H ′ .

Lemma 4.2.2. — In the situation of the previous paragraph, we have

Q( , ),d t =L (V(π,χ ),v , 0)−1 · vol(E×/F ×, d t ) · ( , )

as elements of (ΠH ′)∗⊗ (Π∨,H ′)∗.

Proof. — This follows from the definition in (4.2.1), since in this case the integration over the compact
set E×/F × converges.

4.3. Ordinary toric pairings. — We define a variant for ordinary forms of the pairing Q.

4.3.1. Definition of the ordinary paring. — LetΠ=π⊗χ be an ordinary automorphic representation of
(G×H)′(A) over L. When referring to local objects considered in the previous paragraphs or products
thereof, we append subscripts as appropriate.

For each v |p, let
µ+v : E×v → L×

be the character by which E×v (or equivalently
∏

w|v Gab
Ew

) acts on V +
π,v ⊗χv , and let jv ∈ Ev be the purely

imaginary element fixed in (A.1.2). Define

µ+(j) :=
∏

v |p
µ+v (jv ).
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For measures d tv = d tv, p on H ′v , d tv,∞ on H ′v,∞ (the latter a merely formal notion as in the introduction),
define

(4.3.1)
vol◦(H ′v , d tv ) :=

vol(O ×E ,v/O
×
F ,v , d tv )

ev L(1,ηv )−1
, vol◦(H ′v,∞, d tv,∞) :=

vol(H ′v,∞, d tv,∞)

2[Fv :Qp ]
,

vol◦(H ′p∞, d tp∞) :=
∏

v |p
vol◦(H ′v , d tv ) · vol◦(H ′v,∞, d tv,∞).

The denominators in the right-hand sides are the volumes of vol(O ×E ,v/O
×
F ,v ), respectively C×/R×, for the

ratio of (rational normalisations of) selfdual measures, cf. [YZZ12, § 1.6.2] and the proof of Proposition
A.3.4.

Definition 4.3.1. — Let d t = d t p∞d tp∞ be a decomposition of the adèlic measure d t specified in (1.2.9).
Then we define:

– for each f1, p∞, f3, p∞ ∈Πord
p∞, f2, p∞, f4, p∞ ∈Π

∨,ord
p∞ with f3, p∞⊗ f ord

4, p∞ ̸= 0,

(4.3.2) Qord
d tp∞

�

f1, p∞⊗ f2, p∞

f3, p∞⊗ f4, p∞

�

:=µ+(j)vol◦(H ′p∞, d tp∞) ·
f1, p∞⊗ f2, p∞

f3, p∞⊗ f4, p∞
.

– for each f1, f3 ∈Πord, f2, f4 ∈Π∨,ord with ( f3, f4)
ord ̸= 0,

(4.3.3) Qord
�

f1⊗ f2
f3⊗ f4

�

:=Q p∞
d t p∞

�

f p∞
1 ⊗ f p∞

2

f p∞
3 ⊗ f p∞

4

�

·Qord
d tp∞

�

f1, p∞⊗ f2, p∞

f3, p∞⊗ f4, p∞

�

.

The normalisation at p∞ is justified by the clean formula of Proposition 4.3.4 below.

Remark 4.3.2. — Suppose that Π is locally distinguished, so that as explained in the introduction the
functional Qd t is nonzero. Then the functional Qord

d t is also nonzero.

4.3.2. Decomposition. — Fix a decomposition d t =
∏

v ∤p∞ d tv d tp∞ such that for all but finitely many
v, vol(O ×E ,v/O

×
F ,v ) = 1. Let Σ′ be a finite set of finite places of F disjoint from Σ and Sp and containing the

other places of ramification of Π, and those such that vol(O ×E ,v/O
×
F ,v ) ̸= 1. Let K p ⊂ (G×H)′(Ap∞) be an

open compact subgroup that is maximal away from S :=Σ∪Σ′ and such that ΠKv
v =Πv for v ∈Σ.

Lemma 4.3.3. — For all f1, f3 ∈Π
K p ,ord
H ′Σ

, f2, f4 ∈Π
∨,K p ,ord
H ′Σ

with ( f3, f4)
ord ̸= 0, we have

(4.3.4)

Qord
�

f1⊗ f2
f3⊗ f4

�

=
∏

v∈Σ′
Qv,d tv

�

f1,v ⊗ f2,v

f3,v ⊗ f4,v

�

·
∏

v∈Σ
vol(E×v /F ×v , d t )L (V(π,χ ),v , 0)−1 f1,v ⊗ f2,v

f3,v ⊗ f4,v

·
f S p∞
1 ⊗ f S p∞

2

f S p∞
3 ⊗ f S p∞

4

·Qord
p∞,d tp∞

�

f1, p∞⊗ f2, p∞

f3, p∞⊗ f4, p∞

�

.

Proof. — This follows from the definitions and the results of § 4.2.

4.3.3. Relation to between the toric pairing and its ordinary variant. — We gather the conclusion of the
computations from the appendix.

Proposition 4.3.4. — Let Π = π⊗χ = Π∞⊗W be an ordinary representation of (G×H)′(A). Let word
a

and γ ord
H ′ be the operators defined in Propositions A.2.1 and A.2.4. Let ep (V(π,χ )) = (1.4.6) be the interpolation

factor of the p-adic L-function. For all f1, f3 ∈Πord, f2, f4 ∈Πord with ( f3, f4)
ord ̸= 0, we have

Q

�

γ ord
H ′ ( f1)⊗ γ

ord
H ′ ( f2)

word
a ( f3)⊗ f4

�

= ep (V(π,χ )) · dimW ·Qord
�

f1⊗ f2
f3⊗ f4

�

.

Proof. — There is a decomposition Qord
p∞,d tp∞

=
∏

v |p Qord
v,d tv
·
∏

v |p Qord
v,∞,d tv,∞

, whose terms are defined

in §§ A.3-A.4. The only point worth stressing is that if µ+v , respectively µ+v,∞ is the character defined
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in § A.3.3,(25) respectively § A.4.3, then the decomposition µ+ = µ+,smµ+,alg of µ+ into a product of a
smooth and an algebraic character is given by µ+,sm =

∏

v |p µ
+
v , µ+,alg =

∏

v |p µ
+
v,∞.

Then the result follows from Propositions A.3.4 and A.4.3.

4.4. Interpolation of the toric pairings. — We interpolate the pairings Qord
d t along Hida families

4.4.1. Interpolation of the local pairings. — We use the same notation F , E of § 4.2.

Lemma 4.4.1. — Let X be a scheme over Q and let r ′ = (r,N ) be a Weil–Deligne representation of WF

on a rank-2 locally free sheaf overX . Suppose thatX contains a dense subsetX cl such that r ′x is pure for all
x ∈X cl. Let ad(r ′) be the rank-3 adjoint representation. Then there exist an open subsetX ′′ ⊂X containing
X cl and functions

L(0, r ′)−1, L(1, r ′, ad) ∈ O (X ′′)
such that for every x ∈X ′ we have L(0, r ′)−1(x) = L(0, r ′x )

−1 and L(1, r ′, ad)(x) = L(1, ad(r ′x )).

Proof. — By [Dis20b, § 5.1], there exist an open set X ′′′ ⊂ X containing X cl and functions L(0, r ′)−1,
respectively L(1, r ′, ad)−1, in O (X ′′′) interpolating L(0, r ′x )

−1, respectively L(1, ad(r ′x ))
−1, for all x ∈X ′.

By purity, L(1, r, ad)−1 does not vanish on X cl, hence it is invertible in an open neighbourhood X ′′ of
X cl inX ′′′.

LetX be an integral scheme,F× be aK ×
X -module, then we defineF×,−1 to be theKX -module such

that for each openU ⊂X ,
F×,−1(U ) := { f −1 | f ∈F×(U )}

withK ×
X -action given by a · f −1 = (a−1 f )−1.

Proposition 4.4.2. — Consider the situation of Lemma 4.4.1. Let

π=π(r ′)

be the OX [GL2(F )]-module attached to r ′ by the local Langlands correspondence in families of [Dis20b], let
ω : F ×→O (X )× be its central character, and let χ : E×→O (X )× be a character such thatω ·χ |F × = 1. Let
π∨ :=π(ρ∗(1)) and let Π=π⊗χ , Π∨ =π∨⊗χ−1. Let (Π⊗O ×X Π

∨)× be the O ×X -submodule of those f3⊗ f4
such that ( f3, f4) ̸= 0.

Then there exist: an open subsetX ′ ⊂X containingX cl; lettingO := OX ′ ,K :=KX ′ , anO ×-submodule
(Π⊗O ×X Π

∨)× specialising at all z ∈X c l to the space of f3,z ⊗ f4,z such that ( f3,z , f4,z )z ̸= 0; and a map of O -
modules

Qd t : (Π⊗O Π
∨)⊗O × (Π⊗O × Π

∨)×,−1→K ,

satisfying the following properties.

1. For all t1, t2 ∈ E×/F ×, g ∈ (GL2(F )× E×)/F ,

Qd t

�

Π(t1) f1⊗Π∨(t2) f2)
Π(g ) f3⊗ f4

�

=Qd t

�

f1⊗ f2
f3⊗Π∨(g−1) f4

�

;

2. For all x ∈X cl,
Qd t |x =Qd t ,

where Qd t is the paring on Πx ⊗Π∨x of (4.2.2).

Proof. — For each x ∈X cl,πx corresponds to a pure Weil–Deligne representation under local Langlands,
hence it is essentially unitarisable (and in fact tempered, see [TY07, Lemma 1.4 (3)]). Then by [Dis20b,

(25)Note that despite the similar notation, the character µv is defined using the Weil–Deligne representations rather than the con-
tinuous Galois representations.
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Lemma 5.2.5] there is an open neighbourhoodX ′ ofX cl inX and an invariant pairing overX ′

(4.4.1) ( , ) : π⊗π∨→OX ′

specialising to the pairing ( , )x defined by (4.2.3) at all x ∈X cl. It induces an invariant pairing Π⊗Π∨→
OX ′ still denoted by ( , ).

By Lemma 4.4.1, up to possibly shrinking X ′, we have regular functions on X ′ interpolating z 7→
L(1/2,πz,E ⊗χz )

−1 = L(0, rz |W ′
E
⊗χz )

−1 and x 7→ L(1,πx , ad) = L(1, r ′x , ad).
If E/F is split, [Dis20b, Proposition 5.2.4] applied to (4.2.4) gives an elementQ(,),d t : ΠE×⊗Π∨E× →OX ′

interpolating Q(,)x for x ∈X cl, and we define

(4.4.2) Qd t

�

f1⊗ f2
f3⊗ f4

�

:=
Q(,),d t ( f1, f2)

( f3, f4)
,

If E/F is nonsplit, by the previous discussion we can interpolate all terms occurring in the definition
(4.2.1) (note that the integral there is just a finite sum), to obtain a pairingQ(,) overX ′ interpolatingQ(,)x
for x ∈X cl. Then we again defineQ by (4.4.2).

4.4.2. Product of local pairings. — We consider the global situation, resuming with the setup of §§ 3.3-4.1.
Let Π :=ΠK p ′,ord

H ′Σ
overX (5). Recall that we have a decomposition

(4.4.3) Π∼= (πG,Σ′(VG)⊗χH,univ,Σ′)⊗OX (5) Π
K p ′,S,ord
H ′Σ

from Theorem 3.3.10.
Let (Π⊗K ×

X (5)
Πι)× ⊂ Π⊗K ×

X (5)
Πι be the O ×X (5) -submodule of sections f3⊗O ×

X (5)
f4 such that f3⊗ f4 ̸= 0

and ( f3,v , f4,v )v ̸= 0 for each the pairings (, )v = (4.4.1), v ∈Σ′.

Theorem 4.4.3. — LetΠ :=ΠK p ′,ord
H ′Σ

andX (5) be as in Proposition 4.1.7, and let (Π⊗KX (5)Π
ι)× ⊂Π⊗KX (5)Π

ι

be the submodule defined above. Then there exist an open subset X (6) ⊂ X (5) containing X cl and, letting
O = OX (6) ,K :=KX (6) , a map of O ×-modules

Q : (Π⊗O Π
ι)⊗O × (Π⊗O × Π

ι)×,−1→KX
satisfying:

1. For any t1, t2 ∈ E×Σ′/F ×Σ′ ⊂ (GL2(FΣ′)× E×Σ′)/F ×Σ′ , any h ∈HS,KΣ′
and any section

( f1⊗ f2)⊗ ( f3⊗ f4)
−1 of (Π⊗K Π

ι)⊗K × (Π⊗K × Πι)×,−1,

we have

Q
�

ΠΣ′(t1) f1⊗ΠιΣ′(t2) f2
Π(h) f3⊗ f4

�

=Q
�

f1⊗ f2
f3⊗Πι(h) f4

�

;

in the left-hand side,ΠΣ′ , respectivelyΠιΣ′ denote the actions of the Hecke algebras at S onΠ, respectively
Πι.

2. For all x ∈X cl,
Qd t |x =Qord,

where Qord is the restriction of the pairing on Π∨,ord
x ⊗Π∨,ord

x of Definition 4.3.1.

Proof. — By (4.3.2), (4.3.3), (4.3.4), and (4.4.3), we need to interpolate:

– the termsL (V(π,χ ),v for v ∈Σ: this is Lemma 4.4.1;
– the charactersµ+v for v |p: this follows form the existence of the filtration (3.2.4) over an open subset

ofX .
– the term Qd t ,Σ′ :=

∏

v∈Σ′ Qd t ,v , According to the proof of [Dis20b, Theorem 4.4.1], the represen-
tation πG,Σ′(VG) is the maximal torsion-free quotient of ⊗v∈Σ′πG,v (VG). For sections fi ,Σ′ that are
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images of ⊗v∈Σ′ fi ,v , with fi ,v sections of πG,v (VG)⊗χH,univ,v if i = 1,3, or of πG,v (V ι
G)⊗χ

−1
H,univ,v

if i = 2,4, let

QΣ′
�

f1,Σ′ ⊗ f2,Σ′

f3,Σ′ ⊗ f4,Σ′

�

:=
∏

v∈Σ′
Qv

�

f1,v ⊗ f2,v

f3,v ⊗ f4,v

�

,

where the factors in the right-hand side are provided by Proposition 4.4.2. This is well-defined
independently of the choices of fi ,v asK is torsion-free.

This completes the interpolation of (4.3.3) into a functionQ, that satisfies properties 1 and 2 by con-
struction and the corresponding properties from Proposition 4.4.2.

5. Selmer sheaves and p-adic heights

In this section we present the theory of Selmer complexes and p-adic heights needed in the rest of the
paper. The foundational material is taken from the book of Nekovář [Nek06].

5.1. Continuous cohomology. — Let (R◦,m) be a complete Noetherian local ring, let G be a topolog-
ical group.

5.1.1. Continuous cochains for (ind-) admissible R[G]-modules. — Let M be an R◦[G]-module. We say
that M is admissible of finite type if it is of finite type as an R◦-module and the action G × M → M is
continuous (when M is given the m-adic topology). We say that M is ind-admissible if M =

⋃

α Mα where
{Mα} is the set of finite-type admissible R◦[G]-submodules of M .

The complex of continuous cochains of M is denoted by C •cont(G, M ); it is defined in the usual way
[Nek06, (3.4.1)] when M is admissible of finite type, and by C i

cont(G, M ) := lim−→α
C i

cont(G, Mα) when we
have a presentation M =

⋃

α Mα as above. The image of C •cont(G, M ) in the derived category of D(RMod)
of R◦-modules is denoted by

RΓ (G, M )

and its cohomology groups by
H i (G, M )

(we omit the subscript ‘cont’ as we will only be working with continuous cohomology).

5.1.2. Localisation. — Let
R= R◦[S −1]

for some multiplicative subset S ⊂ R◦, and let M be an R[G]-module. We say that M is ind-admissible if
it is ind-admissible as an R◦[G]-module, and that it is of finite type if it is of finite type as an R-module.
Suppose that M := M ◦ ⊗R◦ R for an ind-admissible R◦[G]-module M ◦. Then M is ind-admissible as an
R◦[G]-module and there is a canonical isomorphism

(5.1.1) C •cont(G, M )∼=C •cont(G, M ◦)⊗R◦ R

([Nek06, (3.7.4)]).

Remark 5.1.1. — Let
C =CR◦

be the category of schemes isomorphic to open subschemes of Spec R◦, with maps being open immersions.
It follows from the previous paragraph that, for any object X ofC , the condition of ind-admissibility is de-
fined for all quasicoherent OX [G]-modules, and the functors RΓ (G,−) are well-defined on ind-admissible
OX [G]-modules. Moreover, both the ind-admissibility condition and the functors RΓ (G,−) are compati-
ble with restriction along open immersions in C .

In the following, we will not further comment on the generalisation indicated in the previous remark
when referring to sources only considering R◦[G]-modules.
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5.1.3. Completed product. — For i = 1,2, let R◦i be complete noetherian local rings, and let R◦ := R◦1⊗̂R◦2.
We have a functor

(5.1.2) ×̂ : CR◦1
×CR◦2

→CR◦

defined on objects by Spec R◦1[1/ f1]×̂Spec R◦1[1/ f2] := Spec R◦1⊗̂R◦2[1/ f1⊗ 1,1/1⊗ f2] and glueing.

5.1.4. Notation. — Throughout the rest of this section, X will denote an object of CR◦ . If A =
OX ,OX [G], we denote by D(AMod) the derived category ofA -moduels. We use sub- or superscripts

ft, ind-adm, +, −, b, [a, b ], perf,

to denote the full subcategory of objects quasi-isomorphic to complexes ofA -modules that are respec-
tively termwise of finite type, termwise ind-admissible, bounded below, bounded above, bounded, con-
centrated in degrees [a, b ], bounded, perfect (= bounded and termwise projective and of finite type).

Proposition 5.1.2 ( [Nek06, (3.5.6)]). — The functor RΓ (G,−) can be extended to a functor on the category
of bounded-below complexes of ind-admissible OX [G]-modules, with values in bounded-below complexes of
OX -modules [Nek06, (3.4.1.3), (3.5.1.1)]. It descends to an exact functor

RΓ (G,−) : D+(ind-adm
OX [G]

Mod)→D+(OX
Mod).

5.1.5. Base-change. — Suppose that R↠ R′ = R/I is a surjective map of rings. Let j : R◦→ R= R◦[S −1]
be the natural map and let I ◦ := j−1(I ). Then R◦′ := R◦/I ◦ is also complete local Noetherian, and we
may write R′ = R◦′[S ′]−1 where S ′ is the image of S in R◦′. Let M ′ be an ind-admissible R′-module,
then C •cont(G, M ′) is the same whether we consider M ′ as an R′-module or as an R-module: in the special
case R = R◦ this follows from the fact that the maximal ideal of R◦′ is the image of the maximal ideal of
R◦, so that the m-adic and m′-adic topologies on finitely generated R◦′-modules coincide; the general case
follows from the special case by localisation (5.1.1).

More generally, if Y ⊂ X is a closed subset, the functor RΓ (G,−) on OY [G]-modules coincides with
the restriction of the functor on OX [G]-modules of the same name.

Proposition 5.1.3. — Let M be an ind-admissible OX [G]-module and let N be an OX -module of finite pro-
jective dimension. Then there is a natural isomorphism in Db(OX

Mod)

RΓ (G, M )
L
⊗OX

N ∼=RΓ (G, M
L
⊗OX

N ).

Proof. — Let P • be a finite projective resolution of N . The natural map of complexes of OX -modules

C •cont(G, M )⊗OX
P •→C •cont(G, M ⊗OX

P •)

is an isomorphism by [Nek06, (3.4.4)].(26) The desired result follows from the definition of derived tensor
product.

The proposition applies when N = OY with Y ⊂X a local complete intersection, or when X is regular
and N is any coherent OX -module. We highlight the following case.

Corollary 5.1.4. — Let M be an ind-admissible OX [G]-module that is flat as an OX -module, and let x ∈ X
be a nonsingular point. Then there is an isomorphism in Db(κ(x)Mod)

RΓ (G, M )
L
⊗OX

κ(x)∼=RΓ (G, M ⊗OX
κ(x))

hence a second-quadrant spectral sequence

Tor−p (H
q (G, M ),κ(x))⇒H q−p (G, M ⊗OX

κ(x)).

(26)In loc. cit., the ring denoted by R is our R◦, but as our X is open in Spec R◦, the OX -modules P n are also flat as R◦-modules and
the cited result applies.
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Proof. — After possibly localising at x, we may assume that X = Spec R is the spectrum of a local ring,
which by assumption will be regular. Then κ(x) has finite projective dimension over R, and the result
follows from the previous proposition.

5.1.6. Continuous cohomology as derived functor. — For i = 0,1, the functors M 7→H i (G, M ) on the cate-
gory of ind-admissible R-modules coincide with the i th derived functors of M 7→M G ([Nek06, (3.6.2)(v)]).

5.2. Specialisations. — From here on we further assume that R◦ has finite residue field of characteris-
tic p.

5.2.1. Finiteness conditions. — Let G be a profinite group. We consider the condition

(F) H i (G, M ) is finite for all finite discrete Fp[G]-modules and all i ≥ 0

and define the p-cohomological dimension of G to be

cdp (G) := sup{i : ∃ a finite discrete Fp[G]-module M with H i (G, M ) ̸= 0}.

Lemma 5.2.1. — If G satisfies (F) then the cohomology groups of ind-admissible OX [G]-modules of finite
type are OX -modules of finite type ([Nek06, (4.2.5), (4.2.10)]). The cohomology of any ind-admissible OX [G]-
module vanishes in degrees > cdp (G) ([Nek06, (4.26)]).

When E is a number field, S is a finite set of places of E and G = GE ,S , condition (F) is satisfied and
cdp (G) = 3. When Ew is a local field and G =GEw

, condition (F) is satisfied and cdp (G) = 2. In the latter
case we use the notation H i (Ew , M ) for H i (G, M ).

5.2.2. Projective limits, specialisations. — We give two results on the compatibility of G-cohomology
with other functors.

Lemma 5.2.2. — Let G be a profinite group satisfying (F) and let M = lim←−n
Mn be the limit of a countable

projective system of admissible R◦-modules of finite type. Then for all i the natural map

H i (G, M )→ lim←−
n

H i (G, Mn)

is an isomorphism.

Proof. — In the special case Mn = M/mn M , it is shown in [Nek06, Corollary 4.1.3] that the map under
consideration is surjective with kernel lim(1)n H i−1(G, Mn); this vanishes since by (F) those cohomology
groups are finite, hence the projective system they form satisfies the Mittag-Leffler condition. The general
case follows from applying the special case to M and the Mn = lim←−r

Mn/m
r Mn .

Proposition 5.2.3. — Let G be a profinite group satisfying (F) and cdp (G) = e < ∞. Let M be an ind-
admissible OX [G]-module of finite type. Let x ∈X be a nonsingular point, let i0 ≥ 0 and suppose that

H i (G, M ⊗R κ(x)) = 0

for all i ≥ i0+ 1.

1. For all i ≥ i0+ 1, the support of the finitely generated R-module H i (G, M ) is a proper closed subset not
containing x.

2. The natural map
H i0(G, M )⊗OX

κ(x)→H i0(G, M ⊗R κ(x))

is an isomorphism.
3. Suppose further that i0 = 1, and that for y in some dense open subset of X , dimκ(y)H

1(G, M ⊗κ(y)) =
dimκ(x)H

1(G, M ⊗κ(x)). Then the natural map

H 0(G, M )⊗R κ(x)→H 0(G, M ⊗OX
κ(x))
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is an isomorphism.

Proof. — By Nakayama’s lemma and the vanishing assumption, the first statement is equivalent to

(5.2.1) H i (G, M )⊗OX
κ(x)∼=H i (G, M ⊗OX

κ(x)).

Therefore, for the proof of the first and second statements it is enough to prove (5.2.1) for all i ≥ i0, which
we do by decreasing induction on i .

For i ≥ e + 1 the result is automatic. In general, Corollary 5.1.4 gives a second-quadrant spectral
sequence

(5.2.2) E p,q
2 =TorOX

−p (H
q (G, M ),κ(x))⇒H q−p (G, M ⊗OX

κ(x)).

By induction hypothesis, all terms on the diagonal q − p = i vanish except possibly the one with p = 0,
and the differentials with source and target such term are 0. It follows that H i (G, M ⊗OX

κ(x)) = E0,i
∞ =

E0,i
2 =H i (G, M )⊗OX

κ(x).
Finally, under the assumptions of part 3, the finitely generated R-module H 1(G, M ) is locally free of

constant rank in a neighbourhood of x. Hence in the exact sequence

0→H 0(G, M )⊗R κ(x)→H 0(G, M ⊗OX
κ(x))→TorOX

1 (H
1(G, M ),κ(x))

deduced from (5.2.2), the last term vanishes.

5.3. Selmer complexes and height pairings. — As in the preceding subsection, let R◦ be a Noetherian
local ring with finite residue field of characteristic p, X an object of CR.

When Ew is a local field, we write RΓ (Ew ,−) := RΓ (GEw
,−) and similarly for its cohomology groups.

For number fields, we will only use the analogous shortened notation for Selmer groups.

5.3.1. Greenberg data. — Let E be a number field, S p a finite set of finite places of E containing those
above p. Fix for every w|p an embedding E ,→ E w inducing an embedding Gw :=GEw

,→GE ,S p . If M is
an OX [GE ,S p]-module, we denote by Mw the module M considered as an OX [Gw]-module.

Definition 5.3.1. — A Greenberg datum (M , (M+
w )w∈S p ) (often abusively abbreviated by M in what fol-

lows) over X consists of

– an ind-admissible OX [GE ,S p]-module M , finite and locally free as an OX -module;
– for every w ∈ S p a Greenberg local condition, that is a short exact sequence

0→M+
w

i+w→Mw →M−w → 0

of ind-admissible OX [Gw]-modules, finite and locally free as OX -modules.

In this paper, at places w ∤ p we will only consider the strict Greenberg conditions M+
w = 0.

5.3.2. Selmer complexes. — Given a Greenberg datum M = (M , (M+
w )w∈S p ), the Selmer complex

fRΓ f (E , M )

is the image of the complex

Cone

 

C •cont(GE ,S p , M )⊕
⊕

w∈S p

C •cont(Ew , M+
w )
⊕w resw−i+w,∗−→

⊕

w∈S p

C •cont(Ew , Mw )

!

[−1]

in D(ftOX
Mod). Its cohomology groups are denoted by eH

i
f (E , M ). We have an exact triangle

(5.3.1) fRΓ f (E , M )→RΓ(E , M )→⊕w∈S pRΓ (Ew , M−w ).

Proposition 5.3.2. — The Selmer complex fRΓ f (E , M ) and all terms of (5.3.1) belong to D[0,3]
perf (OX

Mod).
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Proof. — As in [Nek06, Proposition 9.7.2 (ii)].

From the triangle (5.3.1) we extract an exact sequence

(5.3.2) 0→H 0(GE ,S p , M )→
⊕

w∈S p

H 0(Ew , M−w )→ eH
1
f (E , M )→H 1

f (E , M )→ 0

where the last term is the (Greenberg) Selmer group

(5.3.3) H 1
f (E , M ) :=Ker

 

H 1(GE ,S p , M )→
⊕

w∈S p

H 1(Ew , M−w )

!

.

5.3.3. Height pairings. — For ? = ;, ι, let M ? = (M ?, (M ?,+
w )) be a strict Greenberg datum for GE ,S p over

X . Suppose given a perfect pairing of OX [GE ,S p]-modules

(5.3.4) M ⊗OX
M ι→OX (1)

such that M+
w and M+,ι

w are exact orthogonal of each other. Let ΓF be a profinite abelian group.
For every pair of Greenberg data M , M ι as above, there is a height pairing

(5.3.5) hM : eH
1
f (E , M )⊗OX

eH
1
f (E , M ι)→OX ⊗̂ΓF

constructed in [Nek06, §11.1]. The following is a special case of [Ven12, Appendix C, Lemma 0.16].

Proposition 5.3.3. — For each regular point x ∈X and P1⊗ P2 ∈ eH
1
f (E , M )⊗OX

eH
1
f (E , M ι), we have

hM⊗κ(x)(P1,x , P2,x ) = (hM (P1, P2))(x).

Venerucci has defined height pairings in an even more general context. Let MX be a strict Greenberg
datum over X as above, let Y ⊂ X be a local complete intersection, and let M ?

Y be the restriction of M ?
X .

LetN ∗
Y /X be the conormal sheaf of Y →X . Then there is a height pairing

(5.3.6) hMY /MX
: eH

1
f (E , MY )⊗OY

eH
1
f (E , M ι

Y )→N
∗

Y /X ,

constructed in [Ven12, Appendix C, § 0.21].
We note its relation to (5.3.5) in a special case, and its symmetry properties in a conjugate-self-dual case.

Proposition 5.3.4. — The pairing (5.3.6) satisfies the following properties.

1. Let ΓF be a profinite abelian quotient of GE ,S p , let X = Y ×̂SpecQp
SpecZpJΓF KQp

(where ×̂ = (5.1.2)),

and assume that M ?
X =M ?

Y ⊗Zp
ZpJΓF K for ?= ;, ι, where if ?= ; (respectively ?= ι) then GE ,S p acts on

ΓF through the tautological character (respectively its inverse). Then

hMY /MX
= hMY

= (5.3.5).

2. Suppose that there is an involution ι : X →X stabilising Y and such that M ι
X =MX ⊗OX ,ι OX , M+,ι

X ,w =
M+

X ,w ⊗OX ,ι OX .
Let ε,ε′ ∈ {±1}. Assume that the pairing (5.3.4) is ε-hermitian (§ 4.1.1), that dY /X ι= ε

′id onN ∗
Y /X ,

and that there is an OY -linear isomorphism

c: eH
1
f (E , M ι

Y ) = eH
1
f (E , MY )

ι→ eH
1
f (E , MY ).

Then the pairing

(5.3.7)
h□MY /MX

: eH
1
f (E , MY )⊗OY

eH
1
f (E , MY )→N

∗
Y /X

(z, z ′) 7→ hMY /MX
(z, cz ′)

is εε′-symmetric.
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In our main application in Theorem D, we have Y = X (or an open subset), the Hida family for
(G×H)′; X =X ♯, the Hida family for G×H containing X ; and MY = V , MX = V ♯, the corresponding
universal GE -representations. In that case, the height pairing hV /V ♯ is simply 1/2 of the pairing hV of
Proposition 5.3.3.

Proof. — Part 1 follows from the construction. (We omit further details since, by the remark preceding
the present proof, we do not actually need it in this paper). We prove the symmetry properties. Let I
be the ideal sheaf of Y ; up to restricting to some open subset of X we may assume that I is generated by
a regular sequence x = (x1, . . . , xr ). ThenN ∗

Y /X = I/I 2 is finite locally free generated by ([x1], . . . , [xr ]).
Let ∂i ∈ N = (I/I 2)∨ be the map ∂i ([x j ]) = δi j . It suffices to show that hi := ∂i ◦ h is εε′-hermitian for
all i . By [Ven12, Appendix C, Proposition 0.5], hi is identified with hMY /MXi

, where Xi =VX ((x j ) j ̸=I ) so

that Y =VXi
(xi ). Hence it suffices to prove the claim for r = 1.

We argue similarly to [Ven12, Proof of Corollary 10.10]. Assume thus r = 1, write x in place of x1,
and let K be the fraction field of X . By [Nek06] and [Ven12, Appendix A, § 0.7]we have an ε-hermitian
Cassels–Tate pairing

∪ : eH
2
f (E , MX )OX -tors⊗OX

eH
2
f (E , M ι

X )OX -tors→K/OX ,

and by [Ven12, Appendix C, Proposition 0.17], we have a map

ix : eH
1
f (E , MY )→ eH

2
f (E , MX )[x]

such that hMY /MX
coincides with

eH
1
f (E , MY )⊗ eH

1
f (E , M ι

Y )
ix⊗i ιx−→ eH

2
f (E , MX )[x]⊗ eH

2
f (E , M ι

X )[x]
∪−→ x−1OX /OX

[·x2]
−→ I/I 2 =N ∗

Y /X .

Since all the above maps are ι-equivariant, we find that hMY /MX
is ε-hermitian as well. The desired assertion

follows from this and the fact that ι acts by ϵ′ onN ∗
Y /X .

6. Universal Heegner class

6.1. Tate cycles and Abel–Jacobi maps. — Let X /E be an algebraic variety over a number field, and let
R be a finite extension of Qp , or its ring of integers, or a finite quotient of its ring of integers.

6.1.1. Tate cycles. — IfW is an étale local system of R[GE ]-modules on X , the R-module of Tate (0)-cycles
is the space

Z0(X ,W ) :=
⊕

x∈X

H 0(x,W )

where the sum runs over the closed points of X and, if x ∈ X and x := x ×Spec E Spec E , we define
H 0(x,W ) := H 0(x,W )GE . Elements of the latter space are written

∑

x ′[x
′]⊗ ξx ′ , where x ′ runs through

the points of x. WhenW = R, the module Z0(X , R) is simply the usual R-module of 0-cycles with coef-
ficients in R. Its quotient by the relation of rational equivalence is denoted CH0(X , R).

When X has dimension 0, its fundamental class is the Tate cycle with trivial coefficients

[X ] :=
∑

x ′∈Z(E

[x ′]⊗ 1 ∈Z0(X ,Zp ).

If a =
∑

x ′[x
′]⊗ ξx ′ ∈ Z0(X ,W ) its support |a| ⊂ X is the support of the divisor

∑

[x ′], where the sum
extends to those x ′ such that ξx ′ ̸= 0.

6.1.2. Abel–Jacobi map. — A Tate cycle a ∈ Z0(X ,W ) yields a map R → H 0(|a|,W )GE and, if X has
dimension 1, the latter cohomology group maps to H 2

|a|(X ,W (1)). The image of 1 ∈ R under the com-
postion

R→H 0(|a|,W )→H 2
|a|(X ,W (1))→H 2(X ,W (1)),
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is denoted by cl(a). Consider the exact sequence

(6.1.1) 0→H 1(X ,W (1))→H 1(X − |a|,W (1))→H 2
|a|(X ,W (1))→H 2(X ,W (1)).

Let e be a Galois-equivariant idempotent acting on the right on H ∗(X ,W (1)), such that cl(a)e = 0. Then
we may apply the idempotent e to (6.1.1) and pull back the resulting exact sequence via the map R →
H 2
|a|(X ,W (1)) given by a, obtaining an extension

(6.1.2) 0→H 1(X ,W (1))e→ Ea→ R→ 0

in the category of GE -representations over R. The map sending a to the class AJ(a)e of this extension is
called the e -Abel–Jacobi map,

AJe : Z0(X ,W )→H 1(GE , H 1(X ,W (1))e) =H 1(GE , H1(X ,W )e),

where the last equality is just a reminder of our notational conventions. When e = id, it is omitted from
the notation. WhenW = R and e acts via correspondences, the map AJe factors through CH0(X , R)e .

6.2. Heegner cycles. — We use the notation from § 2.1 for compact subgroups U∗, p,r ⊂ U∗, p (p
r ) ⊂

G∗(Qp ) and let X∗,U p
∗ ′,r
→ X∗,U p ′(p r ) be the associated Shimura varieties; the level U p

∗
′ will be fixed and

often omitted from the notation. If pOF , p =
∏

v |p ϖ
ev
v OF ,v we use r as a shorthand for r = (ev r )v |p .

6.2.1. Embeddings of Shimura varieties. — For any pair of subgroups V ′ ⊂H′(A∞), K ⊂ (G×H)′(A∞)
such that K ∩H′(A∞)⊃V , we define the diagonal embedding

e′ = e′V ′,K : Y ′V ′ → ZK

y 7→ [(e(ỹ), ỹ)]

if ỹ is any lift of y to YV for some V ⊂H(A∞) such that V F ×A∞ ⊂V ′.
Let W =WG ⊗WH be an irreducible right algebraic representation of (G×H)′ over L ⊃ Qp . If W

satisfies (wt), the space W H ′ is 1-dimensional over L. Let W be the étale sheaf on the Shimura tower
Z associated with W ; any ξ ∈ W H ′ induces a map Qp → e′∗W of étale sheaves on the tower Y ′; by
adjunction we obtain a canonical map Qp → e′∗W ⊗W ∨

H ′ where the second factor is simply an L-line.
We let

e′W ,K ,V ′,∗ : Z0(Y
′

V ′ ,Zp )→Z0(Y
′

V ′ , e
′∗W ◦)⊗W ∨

H ′ →Z0(ZK ,W ◦)⊗W ∨
H ′

e′W ,r ,∗ : Z0(Y
′
r ,Zp )→Z0(Y

′
r , e′∗W ◦)⊗W ∨

H ′ →Z0(Z(p
r ),W ◦)⊗W ∨

H ′ →Z0(Zr ,W ◦)⊗W ∨
H ′

be the compositions of the maps described above and, respectively, e′W ,∗ or e′r ,∗.

6.2.2. CM cycles. — Let [Y ′V ′] ∈ Z0(Y
′

V ′ ,Zp ) be the fundamental class. For any pair of levels K ,V such
that eW ,(K ,V ′) is defined, let

∆W ,(K ,V ′) := e′W ,K ,V ,∗[Y
′

V ′] ∈Z0(ZK ,W ◦),

When W ̸=Qp , we consider the elements

∆◦W ,(K ,V ′) :=
1

|Y ′V ′(E)|
·∆W ,(K ,V ′) ∈Z0(ZK ,W ◦)

When W =Qp , we consider the modification

(6.2.1) ∆◦(K ,V ′) :=
1

|Y ′V ′(E)|
· (∆(K ,V ′)− deg(∆(K ,V ′)) · ξHodge) ∈CH0(ZK )Qp

,

where ξHodge is the Hodge class of [YZZ12, §3.1.3], whose introduction is motivated by the following
lemma.
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Lemma 6.2.1. — The image under pushforward of ∆◦W ,(K ′′,V ′′) in Z0(ZK ,W ) (if W ̸= Qp ) or CH0(ZK )Qp

(if W =Qp ) is independent of V ′′,K ′′ such that V ′′ ⊂K ′′ ∩H′(A∞) and K ′ ⊂K. We have

cl(∆◦W ,(K ,V ′)) = 0 in H 2(ZK ,W (1)).

Proof. — If W ̸= Qp , the first assertion is clear; the second one is automatic as H 2(ZK ,W (1)) = 0 (see
the argument in [Sai09, bottom of p. 1089]). If W = Qp , the assertions amount, respectively, to the
compatibility of the Hodge classes under pushforward and the fact that, by construction, the 0-cycle
∆◦K ,V has degree zero; both facts are explained in [YZZ12, §3.1.3].

6.2.3. Cycles, Selmer classes, and functionals. — Let

(6.2.2) PW ,(K ,V ′) :=AJ(∆◦W ,(K ,V ′)) ∈H 1(GE ,S p , H1(ZK ,W )).

The classes PW ,(K ,V ′) are also compatible under pushforward and yields elements

PW := lim
K∩H′(A∞)⊃V ′

PW ,(K ,V ′) ∈ lim←−
K

H 1(GE ,S p , H1(ZK ,W )).

The space in the right-hand side has a right action by (G×H)′(A∞), and PW is invariant under H′(A∞).
Via (2.5.3) and the biduality W ∨∨ =W , PW yields, for each ordinary representation Π of weight W , a
map

PΠ : Π→H 1(GE ,S p ,VΠ).

Using the map γ ord
H ′ : Πord→ΠH ′ from Proposition A.2.4, we also obtain a map

(6.2.3) P ord
Π := PΠγ

ord
H ′ : Πord→H 1(GE ,S p ,VΠ).

Remark 6.2.2. — We conjecture that (i) there exist an algebraic variety NW ,(K ,V ′)/E of odd dimension
2dW + 1, a homologically trivial cycle ZW ,(K ,V ′) ∈CHdW

(NW ,(K ,V ′))0, and a map

λ : H 2dW+1(N W ,(K ,V ′),Qp (d + 1))→H1(ZK ,W )

such that PW ,(K ,V ′) = λ(AJ(ZW ,(,V ′))); (ii) the elements PW ,(K ,V ′) belong to H 1
f (E , H1(ZK ,W )), so that the

maps PΠ take values in H 1
f (E ,VΠ).

When G =GL2/Q, one can prove (i) with NW ,(K ,V ′) a Kuga–Sato variety for ZK , generalising [Nek95,
Proposition II.2.4]. The (probably not insurmountable) difficulty in the general case is that, if F ̸= Q,
the Shimura variety Z is not of PEL-type. Part (ii) should essentially be a consequence of either (a) part
(i), via [Nek98,NN16], or (b) granted a generalisation of the theory of locc. citt. to nontrivial coefficients
system, of the weaker assertion that, for a finite place w of E , the image of ∆W ,(K ,V ′) in H0(ZK ,Ew

,W )
comes from a corresponding class in the syntomic cohomology of ZK ,Ew

with coefficients inW .

6.3. Universal Heegner class. — We use the local construction described in § A.2.2 to turn the H′(A)-
invariant class PW into an H′(Ap∞)-invariant classPW with values in the ordinary completed homology.
Then we show that PW is independent of W and it interpolates P ◦Π at all representations Π satisfying
(ord), (n-exc).

6.3.1. Construction. — Let dr := |Y ′r (E)| and let d ◦ = dr
∏

v |p q−rv
v ∈ Z≥1, which is the limit of an

eventually constant sequence. Recall that for the tame level K p ′ ⊂ (G×H)′(Ap∞), we denote M ◦K p ′,W :=
lim←−r

H1(ZW ,r ,W ◦)ord.

Definition 6.3.1. — The universal Heegner point of weight W is the element

(6.3.1) PW := PW γ
ord
H ′ ∈ d ◦,−1H 1(GE ,S p , M ◦K p ,W )
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where we still denote by γ ord
H ′ the map induced by the map

γ ord
H ′ : lim←−

Kp

H1(ZK p ′Kp
,W )H′(A)→MK p ′,W

of Proposition A.2.4. As usual, we simply write P := PQp
. When we want to emphasise the choice of

K p ′ we writePK p ′,W instead ofPW .

6.3.2. Independence of weight. — The classPW does not depend on W .

Proposition 6.3.2. — Under the identification

(6.3.2) H 1(E , M ◦K p ′ ⊗Zp
OL)

jW ,∗∼= H 1(E , M ◦K p ′,W )

induced from the isomorphism jW of Proposition 3.1.2.2, we have

jW ,∗(P ) =PW .

Proof. — We show that the difference jW ,∗(P )−PW is p-divisible. Since H 1(GE ,S p , M ◦K p ′,W ) is a finitely
generated module over the ring Λ◦K p ′ by Lemma 5.2.1, any p-divisible element is zero. We will use some
of the notation and results of the appendix, in particular the matrices γ defined in § A.1, the involution
ι= (−)T,−1 on GL2, and the operator γ ord

H ′ of Proposition A.2.4.
We tacitly multiply both sides by d ◦, so that they belong to the lattices (6.3.2). By the definitions of

PW and jW , we need to show the following. Denote by [−]r the reduction modulo p r , and by c(W ) the
constant (A.2.3); then we should have

[p r [F :Q]∆Qp ,rγr, pU−r
p γ

ι
0,∞]r 7→ [c(W )

−1 p r [F :Q]∆W ,rγr, pU−r
p γ

ι
0,∞]r ,

under the map
(6.3.3)
j ′W : H 1(GE ,S p , H1(ZK p Kp (p r ),Z/p r ))→H 1(GE ,S p , H1(ZK p ,Kp (p r ),Z/p r )⊗Z/p r (W ◦/p r )N0,r ⊗OL/p r (W ∨,◦/p r )N0,r

c 7→ c ⊗ ζr ⊗ ζ
∨
r ,

where ζr ⊗ ζ ∨r is the unique element pairing to 1.
As the local systemW ◦/p rW ◦ is trivial on ZK p Kp (p r ), we have

[p r [F :Q]∆W ,r ]r = [p
r [F :Q]∆Qp ,r ⊗ ξ ⊗ ξ

∨]r

in
H 1(GE ,S p , H1(ZK p ,Kp (p r ),Z/p r ))⊗Z/p r (W ◦/p r W ◦)H

′ ⊗OL/p r (W ∨,◦/p r W ∨,◦)H ′ ,

where ξ ⊗ ξ ∨ is the unique element pairing to 1. Note first that the image of [p r [F :Q]∆W ,r ]r under
γr, pU−r

p γ
ι
0,∞ belongs to the right-hand side of (6.3.3): indeed it suffices to show that for any ξ ∈W ◦, the

class [ξ γr ]r is fixed by N0,r , which follows from the congruence

γr n− γr ≡ 0 (mod p r M2(Zp ))

valid for any n ∈N0,r .
It remains to see that if ξ ⊗ ξ ∨ pairs to 1, then so does c(W )−1 · ξ γr, p ⊗ ξ ∨γ ι0,∞ in the limit r →∞.

This is proved in Lemma A.4.2.

6.4. Local properties of the universal Heegner class. — Recall thatX is an irreducible component of
EK p hence of the form Spec R with R= R◦[1/p] and R◦ = Tsph,ord

(G×H)′,K p ,m/a for some maximal and minimal
ideals m⊂ a⊂ T(G×H)′,K p . The ring R◦ satisfies the assumptions of § 5.3, hence Greenberg data over open
subsets ofX give rise to sheaves of Selmer complexes.
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Let X (i) ⊂ X ⊂ EK p ′ be the open sets defined in § 3. Proposition 3.2.4 provides a strict Green-
berg datum (V , (V +w )w|p , (0)w∈S ) over X . Via Proposition 3.3.8.2 we obtain a strict Greenberg datum

(M H ′Σ
K p ′ , (M

H ′Σ,+
K p ′,w )w|p , (0)w∈S ) overX (3) with

M H ′Σ,±
K p ′,w = V

±
w ⊗ (Π

K p ′,ord
H ′Σ

)∨.

We begin the study of the Selmer complexes attached to the above Greenberg data, with the goal to

promoteP to a section of eH
1
f (E ,M H ′Σ

K p ′) over a suitable open subset ofX .

6.4.1. Comparison of Bloch–Kato and Greenberg Selmer groups. — Let z ∈ X cl and let V = V|z . We
compare two notions of Selmer groups for V .

Lemma 6.4.1. — Let w ∤ p be a place of E. Then, for all i ,

H i (Ew ,V ) = 0.

Proof. — As observed in [Nek00, Proposition 2.5], this is implied by the prediction from the weight-
monodromy conjecture that the monodromy filtration on Vz is pure of weight −1. Writing z = (x, y) ∈
E ord,cl ⊂ E ord,cl

G ×E ord,cl
H , the weight-mondromy conjecture for Vz follows from the corresponding state-

ment for VG,x , that is Theorem 2.5.1.2.

Let H 1
f ,Gr(E ,V ) be the Greenberg Selmer group. Bloch and Kato [BK90] have defined subspaces

H 1
f (Ew ,V )⊂H 1(Ew ,V ) and a Selmer group

H 1
f ,BK(E ,V ) := {s ∈H 1(E ,V ) : ∀w ∈ S p, locw (s) ∈H 1

f (Ew ,V )}.

Lemma 6.4.2. — Suppose that Πz satisfies (wt). We have

H 1
f ,BK(E ,V ) =H 1

f ,Gr(E ,V ),

where the right-hand side is the Greenberg Selmer group as in (5.3.3).

Proof. — We need to show that for all w ∈ S p, H 1
f (Ew ,V ) = Ker

�

H 1(Ew ,V )→H 1
f (Ew ,V −w )

�

. This is
automatic for w ∤ p by Lemma 6.4.1. For w|p this is [Nek06, (12.5.8)]: the context of loc. cit is more
restricted but the proof still applies, the key point being that (12.5.7)(1)(i) ibid. still holds for all w under
the weight condition (wt).

Lemma 6.4.3. — Let w ∤ p be a finite place of E. Then H 1(Ew ,V ) and H 1(Ew ,M H ′Σ
K p ′) are supported in a

closed subset ofX (respectivelyX (3)) disjoint fromX cl.

Proof. — This follows from Proposition 5.2.3 and Lemma 6.4.1.

6.4.2. Local Selmer properties ofP . — Let w ∤ p be a place of E as above. As

M H ′Σ
K p ′ = V ⊗ (ΠK p ′,ord

H ′Σ
)∨

overX (3), the support of H 1(Ew ,M H ′Σ
K p ′) is in fact the intersection ofX (3) and of the support of H 1(Ew ,V ).

We denote by

(6.4.1) X (3,w) ⊃X cl

the open complement inX (3) of the support of H 1(Ew ,V ) .

Lemma 6.4.4. — Let w|p be a place of E, with underlying place v of F . The image loc−w (P ) ofP in

H 1(Ew ,M H ′Σ,−
K p ′,w )

vanishes overX (3).
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Proof. — We lighten the notation by dropping form the notation the superscript ‘(3)’ and all decorations
fromM , M−

w . Let X̃ := SpecXOX [([
p

z])z∈A], where A is a (finite) set of topological generators for
F ×\A∞×F /(K p ′∩Z(Ap∞×

F )). As X̃ →X is faithfully flat, we may prove the statement after a base-change
to X̃ ; we denote base-changed sheaves and sections thereof with a tilde □̃.

Let χ : E×\A∞×E → Gab
E → O (X )× be the universal character, and let ω = χ|F ×\A∞×F

, so that

detVG|X (−1) =ω. Letω1/2 : F ×\A∞×F →O (X̃ )× be a square root ofω. We may write

Ṽ = (ṼG⊗ω
−1/2)|GE

⊗ χ̃ ′, χ̃ ′ := χ̃ ⊗ω−1/2
|GE

,

where now χ̃ ′ : GE →Gal(E∞/E) is the projection for the abelian extension E∞/E such that Gal(E∞/E)
is the maximal pro- p quotient of E×A∞×F \A∞×E /V p ′.

Write E∞ =
⋃

n≥0 En as an increasing union of finite extensions, where E0 = E and eventually En+1/En

is totally ramified at each prime above p, and let χ̃ ′n : GE →Gal(En/E) be the natural projection. Let α◦v
be the character giving the GFv

-action on V +G (−1), so that

Ṽ −w =ωwα
◦,−1
w ⊗ χ̃w =ω

1/2
w α◦,−1

w χ̃ ′w ,

where for a characterω′v of GFv
, we denoteω′w :=ω′v |GEw

. Let

Ṽ −n,w :=ω1/2
w α◦,−1

w χ̃ ′n,w , M̃−
n,w := Ṽ −n,w ⊗ (Π

K p ′,ord
H ′Σ

)∨ ⊂M̃w .

Then the same argument as in [How07, proof of Proposition 2.4.5, primes v |p] shows that the image
loc−w (P̃ ) vanishes in H 1(Ew ,M−

n,w ) =
∏

w ′|w H 1(En ,M̃−
0,w ) for each n; here w ′ runs through the (even-

tually constant) set of primes of En above w. Since H 1(Ew ,M̃−
w ) = lim←−n

H 1(Ew ,M̃−
n,w ) by Proposition

5.2.2, the lemma is proved.

Corollary 6.4.5. — LetX (3, f ) :=
⋂

w∈SX
(3,w) ⊃X cl, where the setsX (3,w) are as defined in (6.4.1). Then

P defines a section

P ∈ eH
1
f (E ,M H ′Σ

K p ′)(X (3, f )) =H 1
f (E ,M H ′Σ

K p ′)(X (3, f )).

Proof. — This follows from Lemmas 6.4.3 and 6.4.4. The displayed equality is a consequence of (5.3.2).

6.4.3. Proof of Theorem C. — Via Proposition 3.3.8.2, we may view the class P =PK p =PK p ,Qp
(Defi-

nition 6.3.1) as anH pΣ
K -equivariant functional

(6.4.2) PK p ′ : ΠK p ′,ord
HΣ′

→H 1(E ,V )(X (3, f )).

By the results of § 6.4.2,P takes values in the Selmer group eH
1
f (E ,V )(X (3, f )). It satisfies the asserted

interpolation properties by the definitions of the classesPW in § 6.3 and Proposition 6.3.2.

6.4.4. Exceptional locus of X . — Let w|v be places of E and F above p, and let µ±w : E×w → O (X )× be
the characters giving the Galois action on V ±. Let X exc,v ⊂ X be the closed subset defined by µ−w = 1
for some (hence automatically all) places w|v of E . We let

(6.4.3) X exc :=
⋃

v |p

X exc,v , X cl,exc,(v) :=X cl ∩X exc,(v), X cl,n-exc,(v) :=X cl−X cl,exc,(v).

We say that an ordinary automorphic representation of Π=Π|z over a p-adic field is exceptional at the
place v |p if z ∈X exc,v .

We may characterise the exceptional representations, and seize the opportunity to collect some useful
results; see also Lemma A.2.5.

Lemma 6.4.6. — Let Π= π⊗χ be an ordinary automorphic representation of (G×H)′(A) over a p-adic
field L, of numerical weights w, l .
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1. Let v |p be a place of F . The following are equivalent:
(a) the representation Π is exceptional at v;
(b) ev (V(π,χ )) = (1.4.4)= 0;
(c) the following conditions hold:

– the smooth representation πv of Gv is special of the form St⊗αv ;
– for some (equivalently all) places w|v of E, we have χw ·αv ◦NEw/Fv

= 1.

– wσ = 2 and lσ = 0 for all σ : F ,→ L inducing the place v.
2. Let Sexc

p = Sexc, s
p ∪ Sexc,ns

p be the set of places v |p (respectively those that moreover are split, nonsplit in
E) where Π is exceptional.

(a) The kernel of the natural surjective map

eH
1
f (E ,VΠ)→H 1

f (E ,VΠ)

has dimension 2|Sexc, s
p |+ |Sexc,ns

p |.
(b) Assume that G is associated with a quaternion algebra B that is split at all places v |p. Then

ϵG
v (VΠ) =−1 ⇐⇒ v ∈ Sexc,ns

p .

Proof. — Consider part 1. We first prove the equivalence of the first two conditions. The adjoint gamma
factor in the denominator of each ev (V(π,χ )) is always defined and nonzero, whereas the gamma factor in
the numerator is never zero and it has a pole if and only if, for some w|v, V +

w is the cyclotomic character of
E×w . This happens precisely when, for some w|v, V −w is the trivial character – that is, whenΠ is exceptional
at v.

Now let us prove the equivalence to (c). Let V =VΠ =Vπ|GE
⊗Vχ . By the weight-monodromy conjec-

ture (Theorem 2.5.1.2), the 1-dimensional representations V ±π,v are both of motivic weight −1, thus have
no GEw

-invariants for any w|v, unless πv is a special representation. In the latter case V +
w|z (respectively

V −w ) is of weight−2 (respectively 0). This is compatible with the ordinariness requirement only when the
weight w is 2 at v as in the statement of the lemma. The second condition in (c) is immediate from the
definition of (a).

Consider now part 2. The first statement follows directly from (5.3.2). Let us prove the second one.
By the results recalled in § 1.2.5 and [Wal85, Lemme 10], the condition ϵG

v (VΠ) =−1 is equivalent to the
vanishing of the functional Q =QΠv

= (4.2.1) and of the spaceΠ∗,H
′
v

v . These conditions are never met if v
splits in E or πv is a principal series, and otherwise they are equivalent to the nonvanishing of (Π′v )

∗,H ′v ,
where Π′v = π

′
v ⊗ χv and π′v denotes the Jacquet–Langlands transfer of πv to the nonsplit quaternion

algebra B ′×v over Fv .
Assume that v is nonsplit in E . If πv is exceptional, then by part 1 we have π′v = χv ◦Nm, where Nm

is the reduced norm of B ′v , so that obviously (Π′v )
∗,H ′v ̸= 0. If πv is not exceptional, then by the explicit

computation of Proposition A.3.4 we have QΠ′v ̸= 0 (see also [Dis/a, Corollary A.2.3] for a variant of the
last argument).

6.4.5. Heegner classes belong to the Bloch–Kato Selmer group. — We can now prove the first assertion of
Theorem B.

Proposition 6.4.7. — If Π is not exceptional or has trivial weight, the map PΠ of (1.2.4) takes values in
H 1

f (E ,VΠ)⊂H 1(GE ,S p ,VΠ).

Proof. — IfΠhas trivial weight this is clear. Assume thatΠ is not exceptional. Let ∂ : H 1(E ,V )/H 1
f (E ,V )→

L be any linear map. Then we need to show that the H′(A)-invariant map ∂ PΠ : Π → L is zero. By
Corollary 6.4.5 and Theorem C, whose proof we have just completed, the map P ord

Π takes values in
H 1

f (E ,V ); equivalently, ∂ PΠγ
ord
H ′ = 0. Since Π is not exceptional, by Lemma A.2.5 this means that

∂ PΠ = 0.
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6.4.6. Enhanced ordinary Heegner classes for exceptional representations. — For any z = (x, y) ∈X cl cor-
responding to a representation Π, define the enhanced Heegner class

(6.4.4) eP
ord
Π :=P|z ∈ eH

1
f (E ,VΠ).

By the results established so far, eP
ord
Π has image P ord

Π under the natural map eH
1
f (E ,VΠ)→ H 1

f (E ,VΠ); as
noted in Lemma 6.4.6, this map fails to be an isomorphism precisely when Π is exceptional.

7. The main theorems, and a conjecture

In this section, we prove our main theorems (§ 7.1, or § 7.3.6 for Theorem G), as well as a universal
Waldspurger formula for families of ‘sign +1’ (§ 7.2). Then, we discuss a conjecture on the leading terms
of universal Heegner points (and toric periods) at classical points (§ 7.3).

7.1. Proofs of the main theorems. — Both of our central theorems (Theorems B and D) ultimately
follow from [Dis17,Dis/a], where Theorem B is established when W is trivial, by an argument combining
interpolation and multiplicity-one principles.

7.1.1. p-adic Gross–Zagier formula for ordinary forms. — We start by stating a variant of Theorem B,
valid under the same assumptions.

Theorem Bord. — Let Π= π⊗χ be an ordinary, locally distinguished automorphic representation of (G×
H)′(A) over L. Let V =VΠ, and let eP

ord
Π ∈ eH

1
f (E ,VΠ) be the enhanced Heegner class defined in (6.4.4).

Then for all f1 ∈Π
ord
H ′∞

, f2 ∈Π
∨,ord
H ′∞

, f3 ∈Π
ord, f4 ∈Π

∨,ord with ( f3, f4)
ord ̸= 0, we have

(7.1.1) hV (eP
ord
Π ( f1), eP

ord
Π∨ ( f2))

( f3, f4)
ord
Π

=L ′p (V(π,χ ), 0) ·Q
ord
�

f1⊗ f2
f3⊗ f4

�

.

Remark 7.1.1. — In contrast to Theorem B:

– Theorem Bord also holds for exceptional Π;
– we have only included the Gross–Zagier formula and omitted an analogue to the first statement of

Theorem B, that is that eP
ord
Π takes values in eH

1
f (E ,V ), as that has already been established.

Lemma 7.1.2. — Suppose that Π is not exceptional. Theorem Bord is equivalent to Theorem B.

Proof. — Using freely the notation and results of Appendix A, we first show that Theorem Bord for f1,
f2, f3, f4 is equivalent to Theorem B for

f ′1 = γ
ord
H ′ f1 ∈ΠH ′p∞

, f ′2 = γ
ord
H ′ f2 ∈Π

∨
H ′p∞

, f ′3 = word
a f3 ∈Π

a, f ′4 = f4 ∈Π
∨,ord;

let us call such ( f ′1 , f ′2 , f ′3 , f ′4 ) a ‘special quadruple’.
Indeed, by the definitions (6.2.3), (4.1.8), the left hand side of (7.1.1) equals

hV (PΠ( f
′

1 ), P ord
Π∨ ( f

′
2 ))

dimW · ( f ′3 , f ′4 )
;

whereas by Proposition 4.3.4,

Qord
�

f1⊗ f2
f3⊗ f4

�

.=
ep (V(π,χ ))

−1

dimW
·Q

�

f ′1 ⊗ f ′2
f ′3 ⊗ f ′4

�

.

By the multiplicity-one principle, Theorem B for special quadruples implies Theorem B in general,
since under our assumptions the functional Q is non-vanishing on special quadruples: this again follows
from Proposition 4.3.4 and Lemma 6.4.6.1.(a)-(b).
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7.1.2. Comparison of p-adic L-functions. — We describe how, upon restrictingLp (V ♯) to the cyclotomic
line through a point of trivial weight, we recover the p-adic L-function of [Dis17, Dis/a].

Lemma 7.1.3. — Let z = (x, y) ∈ E ord,cl
G0

×E ord,cl
H be a point corresponding to a representation π0,x ⊗χy of

weights (0; (2, . . . , 2)), (0;0, . . . , 0). Let A denote the modular abelian variety attached to π0,x , and let

Lp (V(A,χ )) ∈K (EZ)

be the p-adic L-function of [Dis/a, Theorem A]. Consider the map

jx,y : EZ→{x}×E
ord
H ⊂E ord,cl

G0
×E ord

H

χF 7→π0,x ⊗χy ·χF ◦NE×A /F×A
.

Then

(7.1.2) Lp (V(π0,χ )) := j ∗(x,y)Lp (V
♯) =Lp (V(A,χ )).

Proof. — This is immediate from the respective interpolation properties. (Note that the first equality in
(7.1.2) is just a reminder of (1.1.1).)

7.1.3. Interpolation argument and proof of the main theorems. — LetX ⊂E ord
K p be a locally distinguished

Hida family for (G×H)′, as in Definition 1.3.1. Fix a level K p ′ ⊂K p . Let

X ′ =X ′K p ′ :=X (6) ∩X (3, f ) ⊃X cl

be the intersection of the open subsets ofX of Theorem 4.4.3 and Corollary 6.4.5.
Recall that we denote by X cl,W the set of classical points of weight W , and by X cl, n-exc the set of

non-exceptional classical points. When W =Qp is the trivial weight, we also define

X cl, p-crys, Qp ,ram ⊂X cl,p-crys,Qp ⊂X cl,n-exc

by the following conditions on the classical point z = (x, y) (equivalently, on the representation Πz ):

(p-crys) for all v |p, the representation Vx|GFv
is potentially crystalline (equivalently,πx,v is a principal series;

the second inclusion above follows from Lemma 6.4.6);
(ram) χy, p is sufficiently ramified in the following sense: let rv ≥ 1 be minimal such that 1+ϖ rv

v OFv
is

contained in the kernel of ωx,v , and let U ◦F , p =
∏

v |p (1+ϖ
rv
v OFv

); then χy, p is is nontrivial on
N−1

Ep/Fp
(U ◦F , p )∩O

×
Ep

.

Lemma 7.1.4. — The subsetX cl, p-crys, Qp ,ram ⊂X ′ is dense.

Proof. — Denote by pG : X ′ → EG the natural projection. If ‘?’ is any relevant decoration, let X ?
G :=

pG(X ?); for x ∈X cl
G , letX ?

x,H := p−1
G (x)∩X

?.

For each x ∈X cl, p-crys, Qp

G , the setX cl, Qp , ram
x,H contains contains all but finitely many points inX cl,Qp

x,H ,

which is dense inXx,H. Thus the closure ofX cl, p-crys, Qp , ram contains all ofX cl, p-crys, Qp .

Now we observe thatX cl, p-crys, Qp

G =YG ∩X
cl, Qp

G for the open subset

YG :=XG−{x |V
+

G,v |x (−1)∼= V −G,v |x for some v |p},

which is non-empty as it containsX cl,WG
G for any representation WG whose partial weights are all≥ 3 (cf.

the proof of Lemma 6.4.6.1 (c)). ThereforeX cl, p-crys, Qp is the intersection of the non-empty open p−1
G (YG)

withX cl,Qp , which is dense inX ′ by Lemma 3.1.4. We conclude thatX cl, p-crys, Qp andX cl, p-crys, Qp , ram

are dense inX ′.

Proposition 7.1.5. — The following are equivalent.
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1. Theorem D holds overX ′K p ′ for all K p ′ ⊂K p .

2a. Theorem Bord holds for all representations Π corresponding to points ofX cl satisfying (wt).
2b. Theorem Bord holds for all representations Π corresponding to points ofX cl, p-crys, Qp , ram.

3a. Theorem B holds for all representations Π corresponding to points ofX cl, n-exc satisfying (wt).
3b. Theorem B holds for all representations Π corresponding to points ofX cl, p-crys, Qp , ram.

Proof. — For any point z ∈ X cl,n-exc satisfying (wt), denote by Πz the associated automorphic repre-
sentation, by Vz the associated Galois representation . We have proved the following specialisation-at-z
properties of objects defined over (open subsets of)X :

– the OX ′ -module ΠK p ′,ord
H ′Σ

(respectively (ΠK p ′,ord
H ′Σ

)ι specialises to ΠK p ′,ord
z,H ′Σ

(respectively Π∨,K p ′,ord
z,H ′Σ

), by

Proposition 3.3.8.4 (and the definition of the involution ι);
– the Galois representation V (respectively V ι) and its ordinary filtrations specialise to V = VΠ (re-

spectively VΠ∨ ) with its ordinary filtrations, by construction (Proposition 3.2.4);

– there is a natural map eH
1
f (E ,V )|z → eH

1
f (E ,V );

– the class PK p ′ specialises to the restriction of P ord
Πz

to ΠK p ′,ord
z,H ′Σ

under the above map, by Theorem C

whose proof is completed in § 6.4.3;
– the product of local termsQ specialises to the restriction of Qord to the spaces of H ′Σ-coinvariants,

K p ′-invariants in Πord
z , Π∨,ord

z , by Theorem 4.4.3.

Let us complete the proof that either side of Theorem D specialises to 1/2 times the corresponding side of
Theorem Bord. Consider the diagramX0→X

♯
0 →EZ. It is not a product, even Zariski-locally; however

the conormal sheaf is trivial. (This is dual to the fact that G×H→ (G×H)′ is a Z-torsor for the étale
topology but not for the Zariski topology.) The immersion X×̂EZ →X ♯ given by ‘(Π,χF ) 7→ Π⊗χF ’
induces the map on conormal sheaves

N ∗
X /X ♯ = OX ⊗̂ΓF →N

∗
X /X×EZ

= OX ⊗̂ΓF

that is multiplication by 1/2 under the canonical identifications. Hence:

– the p-adic height pairing hV = hV ♯|X specialises to 1
2 hV =

1
2 hV⊗χF ,univ|GE

|z , by § 5.3.3;

– the derivative d♯Lp (V ) specialises to 1
2L

′
p (V , 0) in Qp (z)⊗̂ΓF , by the definition in (1.1.1).

We may now complete the proof. By the specialisation properties summarised above, we have 1.⇒
2.a (⇒ 2.b ). By Lemma 7.1.2, we have 2.a ⇒ 3.a, 2.b ⇔ 3.b . By Lemma 7.1.4 and the specialisation
properties, 2.b ⇒ 1.

Proof of Theorems B, D, and Bord. — The first assertion of Theorem B was proved in Proposition 6.4.7.
For a representation Π of trivial weight satisfying the conditions (p-crys), (ram), the formula of Theorem
B is [Dis/a, Theorem B] (cf. Lemma 7.1.3). By Proposition 7.1.5, this implies Theorem D and the general
case of Theorems B, Bord.

7.1.4. Applications to non-vanishing / 1: self-dual CM families. — We prove the generic non-vanishing
result of Theorem F. Recall thatY is a component of the subvarietyE ord,sd

H ⊂E ord
H cut out by the condition

χF ×A
= ηχcyc,F , and such that ϵ(χy , 1) =−1 generically along Y .

Proof of Theorem F. — Recall that a p-adic CM type of E over Qp is a choice Σ of a place w|v of E for

each place v |p of F (we identify primes above p with embeddings into Qp ). For each of the p-adic CM
types Σ of E and each connected component Y ♯ of E ord

H , there is a Katz p-adic L-function

LΣ ∈ O (Y
♯).

It is characterised (see [Kat78, HT93]) by its values at the subset Y ♯,cl.Σ ⊂ Y ♯,cl of those y such that the
algebraic part of χy is t 7→

∏

σ∈Σσ(t )
wσ(t/t c )kσ for integers w, kσ such that either w ≥ 1, or w < 1
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and w + kσ > 0 for all σ ∈ Σ. The interpolation property relates LΣ(y) to L(1,χy ). It is easy to see that

for a given y ∈ E ord,sd
H , there is a unique CM type Σ such that y belongs to the interpolation subset of

LΣ. For such y and Σ, we denote by Lp (χy , s) ∈ O (EZ/Qp (y)
) the function s 7→ LΣ(y(s)) where χy(s) =

χ ·χF ,s ◦NE/F ).
Consider now the setup of the theorem, and let Y ♯ ⊂ E ord

H be the component containing Y . By
[Bur15], under our assumptions the normal derivative d ♯LΣ ∈ N ∗

Y /Y ♯ is non-vanishing. Let Y ′Σ be the
complement of its zero locus, and let

Y ′ :=
⋂

Σ

Y ′Σ.

Let y ∈Y cl ∩Y ′, and let χ := χy . It is easy to see that there is a unique Σ such that y ∈Y ♯,cl,Σ.

We claim that there exists a a finite-order character χ0 ∈ E
ord,cl
H , such that the character

χ ′ = χ cχ c
0 χ
−1
0

(that has the same algebraic part as χ c := χ ◦ c , and defines a point y ′ ∈ E ord,sd,cl
H ) satisfies the following

properties:

– L(1,χ ′) .= Lp (χ
′, 0) ̸= 0, where .= denotes equality up to a nonzero constant;

– H 1
f (E ,χ ′) = 0.

Granted the claim, we have a decomposition of GE -representations

(χχ0⊕χ
cχ c

0 )⊗χ
−1
0 = χ ⊕χ ′

and a corresponding factorisation

Lp (V(π0,χ−1
0 )

, s) .= Lp (χ , s)Lp (χ
′, s),

where π0 = θ(χχ0) (the theta lift), and π0⊗χ−1
0 descends to a representation of (G0×H)′(A). It follows

thatL ′p (V(π0,χ−1
0 )

, 0) ̸= 0. By Theorem A, we have a class

Z ∈H 1
f (E ,V(π0,χ−1

0 )
)⊗H 1

f (E ,V(π0,χ−1
0 )
) = (H 1

f (E ,χ )⊗H 1
f (E ,χ c ))⊕ (H 1

f (E ,χ ′)⊗H 1
f (E ,χ ′c ))

whose p-adic height is non-vanishing. Since H 1
f (E ,χ ′) =H 1

f (E ,χ ′c )) = 0, the class Z is as desired.

It remains to prove the claim. Let Y1 ⊂ E
ord,sd
H be a component over which the anticyclotomic

Main Conjecture is known – that is, one containing a finite-order character satisfying the properties of
[Hid09b]). By applying [BD20, Lemma 2.5] to any character corresponding to a point of Y cl

1 , we find
another component Y2 ⊂E

ord,sd
H , whose classical points correspond to characters χ2 with

ϵ(1,χ2) = 1;

moreover from the proof in loc. cit. one sees that Y2 may be taken to still satisfy the assumptions of
[Hid09b]. Then the function LΣc |Y2

is non-vanishing by [Hsi14]; hence, by the density of classical points
with a given weight, we may find y ′ ∈ Y cl

2 corresponding to a character χ ′ satisfying the first among the
required conditions. By the anticylcotomic Main Conjecture for Y2 proved in [Hid06b, Hid09b], that is
equivalent to the second condition. Finally, the ratio χ ′/χ c is an anticyclotomic character (that is, trivial
on F ×A ), hence ([Hid06a, Lemma 5.3.1]) of the form χ c

0 χ
−1
0 for some finite-order character χ0.

7.2. A universal Waldspurger formula. — We describe the complementary picture over locally distin-
guished families attached to coherent quaternion algebras over F . Unexplained notions and notation will
be entirely parallel to what defined in the introduction.

Let B be a totally definite quaternion algebra over F , letΣ be the set of finite places where B is ramified,
and let G/Q be the algebraic group with G(R) = (B ⊗R)× for any Q-algebra R. Let E be a CM quadratic
extension of F , admitting an F -algebra embedding e: E ,→ B which we fix. We use the same symbols as in
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the introduction for the towers of Shimura varieties associated to the groups as in (1.2.1). Here, all those
Shimura varieties are 0-dimensional.

Let L be a p-adic field and let Π be an automorphic representation of (G×H)′(A) := (G×H)′(A∞)×
(G×H′)/Qp

over L of weight W , by which we mean one occurring in H0(Z ,W ∨)⊗W . The normalised

fundamental class of Y gives rise to an element P ∈H0(Z ,W )H′(A) and to an H′(A)-invariant functional

PΠ : Π→ L,

which may be nonzero only if Π is locally distinguished by H′. If Π is ordinary, we again define P ord :=
Pγ ord

H ′ .
Let X be a locally distinguished Hida family for (G × H)′, which via a Jacquet–Langlands map is

isomorphic to a Hida family X0 for (G0 ×H)′. For each compact open subgroup K p ⊂ (G×H)′(Ap ),
there is a ‘universal ordinary representation’ ΠK p ,ord

H ′Σ
of (G×H)′(A) over X . As in Theorem C, there

exists an H′(Ap∞)-invariant, OX -linear functional

(7.2.1) P : ΠK p ,ord
H ′Σ

→OX

interpolating (the restrictions of) P ord
Πz

at all z ∈X cl satisfying (wt).

Starting from the natural pairings H0(ZK ,W )⊗H0(ZK ,W ∨)→ L, we may define pairings ( , )Π on
each representation Π over a field by the formula (4.1.7) (using the counting measure for v(K)); then we
obtain modified pairings ( , )ord

Π on eachΠord⊗Π∨,ord, and a pairing (( , )) on the universal representations
overX , interpolating modified pairings ( , )ord

Πz
.

Finally, the functionalQ, over an openX ′ ⊂X containingX cl, is also constructed as in § 4.4; in the
argument using the local Langlands correspondence, we use the rank-2 family of Galois representations
pulled back fromX0.

Theorem H. — Let X be a locally distinguished Hida family for (G×H)′. Abbreviate Π(ι) := ΠK p ′,ord,(ι)
H ′Σ

,
O := OX ,K :=KX .

There is an open subsetX ′ ⊂X containingX cl, such that

P ( f1) ·P ι( f2)
(( f3, f4))

=Lp (V
♯)|X ·Q

�

f1⊗ f2
f3⊗ f4

�

,

an equality ofK -valued O -linear functionals on (Π⊗O Πι)⊗O × (Π⊗O Πι)×,−1.

Similarly to § 7.1, this universal formula follows from its specialisations at all classical points satisfying
(wt); those are known by modifying the main result of [Wal85] as in Theorem Bord.

The formula essentially reduces the study ofLp (V ♯)|X to the study of the universal Waldspurger pe-
riodsP . This is particularly interesting in the case of exceptional zeros, as we discuss next.

7.3. Bertolini–Darmon conjectures and exceptional zeros. — We first formulate a conjecture on the
behaviour of P at a point z ∈ X cl and gather some old and new evidence in its favour. In view of
§ 6.4.6, the conjecture is often particularly interesting when z is exceptional. Then we deduce from our
constructions and a known exceptional case of the conjecture a proof of Theorem G.

The conjecture requires some algebraic preliminaries.

7.3.1. Pfaffian regulators. — Let L be a field of characteristic 0, and let M , T be a finite-dimensional L-
vector spaces. Let h : M ⊗M → T be a skew-symmetric pairing, and let r = dimL M .

If r is even, we define the Pfaffian regulator

Pf+(M , h) ∈ (Symr/2T )/L×

to be the Pfaffian of the skew-symmetric matrix h(xi , x j )i j for any L-basis xi of M . It is well-defined
modulo L×.
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If r is odd, we define an enhanced Pfaffian regulator

Pf−(M , h) ∈ (M ⊗ Sym(r−1)/2T )/L×

as follows. It suffices to define ∂ e Pf−(h) for any basis ∂1, . . . ,∂d of T ∨ and all tuples e = (ei )
d
i=1 with

∑d
i=1 ei = (r − 1)/2; here ∂ e :=

∏d
i=1 ∂

ei
i . Let I ⊂ {1, . . . , d} be the support of the tuple e . Let MI ⊂ M

be the sum, over i ∈ I , of the radicals of the pairings ∂i h. If dim MI ≥ 2, we define ∂ e Pf−(h) := 0. If
dim MI = 1 and x ∈Mi is a generator, denote by h the induced pairing on M :=M/MI ; we define

∂ e Pf−(M , h) = x ⊗ ∂ e Pf+(M , h).

Remark 7.3.1. — In the even case, we have of course Pf+(M , h)2 = R(M , h) ∈ (Symr T )/L×,2, where
R(M , h) is the discriminant of the pairing h. In the odd case, assume further given a symmetric bilinear
pairing h♯ : M ⊗M → T ♯. Let h ′ = h ⊕ h♯ : M ⊗M → T ′ :−T ⊕T ♯, and let R(M , h ′) ∈ Symr (T ′)/L×,2 be
its discriminant. Then it is easy to verify that

h♯(Pf−(M , h),Pf−(M , h)) ∈ (T ♯⊗ Symr−1T /)L×,2

is the image of R(M , h ′) under the natural projection.

Remark 7.3.2. — If L is the fraction field of a domain O and M is endowed with an O -lattice, it is possible
to lift the ambiguity in the definitions to an element of O ×.

7.3.2. A conjecture à la Bertolini–Darmon. — Let G be either as in the introduction or as in § 7.2. We
define a sign ε := −1 in the former case and ε := +1 in the latter case. Let X be a locally distinguished
Hida family for (G×H)′, and let

z ∈X cl

be a classical point. We denote by P the universal Heegner class (if ε = −1) or toric period (if ε = +1),
viewed as a family of functionals as in (6.4.2), (7.2.1), parametrised by a subsetX ′ ⊂X . Assume thatX ′

can be taken to be a neighbourhood of z ∈X .
Let T ∗zX =mz/m

2
z be the cotangent space toX at z (where mz ⊂OX ,z is the maximal ideal), and for

any r ∈N let
(d∥z )r : mr

z ⊂OX ,z →mr
z/m

r+1
z = Symr T ∗zX

be the natural projection. It is easy to see that the involution ι of § 2.1.4 satisfies d∥z ι= id (whereas d♯z ι=
−id).

Let V = V|z , and let c: eH
1
f (E ,V ι)→ eH

1
f (E ,V ) be the isomorphism induced by the adjoint action, on

GE ,S , of a lift of the complex conjugation in Gal(E/F ). Let

(7.3.1) h∥ := h□z/X : eH
1
f (E ,V )⊗ eH

1
f (E ,V )→ T ∗zX

be the Nekovář–Venerucci height pairing as in (5.3.7). Since the pairing of Proposition 4.1.7 is skew-
hermitian, by Proposition 5.3.4 the pairing h∥ is skew-symmetric. Define

Pf∥,±(V ) := Pf±( eH
1
f (E ,V ), h∥).

Conjecture Pf. — Let er := dimL
eH

1
f (E ,V ). We have (−1)er = ε, the universal elementP vanishes to order

at least ⌊er/2⌋ at z, and for any generator ℘ ∈ (Πord)∗,H′(Ap∞)
and all f ∈Πord, we have

(7.3.2) (d∥z )⌊
er /2⌋P ( f ) = Pf∥,ε(V ) ·℘( f )

in [ eH
1
f (E ,V )(1+ε)/2⊗Qp (z)

Sym⌊
er /2⌋

Qp (z)
T ∗zX ]/Qp (z)

×.
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7.3.3. Relation to the original conjectures of Bertolini–Darmon. — Define X a := X ∩ ({x} × EH′) (the
anticyclotomic family),X wt :=X ∩ (EG×{y}) (the weight family). In the classical case when E is imagi-
nary quadratic, π is associated with an elliptic curve over Q, χ = 1, and we restrict to the anticyclotomic
variableX a, Conjecture Pf is a variant of conjectures of Bertolini–Darmon, surveyed in [BD01] and (in a
form slightly closer to the one of the present work) in [Dis20a, § 4]. The Bertolini–Darmon conjectures
were partly generalised to higher-weight modular forms in [LV17].

Remark 7.3.3. — By using natural GE ,S -stable lattices in V , or better lattices in eH
1
f (E ,V ) spanned by

motivic elements, it is possible to define the Pfaffian regulators up to an ambiguity that is a unit in the
ring of integers of a local field or of a number field (recall Remark 7.3.2). It should then possible to refine
the conjecture up to such ambiguity (by including the appropriate constants), as in the original works of
Bertolini–Darmon (see [Dis20a, Conjecture 4.2.1]).

In view of Remark 7.3.1, inserting Conjecture Pf into Theorem D would yield a multivariable formula
relating higher partial derivatives of p-adic L-functions with suitable height regulators, in the spirit of the
Birch and Swinnerton-Dyer conjecture; the argument is the same as that of [Dis20a, Proposition 5.1.1].
We plan to return to formulate such conjectural formulas in the appropriate generality in future work.

7.3.4. Evidence for Conjecture Pf in low rank. — The preliminary parity conjecture

(7.3.3) (−1)er = ε

is known in many cases as a consequence of the work of Nekovář (see [Nek06, Theorem 12.2.3]. Indeed,
the statement proved in loc. cit., in view of the functional equation ofL (V(π,χ ), s), is that

(7.3.4) (−1)r = ϵ

where r = dim H 1
f (E ,V ) and ϵ= ϵ(V ). Now if r exc = r exc, s+ r exc,ns denotes the number of exceptional

primes of F above p (respectively, the number of those that moreover are split or nonsplit in E ), by
Lemma 6.4.6.2 we have ε= ϵ · (−1)r exc,ns

, and er = r +2r exc, s+ r exc,ns. Thus (7.3.4) is equivalent to (7.3.3).
Let us now review the conjectural vanishing and leading-term formula. Most of the available evidence

is concentrated in the case where V arises from the classical context of § 7.3.3, to which we restrict unless
otherwise noted for the rest of this discussion. (All the results mentioned below hold under various
additional assumptions, which we will not recall.)

IfX is replaced withX a (the original Bertolini–Darmon case), the conjecture is known ifL (V(π,χ ), s)
vanishes to order 0 or 1 at s = 0, see [Dis20a, Theorem 4.2.5] and references therein, as well as [LP18].
Some of those results have been generalised to higher weight ([IS03, Mas12]) or to totally real fields
([Hun18, BG18, Mol19]).

When X is replaced by X wt, p is inert in E , V is exceptional, and ε = +1, Bertolini–Darmon
[BD07] proved a formula for d∥zP|X wt , which implies the projection of (7.3.2) to T ∗zX wt when
ords=0L (V(π,χ ), s) = 1. The interpretation of the formula of Bertolini–Darmon in terms of height
pairings was observed by Venerucci (see [Ven16, Theorem 2.1 and Theorem 4.2.2]), whose work was a
second important influence in the formulation of Conjecture Pf. The Bertolini–Darmon formula was
generalised to higher-weight modular forms by Seveso [Sev14] and to elliptic curves over totally real fields
by Mok [Mok11].

7.3.5. Evidence for Conjecture Pf in higher rank. — Lower bounds for the order of vanishing of P|X a

have been obtained in two recent works for ε = 1. In the context of elliptic curves over totally real
fields, [BG18, Theorem 5.5] gives a bound (that is coarser than predicted by Conjecture Pf) in terms
of the number of exceptional primes. In a classical context (and if if p splits in E ), Agboola–Castella
[AC21, Corollary 6.5] prove a bound that is finer than that of Conjecture Pf. (That refined bound is
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predicted by Bertolini–Darmon; it is related to some trivial degeneracies of the anticyclotomic height
pairing, as touched upon also in the paragraphs preceding (7.3.7) below.)

Regarding the formula of Conjecture Pf, an interesting anticyclotomic case can be deduced from the
recent work [FG], as we now explain.

The work of Fornea–Gehrmann. — Suppose that A is a modular elliptic curve over the totally real field
F , such that the set Sexc

p of places v |p where A has multiplicative reduction consists of exactly r primes

v1, . . . , vr inert in E . Let φ :
⊗r

i= E×vi
→
⊗r

i=1 A(Evi
) be the product of Tate unifomisations, and let φ̂ be

the induced map on p-adic completions.
One of the main constructions of [FG] produces an explicit element QA ∈

⊗r
i=1 E×vi

⊗̂Qp , which carries
a precise conjectural relation to the arithmetic of A. Partition Sexc

p = Sexc,+
p ⊔ Sexc,−

p according to whether

the multiplicative reduction is, respectively, split or nonsplit, and let r+ := |Sexc,+
p |. Denote Â(Ev ) =

A(Ev )⊗̂Qp and let Â(Ev )
± be its ±-eigenspaces for the conjugation cv ∈Gal(Ev/Fv ).

Assume that AE has rank rA ≥ r and let r+A be the rank of A. According to [FGM, Conjectures 1.3,
1.5], we have(27)

(7.3.5)
rA> r or r+A + r+ ̸= r =⇒ φ̂(QA) = 0,

rA= r and r+A + r+ = r =⇒ φ̂(QA)
.= det((x̂a

i ,v j
)1≤i , j≤r )

where (x1, . . . , xr ) is a basis of A(E)Q, and for v ∈ Sexc,±
p we denote by x̂a

v the eigen-projection of x ∈A(E)

to Â(Ev )
∓. The symbol .= denotes equality up to a constant in Q×.

For V = Vp AE , assuming the finiteness of X(AE )[p
∞] we have er := dim eH

1
f (E ,V ) = r + rA (see

Lemma 6.4.6.1(a) or (7.3.7) below), and the parity conjecture is known. Hence if rA≡ r (mod 2), which
we henceforth assume, V corresponds to a point z of a locally distinguished Hida familyX of sign ε=+1
(for a unique choice of the coherent quaternionic group G). Let

Γ a := (E×A∞/F ×A∞
ÒO p,×

E )⊗̂Qp
∼= T ∗zX

a, ℓa =
∏

w
ℓa

w : E×A∞/E×→ Γ a

be the natural projection, and let ℓa
exc,⊗ :=

⊗r
i=1 ℓ

a
vi

:
⊗r

i=1 E×vi
⊗̂Qp → Symr Γ a. Denoting by da

z the

component of d∥z alongX a, Theorem A of [FG] (which relies on the aforementioned lower bound from
[BG18]) proves

(7.3.6) (da
z )

rP ( f ◦) .= ℓa
exc,⊗(QA)

for a suitable test vector f ◦ ∈Πord.

Comparison with Conjecture Pf. — We show that granted (7.3.5) and the finiteness of X(AE )[p
∞], the

formula (7.3.6) is equivalent to the conjectured (7.3.2).

Let ha : eH
1
f (E ,V )⊗ eH

1
f (E ,V )→ T ∗zX a = Γ a be the projection of h∥, and let

Pfa,+(V ) = Pf+( eH
1
f (E ,V ), ha) ∈ Symr Γ a.

Let eH
1
f (E ,V )± be the eigenspaces for the complex conjugation c ∈Gal(E/F ). Since hz/X a enjoys the c -

equivariance property hz/X a(c x, c x ′) = c .hz/X a(x, x ′) and c acts by−1 on Γ a, by construction the pairing

ha satisfies h(c x, c x ′) =−h(x, x ′), so that each of eH
1
f (E ,V )± is ha-isotropic. In particular, Conjecture Pf

agrees with (7.3.6) and (7.3.5) that, in the first case of the latter, we have (da
z )

rP = 0.

(27)In locc. citt., some restrictive assumptions are made (in particular that E is not CM), but the conjectures make sense even without
those and indeed closely related conjectures appear in [FG] without those assumptions. Moreover, our statement slightly differs
from the ones of [FG], which instead of postulating that (x1, . . . , xr ) is a basis, postulates that φ̂(QA) ̸= 0 under the extra assumption
that ResF /QA is simple (equivalently L(A, s) is primitive). Our slight reformulation appears more uniform and still addresses [FG,
Remark 1.1] (cf. the comment following [FG, Conjecture 1.5]).
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Assume now we are in the second case of (7.3.5), so that each of eH
1
f (E ,V )± has dimension r and ha

need not be degenerate. For 1≤ i ≤ r , let qi = qvi
∈ E×vi

be a Tate parameter for A/Ev . By [Nek93, § 7.14]
we explicitly have

(7.3.7)
eH

1
f (E ,V ) =H 1

f (E ,V )⊕
r
⊕

i=1

Qp · [qvi
]

ha(qv , qv ′) = 0, ha(x, qv ) = loga
A,v (x̂v ), x ∈A(E), v ̸= v ′,

where loga
A,v : Â(Ev )⊗Qp

∼= E×v /qZ
v ⊗̂Qp

∼= O ×Ev
⊗̂Qp

ℓa
v−→ Γ a. Note that loga

A,v factors through x 7→ x̂a
v .

Up to changing the basis xi of A(E)Q and reordering the vi , we may assume that the basis

xr++1, . . . , xr , q1, . . . , qr+ , x1, . . . , xr+ , qr++1, . . . , qr

of eH
1
f (E ,V ) is the concatenation of a basis of eH

1
f (E ,V )+ and a basis of eH

1
f (E ,V )−, respectively. Using

this basis, (7.3.7), and the identity pf
�

M
−M t

�

=±det M , we have(28)

Pfa,+(V ) = det M = det M1 det M2,

where the r × r matrix M is block-left-upper-triangular with anti-diagonal blocks Mk = (loga
A,v j
(xi ))i , j∈Ik

for I1 = {r++ 1, . . . , r }, I2 = {1, . . . , r+}.
On the other hand, we note that under (7.3.5), we have ℓa

exc,⊗(QA) = detN where the r×r matrix Ni j =
loga

A,v j
(x̂i ,v ) = ha(xi , q j ) is block-diagonal with blocks N1 = M2, N2 = M1. Thus ℓa

exc,⊗(QA) = Pfa,+(V ),
and (7.3.6) is equivalent to (7.3.2).

7.3.6. Applications to non-vanishing / 2: exceptional families. — We prove Theorem G.(29) Recall thatX0

is a Hida family for PGL2/Q, that contains a classical point x0 ∈X (Qp ) corresponding to an elliptic curve
A with split multiplicative reduction at p satisfying L(A, 1) = L(Vp A, 0) ̸= 0.

Proof of Theorem G. — Let E be an imaginary quadratic field, with associated quadratic character η, satis-
fying the following: p is inert in A, all other primes dividing the conductor of A split in E , and the twisted
L-value L(A,η, 1) ̸= 0. Then A has split multiplicative reduction over E with Tate parameter

q = qA ∈ E×p .

Let ΩAE
∈C× be the Néron period, and let let H :=ResE/QGm .

By construction, ϵv (Vp AE ) = 1 for all finite v ∤ p, hence the Hida family X ⊂ E ord
(GL2×H)′ containing

the image ofX0×{1} is locally distinguished. LetX ♯ ⊂ E ord
(GL2×H) be the Hida family containingX . Let

Π be the universal ordinary representation overX and let f ∈Π be such that f|x0
is a test vector (that is,

a vector not annihilated by any H′(Ap )-invariant functional λ : Π|x0
→Qp ). Let P0,E be the pullback of

P ( f ) toX0, and letP0 := 1
2 TrE/QP0,E . By Corollary 6.4.5,

P0,E ∈ eH
1
f (GE ,V0), P0 ∈ eH

1
f (GQ,V0).

By the main result of [BD97] (as reformulated in [BD01, Theorem 5.4, § 5.2]),(30) there is a constant
c ∈Q×p such that

P0,E (x0)⊗P
ι

0,E (x0) = c ·
L(AE , 1)
ΩAE

· [q]⊗ [q] in eH
1
f (Q,Vp AE )⊗ eH

1
f (Q,Vp AE )

using the description eH
1
f (Q,Vp AE ) =Qp · [q]⊕H 1

f (Q,Vp AE ) as in (7.3.7).

(28)All the equalities to follow ignore signs and in fact, by our coarse definitions, only make sense at best up to Q×.
(29)A less interesting variant of it was sketched in [Dis/a].
(30)In the works of Bertolini–Darmon, an explicit test vector f is chosen; cf. [Dis20a] for more details on bridging the setups.
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In particular, P0,E (x0) = P0(x0) is a nonzero multiple of [q], which is Gal(E/Q)-invariant. Hence

P0,E andP0 are non-vanishing. Then by [Nek92], eH
1
f (Q,V0) has generic rank 1.

Moreover,

(7.3.8) hV0/V
♯

0
(P0,P ι

0 )(x0) = c ·
L(AE , 1)
ΩAE

· h([q], [q]) = c · ℓ(q) ·
L(AE , 1)
ΩAE

∈ ΓQ⊗Zp
Qp ,

where ℓ : Q×p → ΓQ is the universal logarithm (see again [Nek93, § 7.14] for the second equality). By
[BSDGP96], the right-hand side is nonzero, hence hV0/V

♯
0
(P0,P ι

0 ) ̸= 0.

Remark 7.3.4. — As noted in [Dis20a,Dis/a], the combination of Theorem D (or rather Theorem Bord)
and a precise form of (7.3.8) gives a new proof ot the following theorem of Greenberg–Stevens [GS93]: for
A/Qp

an elliptic curve of split multiplicative reduction at p and Lp (Vp A) ∈ ZpJΓQKQp
its p-adic L-function,

L′p (Vp A, 0) =
ℓ(q)

ordp (q)
·

L(A, 1)
ΩA

.

Appendix A. p-adic semilocal constructions

A.1. Preliminaries. — Throughout this appendix, unless otherwise noted L denotes a field of character-
istic zero (admitting embeddings into C).

A.1.1. Admissible and coadmissible representations. — Let G be a reductive group over Qp . We denote

(A.1.1) Gp :=G(Qp ), G∞ :=G(Qp ), G =Gp∞ :=Gp ×G∞, G∆ :=∆(G(Qp ))⊂G,

where Gp and G∆ have the p-adic topology, G∞ has the Zariski topology, and ∆ is the (continuous)
diagonal embedding. The difference between Gp , G∞, G∆ will be in the category of modules we choose
to consider. Namely, we consider the categories of smooth admissible representations of Gp over L, of
algebraic representations of G∞ over L, and the products of such for G; we call the latter locally algebraic
representations of G over L.

Definition A.1.1. — Suppose that L is a finite extension of Qp . A p-adic locally algebraic admissible
representation Π of G over L is one such that for each compact open subgroup K ⊂ G∆, there exists a
family of OL-lattices ΠK ,◦ ⊂ΠK , for K ⊂G∆, with the property that ΠK ′,◦ ∩ΠK =ΠK ,◦ for all K ′ ⊂K .

The typical example of a p-adic locally algebraic admissible representation is lim−→Kp⊂Gp
H i (YK p Kp

,W )⊗

W ∨, where YK is the system of locally symmetric spaces attached to a model GQ of G over Q, andW is
the automorphic local system attached to the algebraic representation W of G∞.

There is a dual notion, introduced in [ST03, p. 152], see also [ST05]. Assume that L is endowed with
a discrete valuation (possibly trivial), giving it a norm | · |. Let G′ be one of the groups (A.1.1) or an open
subgroup. For K ⊂ G′ a compact open subgroup, let DG′,K = HG′,K := C∞c (K\G′/K , L) and DG′ =
lim←−DG′,K be the Hecke algebras of distributions; they are endowed with a natural topology as L-vector
space, respectively as the inverse limit. A coadmissible G′-representation M over (L, | · |) is a topological
rightDG′ -module such that, for any compact subgroup G◦ ⊂G′, theDG◦ -module M admits a presentation
of the following form: there exists a system of topological DG◦,K -modules MK and isomorphisms MK

∼=
MK ′ ⊗DG◦ ,K′

DG◦,K for K ′ ⊂K ⊂G◦, such that M ∼= lim←−K
MK .

Considering first a field L as endowed with a trivial valuation, we shall consider coadmissible repre-
sentations M of Gp over L that are smooth in the sense the Lie algebra g of Gp acts trivially; coadmissible
representations W of G∞ that are algebraic (those are just algebraic representations); and the products of
such as representations of G, which we call locally algebraic coadmissible representations of G.
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Definition A.1.2. — Suppose that L is a finite extension of Qp ; denote by | · | the p-adic norm and by
| · |triv the trivial norm on L. A p-adic locally algebraic coadmissible representation M of G over L is one
as above for (L, | · |triv), whose restriction to G∆ is coadmissible for (L, | · |).

The typical example of a p-adic locally algebraic coadmissible representation is lim←−Kp
Hi (YK p Kp

,W )⊗

W ∨, where the notation is as after Definition A.1.1.

A.1.2. Notation. — Consider the groups (1.2.1). For a place v |p of F , we let

Gv := B×v , Hv := E×v , H ′v := E×v /F ×v , (G×H )′v := (Gv ×Hv )/F ×v

as topological groups. We use the parallel notation G∗,v,∞ for G∗,v viewed as the group of points of an
algebraic group over Fv .

We assume from now on that Bp is split and fix an isomorphism GQp
∼= ResFp/Qp

GL2, giving a model
of G∗ over Zp . We define involutions

g ι := g T,−1 on G(Qp ), h ι := h c ,−1 on H(Qp ),

that induce involutions ι on all our groups. The embedding H′ ,→ (G × H)′ is compatible with the
involutions.

For t ∈ TG∗, p , let Ut :=Kp,r tKp,r ∈H
Kp,r

G∗, p
for any r ≥ 1, and

Ut , p∞ :=Ut ⊗ t∞.

When x ∈ F ×p , we abuse notation by writing Ux =U( x
1)

; we also write

Up∞ :=U� p
1

�

, p∞

for short.

A.1.3. Ordinary parts of admissible or coadmissible G∗-modules. — Let L be a finite extension of Qp . Let
Π=Πp ⊗W be a p-adic locally algebraic admissible representation of G∗ Let us write

ΠN0,(r ) :=ΠN0,(r ) ⊗W N ,

where N0,r :=Kp,r . Choose OL-lattices W ◦ ⊂W ,Π◦,Kp ⊂ΠK
p , stable under the Hecke action, and compat-

ibly with the transition maps associated with K ′ ⊂K . Then Π◦,N0 :=Π◦,N0
p ⊗W ◦,N = lim−→r

Π
◦,Kp,r
p ⊗W ◦,N

is stable under the action of Up∞. As shown by Hida, the idempotent

eord := lim
n

Un!
p∞ : Π◦,N0 →Π◦,N0

is then well-defined and its image is denoted byΠ◦,ord. The spaceΠ◦,ord is the maximal split OL-submodule
of Π◦,N0 over which Up∞ acts invertibly. We also write eord for eord⊗ 1: ΠN0 =Π◦,N0 ⊗ L→ΠN0 , and we
let Πord = eordΠN0 be its image. If Πp and W are irreducible, then Πord has dimension either 0 or 1; in the
latter case we say that Π is ordinary. (This notion is independent of the choice of lattices.)

Let M=Mp⊗W ∨ be a p-adic locally algebraic coadmissible right module for G∗ over L. By definition
of coadmissibility, the system (Mp,K )K⊂G∗, p

is endowed with a compatible systemHG∗(Zp ),K
-stable lattices

M◦p,K , so that for some G∗(Zp )-stable lattice W ∨,◦, M◦N0
:= lim←−M◦p,Kp,r

⊗W ∨,◦
N0

is stable under Up∞. Then

we can again define eord : M(◦)
N0
→M(◦)

N0
. Its image

M(◦),ord :=M(◦)
N0

eord

is called the ordinary part of M(◦)
N0

.

The ordinary parts Πord, Mord retain an action of the operators Ut , p∞.



72 DANIEL DISEGNI

A.1.4. Special group elements, and further notation. — The following notation will be in use throughout
this appendix. Let v |p be a place of F . We denote by ev be the ramification degree of Ev/Fv , and fix
a uniformiser ϖv ∈ Fv chosen so that

∏

v |p ϖ
ev
v = p. Let Trv = TrEv/Fv

and Nmv := NmEv/Fv
be the

trace and norm. Fix an isomorphism OE ,v = OF ,v ×OF ,v if v is split. If v is nonsplit, let c be the Galois
conjugation of Ev/Fv , and fix an element θv ∈ OE ,v such that OE ,v = OF ,v[θv] (thus θv is a unit if v is
inert and a uniformiser if v is ramified). We define a purely imaginary jv ∈ E×v to be

(A.1.2) jv :=

(

(−1w , 1w c ) if Ev = E×w × E×w c ,

θc
v −θv if Ev is a field.

We assume that Ev embeds in Bv and fix the embedding Ev → Bv to be

t = (tw , tw c ) 7→
�

tw

tw c

�

if Ev = E×w × E×w c ,

t = a+θb 7→
�

a+ bTrvθv bNmvθv

−b a

�

if Ev is a field.

For r ≥ 0, let

wr,v :=
�

1
−p r

�

∈GL2(Fv ), γr,v :=



























 

p r 1

1

!

if v splits

 

p r Nmv (θv )

1

!

if v is nonsplit

∈ (G×H )′v

and
wr :=

∏

v |p
wr,v ∈G(Qp ), γr :=

∏

v |p
γr,v ∈ (G×H)′(Qp ).

A.2. Toric, ordinary, and anti-ordinary parts. — Let L be a finite extension of Qp . We perform some
twists.

A.2.1. Ordinary and anti-ordinary parts. — Let w :=
�

1
−1

�

∈ G∗,∆ and let πw be the representation
on the same space as π but with G-action given by πw (g )v := π(w−1 g w)v. Let N− := w−1N w, and
U−p∞ :=Uw−1

� p
1

�

w, p∞.

Let π=πp⊗W be a p-adic admissible locally algebraic representation of G over L. The anti-ordinary
part of π is the space

πa :=πa
p ⊗W N− ⊂π

of ‘ordinary’ elements with respect to N− and U−p∞. Because πw is isomorphic to π, the spaces πa and
πord have the same dimension.

Let M = M p ⊗W be a p-adic coadmissible locally algebraic representation of G over L. The anti-
ordinary part of M is the quotient

M a :=M a
p ⊗WN−

of M that is its ‘ordinary’ part with respect to N−0 and and U−p∞.

Proposition A.2.1. — Let W be an algebraic representation of G∞.

1. Let π be a p-adic locally algebraic admissible representation of G. There is an isomorphism

word
a : πord→πa

f 7→ lim
r→∞

p r [F :Q]wr, p w ι
0,∞U−r

p f ,

where the sequence stabilises as soon as r ≥ 1 is such that fp ∈π
U 1

1 (p
r )

p .
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2. Let M be a p-adic locally algebraic coadmissible representation of G. There is a map

word
a : M ord→M a

m = mp ⊗m∞ 7→ lim
r→∞

p r [F :Q][m(Up )
−r wr, p]N−0 ⊗ [m∞w ι

0,∞]N− ,

where before applying w∗, we take arbitrary lifts from N0-coinvariants to the module M .

Proof. — That the maps are well-defined is a standard result left to the reader. At least for admissible
representations, the map is an isomorphism (equivalently, nonzero) because of Lemma A.3.3 below.

Let πord
v (respectively πa

v ) denote the preimage of πord (respectively πa) in πv , and let Wv be the Gv,∞-
component of W . The following local components of the above map are similarly well-defined:

(A.2.1)
word

a,v : πord
v →πa

v , word
a,v,∞ : W Nv

v →W N−v
v

fv 7→ lim
r→∞

p r [Fv :Qp ]wr,vU−r
p,v fv , fv,∞ 7→ w ι

0,v,∞ fv,∞.

Lemma A.2.2. — Let π be an ordinary representation of G. If ( , ) : π⊗π∨ → L is a nondegenerate G-
invariant pairing, then the pairing

( , )ord : πord⊗π∨,ord→ L

( f1, f2)
ord := (word

a f1, f2)

is a nondegenerate pairing.

Proof. — It suffices to see this for a specific pairing ( , ): we may take the product of the pairings (A.3.2)
below, that are known to be nondegenerate, and any nondegenerate pairing on W ⊗W ∨. Then the result
follows from Lemmas A.3.3 and A.4.1 below.

A.2.2. Ordinary and toric parts. — We construct a map from the ordinary part of a representation of
(G×H )′ to its toric coinvariants, as well as a dual map in the opposite direction for coadmissibe modules.
These map are the key to the interpolation of toric periods.

Suppose that W(v) (respectively W =
⊗

v |p Wv is an algebraic representation of (G×H )(v),∞ (respec-
tively (G×H )′∞) over L such that, for a field extension L′/L splitting E , W(v),∞⊗L L′ =

⊗

σ : F(v),→L Wσ

with

(A.2.2) Wσ =Wσ ,w,k ,l := Symkσ−2Std · det
w−kσ+2

2 ⊗σ
lσ−w

2 (σ c )
−lσ−w

2

for some integers kσ ≥ 2, |lσ | < kσ , w of the same parity. (Here we have chosen, for each σ : F ,→ L, an
extension σ : E ,→ L.) Then we define a constant

(A.2.3)
c(Wσ ) := j

−w−kσ+2
v ·

�

kσ − 2

(kσ − 2− lσ )/2

�

·

(

1 if v splits in E

θc ,(k−2−l )/2θ(k−2+l )/2 if v does not split in E ,

c(W(v)) :=
∏

σ : F(v),→L

c(Wσ ).

(Note that j
−w−kσ+2
v = 1 if v splits in E , as w + kσ − 2 is even.)

Lemma A.2.3. — Recall the congruence subgroups V ′v,r , Kv,r defined in § 2.1.5. For all r ≥ 1, we have the
identity of Hecke operators in the Hecke algebra for (G×H )′v :

V ′v,r+1





∑

t∈V ′v,r /V ′v,r+1

t



 · γr+1,v Kv,r =V ′v,r+1γr,v ·Uϖv
Kv,r .

Proof. — This is a consequence of the following matrix identity.
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Let v |p be a prime of F . For r ∈ Z≥1, j ∈ OF ,v let b j ,v :=
�

ϖ j
1

�

. In the split case, let

t j ,r,v = k j ,r,v :=
�

1+ jϖ r

1

�

∈ E×v

In the nonsplit case, let

t j ,r,v = 1+θvϖ
r
v , k j ,r,v =

�

1+ j Trv (θv )ϖ
r
v Trv (θv )− jϖ r

v

− j Nv (θv )ϖ
2r
v 1+ j 2Nv (θv )ϖ

r
v

�

.

Then
t j ,r,vγr+1,v = γr,v b j ,v k j ,r,v

in GL2(Fv ).

Proposition A.2.4. — Let W be an algebraic representation of (G×H )′∞.

1. Let Π=Πp ⊗W be a p-adic locally algebraic admissible representation of (G×H )′. There is a map

γ ord
H ′ : Πord→ΠH ′

f 7→ lim
r

H ′[p r [F :Q] · c(W )−1 · γr, p∞U−r
p∞ f ](A.2.4)

where H ′[−] : Π→ΠH ′ is the natural projection.
The sequence in the right hand side of (A.2.4) stabilises as soon as fp ∈Π

Kp,r , where Kp,r ⊂ (G×H )′p
is defined at the end of § 2.1.

2. Let M := Mp ⊗W ∨ be a p-adic locally algebraic coadmissible representation of (G ×H )′. There is a
map

γ ord
H ′ : MH ′ →Mord

m 7→ lim
r
[p r [F :Q] · c(W )−1 ·mγr, p∞]N0,r eordU−r

p∞,

where [−]N0,r : M→MN0
is the natural projection.

The constant c(W ) is justified by Lemma A.4.2 below.

Proof. — For part 1, let f ∈ ΠKp,r
p . Then it follows from Lemma A.2.3 that, denoting by [ fr ]H ′ the

sequence in the right hand side of (A.2.4), we have

1
p[F :Q]

∑

t∈V ′p,r /V ′p,r+1

Π(t ) fr+1 = fr ,

hence [ fr+1− fr ]H ′ = 0 and the sequence stabilises.
For part 2, Lemma A.2.3 similarly implies (the boundedness and) the convergence of the sequence in

lim←−r
Mord

N0,r
.

Let Πord
v denote the preimage of Πord in Πv , and let Wv be the (G ×H )′v,∞-component of W . The

following local components of the above maps are similarly well-defined:

(A.2.5)
γ ord

H ′,v : Πord
v →Πv,H ′v γ ord

H ′,v,∞ : W N
v →Wv,H ′v

fv 7→ lim[p r [Fv :Qp ]γr,vU−r
ϖv

fv]H ′v , fv,∞ 7→ c(Wv )
−1 · γ ι0,v,∞ fv,∞.

A.2.3. Exceptional representations and vanishing of P ord. — We show that γ ord
H ′ acts by zero precisely on

those representations that are exceptional.

Lemma A.2.5. — Let Π=π⊗χ be an ordinary, distinguished, irreducible representation of (G×H )′. The
following are equivalent:

1. Π is exceptional;
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2. ev (V(π,χ )) = 0;
3. there exists P ∈Π∗,H ′ −{0} such that P ord := Pγ ord

H ′ = 0;
4. for all P ∈Π∗,H ′ , we have P ord = 0;

Proof. — The equivalence of 1. and 2. is a reminder from Lemma 6.4.6. The equivalence of 3. and 4. is a
consequence of multiplicity-one. Consider 3. Let P ∈Π∗,H ′ . Identify Π∨ =Πι (the representation on the
same space as Π, with group action twisted by the involution ι). Then the identity map on spaces yields
isomorphisms Π∗,H

′ ∼= Π∨,∗,H ′ and Πord,∗ ∼= Π∨,ord,∗, and it follows from the explicit description of γ ord
H ′

that if P∨ denotes the image of P , then the image of P∨ is P∨,ord. Hence, P ord is zero if and only if so is
P∨,ord, if and only if so is P⊗P∨ ◦γ ord

H ′ ⊗γ
ord
H ′ . Now by the theory recalled in § 1.2.6 , P⊗P∨ is necessarily

a multiple of the explicit functional Qd t ,(,) defined there. Therefore it suffices to show that Qd t ,(,) vanishes
on the line γ ord

H ′ Π
ord⊗ γ ord

H ′ Π
∨,ord if and only if ev (V(π,χ )) = 0. This follows from the explicit computations

of Propositions A.3.4 and A.4.3 below, cf. also Proposition 4.3.4.

A.3. Pairings at p. — The goal of this subsection is to relate the p-components of the toric terms Q
and their ordinary variants Qord, as defined in §§ 4.2-4.3.

Let v |p be a place of F .

A.3.1. Integrals and gamma factors. — If π (respectively χ ) is an irreducible representation of Gv over L,
we denote by Vπ (respectively Vχ ) the associated 2- (respectively 1-) dimensional Frobenius-semisimple
representation of WDFv

(respectively of WDEv
:=
∏

w|v WDEw
; we choose the “Hecke” normalisation,

so that detVπ is the cyclotomic character if π is self-dual. If Π=π⊗χ is an irreducible representation of
(G×H )′v , we denote by VΠ =Vπ|WDEv

⊗Vχ the associated 2-dimensional representation of WDEv
. If E∗

is F or E , w|p is a prime of E∗ and V is any representation of WDE∗,v
as above, we let Vw :=V|WDE∗,w

.

If ψ : Fv →C× is a nontrivial character, we denote by dψy the selfdual Haar measure on Fv and d×
ψ

y :=
dψy/|y|. The level of ψ is the largest n such that ψ|ϖ−nOF ,v

= 1. We recall that if ψ has level 0, then
vol(OF ,v , dψy) = 1.

Recall the Deligne–Langlands γ -factor of (1.4.3).

Lemma A.3.1 ([Dis/a, Lemma A.1.1]). — Let µ : F ×v →C× and ψ : Fv →C× be characters, with ψv ̸= 1.
Let d×y be a Haar measure on F ×v . Then

∫

F ×v

µ(y)ψ(y)d×y =
d×y
d×
ψ

y
·µ(−1) · γ (µ,ψ)−1.

A.3.2. Local pairing. — The following isolates those representations that can be components of an ordi-
nary representation.

Definition A.3.2. — A refined representation (π,α) of Gv over a field L consists of a smooth irreducible
infinite-dimensional representation π and a character α : Fv → L×, such that π embeds into the un-
normalised induction Ind(| |α, | |−1ωα−1)) for some other characterω : F ×v → L×.(31) Sometimes we abu-
sively simply write π instead of (π,α). A refined representation Π=π⊗χ (G×H )′v is the product of a
refined representation π= (π,α) of G and a character χ of H , such thatωχ|F ×v = 1.

If (π,α) is a refined representation of Gv , we let πord ⊂ πN0 be the unique line on which the operator
Ut acts by α(t ). If Π = π⊗ χ is a refined representation of (G × H )′v , we let Πord := πord ⊗ χ . The
associated Weil–Deligne representation Vπ is reducible, and we have a unique filtration

0→V +
π →Vπ→V −π → 0

such that WDFv
acts on V +

π through the character α| · |.

(31)Note that π admits a refinement if and only if it is neither supercuspidal nor 1-dimensional.
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Let π be a refined representation of Gv over L, and let ( , )π : π⊗π∨ → L be a G-invariant pairing.
Then we define

( , )ord
π : πord⊗ (π∨)ord→ L

f ⊗ f ∨ 7→ (word
a f , f ∨),

where word
a is the operator denoted word

a,v in (A.2.1). If Π is a refined representation of (G ×H )′v over L
and ( , ) = ( , )π( , )χ : Π⊗Π∨→ L is a pairing, we define ( , )ord := ( , )ord

π ( , )χ , a pairing onΠord⊗Π∨,ord.

Lemma A.3.3. — Let (π,α) be a refined representation of Gp over C, with central characterω as in Defini-
tion A.3.2. Let α∨ = αω−1. Let

ad(Vπ)
++(1) =Hom (V −π ,V +

π )(1).

Fix a character ψ : Fv →C× of level 0, and Kirillov models of ιπv , π∨v with respect to ψv , −ψv . Let

(A.3.1) f (∨)v (y) := 1OF ,v
(y)α(∨)v | |v (y) ∈πord

v .

Suppose that ( , )π,v is, in the Kirillov models, the pairing

(A.3.2) ( f , f ∨)π :=
∫

F ×
f (y) f ∨(y)d×

ψ
y.

Then
( f , f ∨)ord

π,v =ωv (−1) · γ (ad(Vπ)
++(1),ψ)−1.

Proof. — We omit all remaining subscripts v and argue similarly to [Hsi21, Lemma 2.8]. The inner
product ( f , f ∨)ord

π is the value at s = 0 of

α| |(ϖ)−r Z(s + 1/2, wr f ,α∨| |), Z(s + 1/2, wr f ,α∨| |) :=
∫

F ×
wr f (y)α∨| |(y)|y|s d×

ψ
y.

By the functional equation for GL2, this equals

ω(−1) · γ (s + 1/2,π⊗α∨| |,ψ)−1 ·
∫

p−rOF−{0}
αα∨,−1ω−1| |−s (y)d×

ψ
y

=ω(−1) · γ (s ,αα∨| |2,ψ)−1 · γ (s , | |,ψ)−1 · ζF (1)
−1ζF (−s),

using the fact that the domain of integration can be replaced with F ×, the additivity of gamma factors,
and the relation α∨ = αω−1. Evaluating at s = 0 we find γ (ad(Vπ)

++(1),ψ)−1 as desired.

A.3.3. Local toric period. — We compute the value of the local toric periods on the lines of interest to us.
Let Π=π⊗χ be a refined representation of (G×H )′v . Let d t be a measure on H ′v , and set as in (4.3.1)

vol◦(H ′v , d t) :=
vol(O ×E ,v/O

×
F ,v , d t)

ev L(1,ηv )−1
.

Then for all f1, f3 ∈Πord, f2, f4 ∈Π∨,ord with f3, f4 ̸= 0, we define

(A.3.3) Qord
d t

�

f1⊗ f2
f3⊗ f4

�

:=µ+(jv ) · vol◦(H ′v , d t) ·
f1⊗ f2
f3⊗ f4

,

where jv = (A.1.2) and µ+ = χv ·α| · | ◦NEv/Fv
is the character giving the action of E×v on V + :=V +

π ⊗χ .

Proposition A.3.4. — Let Π=π⊗χ be a refined representation of (G×H )′v over L, with associated Weil–
Deligne representation V =Vπ|WDEv

⊗χ . Let γ ord
H ′ = γ

ord
H ′ ,v be as defined in (A.2.5). Then

Qd t

�

γ ord
H ′ f1⊗ γ ord

H ′ f2
word

a f3⊗ f4

�

= ev (V(π,χ )) ·Q
ord
d t

�

f1⊗ f2
f3⊗ f4

�

.
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Here

ev (V(π,χ )) =L (V(π,χ ), 0)
−1 · ι−1

 

|d |−1/2
v γ (ad(ιV ++

π )(1),ψv ) ·
∏

w|v
γ (ιV +

|WDEw
,ψEw

)−1

!

is defined independently of any choice of an embedding ι : L ,→C and nontrivial character ψ : Fv →C×.

Proof. — Identify χ±1 with L and assume that fi = fi ,π fi ,χ with fi ,χ identified with 1. Fix ι : L ,→ C
(omitted from the notation) and 1 ̸=ψ : Fv →C×. Identify π, π∨ with Kirillov models with respect to ψ,
−ψ. Let ( , ) = ( , )π · ( )χ be the invariant pairing on Π⊗Π∨ such that ( , )π = (4.2.3) and (1 ,1 )χ = 1.
Assume, after a harmless extension of scalars, that d t = |Dv |−1/2d×

ψE
z/d×

ψ
y, which gives vol◦(H ′, d t ) = 1.

Let f1 = f3 = fπ, f2 = f4 = f ∨π with f (∨)π as in (A.3.1).
In view of the definitions (4.2.2), (A.3.3) and of Lemma A.3.3, it suffices to show that

Q♯(γ ord
H ′ f ,γ ord

H ′ f ∨) :=
∫

H ′v

(π(t )γ ord
H ′ f ,γ ord

H ′ f ∨)χ (t )d t =ω(−1) ·µ+(jv ) ·
∏

w|v
γ (V +

|WDEw
,ψEw

)−1.

We denote by α the refinement ofπ, and we fix r ≥ 1 to be larger than the valuations of the conductors
of π and of the norm of the conductor of χ .

Split case. — Suppose first that Ev/Fv is split and identify E×v = F ×v × F ×v as usual. Then as in [Dis17,
Lemma 10.12] we find

Q♯(γ ord
H ′ f ,γ ord

H ′ f ∨) =
∏

w|v

∫

E×w

αχw | |w (yw )ψw (yw )d
×yw

∫

E×wc

αχw c | |w c (yw c )ψw c (−yw c )d×yw c

=ωv (−1) ·µ+(jv ) · γ (V
+

v ,ψv )
−1,

where we have used Lemma A.3.1.

Nonsplit case. — Now suppose that Ev = Ew is a field and drop all subscripts v, w. We abbreviate T :=
Tr(θ), N :=Nm(θ).

We have

(A.3.4) Q♯(γ ord
H ′ f ,γ ord

H ′ f ∨) =
∫

H ′
αα∨| |2(ϖ)−r · (π(γ−1

r tγr ) fπ, f ∨π )χ (t )d t .

There is a decomposition

H ′ =H ′1 ⊔H ′2, H ′1 = {1+ bθ | b ∈ OF }, H ′2 = {aN+θ | a ∈N−1ϖOF },

that is an isometry when H ′1, H ′2 are endowed with the measures dψb , dψa.
Let r ′ := r + e − 1 and let us redefine, for the purposes of this proof, wr ′ :=

� 1
−N−1ϖ−r

�

. Let ∼r ′

denote the relation in GL(2, F ) of equality up to right multiplication by an element of U 1
1 (ϖ

r ′), and let
t (r ) := γ−1

r tγr .

Contribution from H ′1. — For t = 1+ bθ ∈H ′1, we have

t (r ) =
�

1+ bT bϖ−r

−bNϖ r 1

�

∼r ′

�

1+ bT+ b 2N bϖ−r

1

�

.

Hence the integral over H ′1 equals

ω−1α2| |2(ϖ)−r
∫

OF

∫

OF−{0}
ψ(b yϖ−r )α| |(Nm(1+ bθ)y)αω−1| |(y)χ (1+ bθ)d×

ψ
y dψb

=
∫

OF

∫

ϖ−rOF−{0}
χ ·α| | ◦Nm((1+ bθ)y) ·ψ(b y)d×

ψ
y dψb .
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We show that the domain of integration in y can be harmlessly extended to F ×, i.e. that
∫

OF

∫

v(y)≤−r−1
µ+((1+ bθ)y)ψ(b y)d×

ψ
y d b

vanishes. Consider first the contribution from v(b )≥ r . On this domain,µ+(1+bθ) = 1 and integration
in d b yields

∫

ϖ rOF
ψ(b y)d b = 1ϖ−rOF

(y), that vanishes on v(y)≤−r−1. Consider now the contribution
from v(b )≤ r − 1

(A.3.5)
∫

0≤v(b )≤r−1
µ+(1+ bθ)

∫

v(y)≤−r−1
µ+(y)ψ(b y)d×

ψ
yd b .

Let n be the conductor ofµ+|F × . Then (A.3.5) vanishes if n = 0; otherwise only the annulus v(y) =−n−1
contributes, and after a change of variable y ′ = b y we obtain

ϵ(µ+|F × ,ψ)−1 ·
∫

r−n≤v(b )≤r−1
µ+(1+ bθ)µ+(b )−1d b .

On our domain µ+(1+ bθ) = 1, and
∫

µ+(b )−1 = 0 as µ+|F × is ramified.
We conclude that the contribution from H ′1 is

∫

OF

∫

F ×
µ+((1+ bθ)y)ψ(b y)d×

ψ
y d b

∫

H ′1

∫

F ×
µ+(t y) ·ψE (t y/(θ−θc ))d×

ψ
y d t .

Contribution from H ′2. — For t = aN+θ ∈H ′2, we have

t (r ) =
�

aN+T ϖ−r

−Nϖ r aN

�

= w ′r

�

1 −aϖ−r

aN+T ϖ−r

�

∼r wr ′

�

1+ aT+ a2N −aϖ−r

ϖ−r

�

.

Then the integral over H ′2 is

ω−1α2| |2(ϖ)−r
∫

N−1ϖOF

�

π(
��

Nm(1+aθ) −aϖ−r

ϖ−r

��

f ,π∨(w−1
r ′ f ∨

�

·χ (aN+θ)dψa

=ω−1α2| |2(ϖ)−r
∫

N−1ϖOF

∫

OF−{0}
ω(ϖ)−rψ(−ay)α| |(yϖ r Nm(1+ aθ)) ·π∨(w−1

r ′ ) f
∨(y) ·χ (aN+θ)d×

ψ
y dψa

=α| |(ϖ)−r
∫

N−1ϖOF

∫

F ×
α| |(yNm(1+ aθ)) ·π∨(w−1

r ′ ) f
∨(y) ·χ (aN+θ)d×

ψ
y dψa

=α| |(ϖ−r N−1) ·Z(1/2,π∨(w−1
r ′ ) f

∨,α| |) ·
∫

N−1ϖOF

α| |(Nm(aN+θ)) ·χ (aN+θ)dψa,

where we have observed that wr ′ f
∨ vanishes outside OF , and that ψ(−ay) = 1 for y ∈ OF . Applying first

the same argument as in the proof of Lemma A.3.3, then Lemma A.3.1, this equals

γ (ad(Vπ)
++(1),−ψ)−1 ·

∫

N−1ϖOF

α| | ◦Nm ·χ (aN+θ)dψa

=
∫

F ×
µ+(y)ψ(y)d×

ψ
y ·
∫

N−1ϖOF

µ+(aN+θ)dψa =
∫

H ′2

∫

F ×
µ+(t y)ψE (t y/(θ−θc ))d×

ψ
y.

Conclusion. — Summing up the two contributions to (A.3.4) yields

µ+(θc −θ) ·
∫

H ′

∫

F ×
µ+(u)ψE (u)d

×u =ω(−1) ·µ+(j) · γ (µ+,ψE )
−1,

as desired.

A.4. Pairings at infinity. — Fix a place v |p of F .
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A.4.1. Models for algebraic representations and pairings. — Suppose that W is the representation (A.2.2)

of (G×H )′v,∞ over L
σ
←- E . We identify W with the space of homogeneous polynomials p(x, y) of degree

k−2 in L[x, y], where x and y are considered as the components of a column (respectively row) vector if
W is viewed as a right (respectively left) representation. In those two cases, the action is respectively:

(A.4.1)
p.(g , h)(x, y) = det(g )

w−k+2
2 σ(h)

l−w
2 σ c (h)

−l−w
2 · p(g (x, y)T)

(g , h). p(x, y) = det(g )
w−k+2

2 σ(h)
l−w

2 σ c (h)
−l−w

2 · p((x, y)g ).

In either case, we fix the invariant pairing

(A.4.2) (xk−2−a ya , xa′yk−2−a′) = (−1)a
�

k − 2
a

�−1

δa,a′ .

Lemma A.4.1. — Let W = (A.2.2), viewed as a left representation of Gv,∞ only. Let word
a : W N →WN be

the map denoted by word
a,v,∞ of (A.2.1). Fix the models and pairing described above. Then W N is spanned by

xk−2 and WN is spanned by the image of yk−2, and

(word
a (x

k−2), xk−2) = 1.

A.4.2. The map γ ord
H ′ is unitary on algebraic representations. — We start with a lemma completing the

proof of Proposition 6.3.2.
Suppose that M p = M p,0⊗Wp is a decomposition of a locally algebraic coadmissible right (G×H )′p -

representation over L, into the product of a smooth and an irreducible algebraic representation, respec-
tively. Let W ∨

∞ be the dual representation to Wp , viewed as a right representation of (G×H )′∞. Assume
that L is a p-adic field and that the (G×H )′-module M p ⊗W ∨

∞ is p-adic coadmissible. Then the operator
γ ord

H ′ on it (whose definition of Proposition A.2.4 extends verbatim to the case where M p is only locally
algebraic) decomposes as

γ ord
H ′ = lim

r→∞
(p r [F :Q] · γr, pU−r

p )⊗ γr, pU−r
p ⊗ c(W )−1γ ι0,∞.

according to the decomposition M p ⊗W ∨
∞ =M p,0⊗Wp ⊗W ∨

∞

Lemma A.4.2. — In relation to the situation just described, the operator

algγ ord
H ′ := lim

r→∞
γr, pU−r

p ⊗ c(W )−1γ ι0,∞ : W H ′ ⊗W ∨,H ′ →W N ⊗WN

is unitary. That is, for any invariant pairing ( , ) on W ⊗W ∨ and ξ ∈W H ′ , ξ ∨ ∈W ∨,H ′ , the images of
ξ ⊗ ξ ∨ and algγ ord

H ′ (ξ ⊗ ξ
∨) under the pairings induced by ( , ) coincide.

Proof. — We may fix a place v |p, and consider the factor representations Wv⊗W ∨
v,∞ of (G×H )′v×(G×

H )′v,∞. After extension of scalars, we may decompose Wv =
⊗

σ : F→Q p
W σ

v where each W σ
v is one of the

representations (A.2.2) for suitable integers w, k , l . Thus we are reduced to proving the unitarity of the
relevant component of algγ ord

H ′ on the representation W σ
v ⊗W ∨,σ

v,∞. We omit all subscripts.

Split case. — Suppose first that v splits in E . Then W H ′ = Lx (k−2−l )/2y (k−2+l )/2, and if

ξ := x (k−2−l )/2y (k−2+l )/2

then

ξ ∨ := (−1)(k−2+l )/2
�

k − 2
(k − 2− l )/2

�

x (k−2+l )/2y (k−2−l )/2

satisfies (ξ ,ξ ∨) = 1. We have
ξ γ ord

H ′ , p := lim
r→∞

ξ γr, pU−r
p = yk−2,

and

ξ ∨γ ord
H ′ ,∞ = (−1)(k−2+l )/2c(W )−1

�

k − 2
(k − 2− l )/2

�

x (k−2+l )/2(−x + y)(k−2−l )/2
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projects into W ∨
N

∼=← Lxk−2 to

ξ ∨γ ord
H ′ ,∞ = (−1)k−2c(W )−1

�

k − 2
(k − 2− l )/2

�

xk−2.

Hence

(ξ γ ord
H ′ , p ,ξ ∨γ ord

H ′ ,∞) = c(W )−1
�

k − 2
(k − 2− l )/2

�

= 1.

Nonsplit case. — Suppose now that v does not split in E . Let z := x + θc y, z := x + θy. Then W H ′ =
Lz (k−2−l )/2z (k−2+l )/2, and if

ξ := z (k−2−l )/2z (k−2+l )/2 = x (k−2−l )/2y (k−2+l )/2.

�

1 θc

1 θ

�

(−j)(w+k−2)/2 ∈W H ′

then

ξ ∨ := (−1)(k−2+l )/2
�

k − 2
(k − 2− l )/2

�

x (k−2+l )/2y (k−2−l )/2.

�

1 θc

1 θ

�

(−j)(−w−k+2)/2 ∈W ∨,H ′

satisfies (ξ ,ξ ∨) = 1. We have

ξ γ ord
H ′ , p =N(w−k+2)/2θc ,(k−2−l )/2θ(k−2+l )/2yk−2,

and

ξ ∨γ ord
H ′ ,∞ = (−1)(k−2−l )/2(−j)−(w+k−2)/2c(W )−1

�

k − 2
(k − 2− l )/2

�

x (k−2+l )/2y (k−2−l )/2

�

1 N−1θc

1 N−1θ

�

projects into W ∨
N

∼=← Lxk−2 to

ξ ∨γ ord
H ′ ,∞ = (−1)(k−2−l )/2(−j)−w−k+2c(W )−1

�

k − 2
(k − 2− l )/2

�

N(w+k−2)/2xk−2.

Then

(ξ γ ord
H ′ , p ,ξ ∨γ ord

H ′ ,∞) = (−j)−w−k+2θc ,(k−2−l )/2θ(k−2+l )/2
�

k − 2
(k − 2− l )/2

�

c(W )−1 = 1.

A.4.3. Algebraic toric period. — Let W =WG ⊗WH be an algebraic representation of (G×H )′v,∞ over
L. For any ι : L ,→ C, let ιV (respectively ιVG) be the Hodge structure associated with W (respectively
WG), and let(32)

L (V(WG ,WH )
, 0) := ι−1

�

π−[Fv :Qp ]L(ιV, 0)
L(ad(ιVG),∞), 1)

�

.

Let d t be a ‘measure’ on H ′v,∞, by which we simply mean a value vol(H ′v,∞, d t ) similarly to § 1.2.6,
and set as in (4.3.1)

vol◦(H ′v , d t) := 2−[Fv :Q]vol(H ′v,∞, d t ).

Let ( , ) = ( , )WG
· ( )WH

be a nondegenerate invariant pairing on W .⊗W ∨.
Then for all f1, f3 ∈W , f2, f4 ∈W ∨ with ( f3, f4) ̸= 0, we define

(A.4.3) Qd t

�

f1⊗ f2
f3⊗ f4

�

:=L (V(WG ,WH )
, 0)−1 · vol(H ′v,∞, d t ) ·

(pH ′( f1), pH ′( f2))
( f3, f4)

,

where pH ′ denotes the idempotent projector onto H ′v,∞-invariants.

(32)To compare with (1.2.7), we have ζR(2)/L(1,ηC/R) = 1.
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Let σWG
: F ×v → L× be the character giving the action of

�

F ×v
1

�

on W N
G , let χ : E×v → L× be the

algebraic character attached to WH , and let

µ+ = χ ·σWG
◦NEv/Fv

.

Let jv = (A.1.2). Then for all f1, f3 ∈W N :=W N
G ⊗WH , f2, f4 ∈W ∨,N with f3, f4 ̸= 0, we define

(A.4.4) Qord
d t

�

f1⊗ f2
f3⊗ f4

�

:=µ+(jv ) · vol◦(H ′v , d t) ·
f1⊗ f2
f3⊗ f4

.

Proposition A.4.3. — Let W be a representation of (G×H )′v,∞ over L. Let γ ord
H ′ = γ

ord
H ′ ,v,∞ be as defined in

(A.2.5), and let word
a = word

a,v,∞ be as defined in (A.2.1). Then for all f1, f3 ∈W N , f2, f4 ∈W ∨,N with f3, f4 ̸= 0,

Qd t

�

γ ord
H ′ f1⊗ γ ord

H ′ f2
word

a f3⊗ f4

�

= dimW ·Qord
d t

�

f1⊗ f2
f3⊗ f4

�

.

Proof. — After possibly extending scalars we may assume that L splits E and pick an extensions of each
σ : F ,→ L to a σ : E ,→ L. We then have W =

⊗

σ : F ,→L Wσ with Wσ = (A.2.2) for suitable integers
w, kσ , lσ , and analogously µ+(t ) =

∏

σ : F ,→Lµ
+
σ with

(A.4.5) µ+σ (t ) = σ(t )
(kσ−2+lσ )/2σ(t c )(kσ−2−lσ )/2, µ+σ (j) = (−1)(kσ−2−lσ )/2 · jkσ−2

v .

If v splits in E , this simplifies to µ+σ (j) = (−1)(kσ−2+lσ )/2.
Moreover,L (V , 0) =

∏

σL (Vσ , 0) with

L (Vσ , 0) =
π−1ΓC(

kσ+lσ
2 )ΓC(

kσ−lσ
2 )

ΓC(kσ )ΓR(2)
=

2
kσ − 1

·
� kσ − 2

kσ−2+lσ
2

�−1

.

Fix a σ : F ,→ L for the rest of this proof, work with Wσ only, and we drop σ from the notation. We
may assume that f := f1, f ∨ := f2 both equal xk−2 in the models (A.4.1), and that vol(H ′, d t ) = 1. By the
definitions above and Lemma A.4.1, we then need to prove that

Q(γ ord
H ′ f,γ

ord
H ′ f ∨) :=

k − 1
2
·
�k− 2

k−2+l
2

�

· (pH ′(γ
ord
H ′ f1), pH ′(γ

ord
H ′ f2)) =

k − 1
2
·µ+(j).

Recall in what follows that γ ord
H ′ contains the factor c(W ) = (A.2.3).

Split case. — Suppose first that v splits in E . Then W H ′ = Lx (k−2−l )/2y (k−2+l )/2, and c(W )−1γ ι0 f =
c(W )−1(x − y)k−2 projects to

γ ord
H ′ f = (−1)(k−2+l )/2c(W )−1

�

k − 2
(k − 2− l )/2

�

x (k−2−l )/2y (k−2+l )/2 ∈W H ′ .

It follows that

Q (γ ord
H ′ f,γ

ord
H ′ f ∨) =

k− 1
2
·
�

k− 2
(k− 2+ l )/2

�2

· (−1)
k−2+l

2 · c(W )−1c(W ∨)−1

=
k − 1

2
·µ+(j).

Nonsplit case. — Suppose now that v is nonsplit in E . Let z := x − θc ,−1y, z := x − θ−1y, then W H ′ =
Lz (k−2−l )/2z (k−2+l )/2 and

γ ι0 f = c(W )−1N(w+k−2)/2xk−2 = c(W )−1N(w+k−2)/2j2−k (θc z −θz)k−2
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projects to

γ ord
H ′ f = c(W ∨)−1

�

k − 2
k−2−l

2

�

(−1)(k−2+l )/2 ·N(w+k−2)/2j2−kθc ,(k−l−2)/2θ(k+l−2)/2 · z (k−2−l )/2z (k−2+l )/2

= c(W ∨)−1
�

k − 2
k−2−l

2

�

(−1)(k−2+l )/2 · j(−w−k+2)/2θc ,(k−l−2)/2θ(k+l−2)/2 ·
�

1 1
−θc ,−1 −θ−1

�

.x (k−2−l )/2y (k−2+l )/2.

By the invariance of the pairing,

Q(γ ord
H ′ f ,γ ord

H ′ f ∨) = (−1)(k−2+l )/2c(W )−1c(W ∨)−1
�

k − 2
k−2−l

2

�

(−j)2−kNk−2 = (−1)k−2
�

k − 2
k−2−l

2

�−1

µ+(j)

so that again
Q (γ ord

H ′ f,γ
ord
H ′ f ∨) = dimW ·µ+(j).

Appendix B. Correction

Denote by Sp,ns the set of p-adic places of F that are nonsplit in E . For a Hecke character χ of E , we
consider the following condition:

(⋆) for each v ∈ Sp,ns, v is inert in E and χv is unramified.

After a correction, the article [Dis/a] only proves the formula of Theorem B for (ordinary, locally distin-
guished, potentially crystalline, non-exceptional) representations Π = π⊗ χ of trivial weight satisfying
(⋆). As a consequence, the main results of this paper are affected as follows.

– Theorem A holds for π0⊗χ under the extra assumption (⋆).
– Theorem B, as well as Theorem Bord of § 7.1.1, hold for Π=π⊗χ under the extra assumption (⋆).
– Theorem C is not affected.
– Assume that no p-adic place of F is ramified in E . Define a completed homology module M ⋆

K p as
in § 1.3.1, but with the limit being taken only over subgroups Kp containing NG,0×

∏

v∈Sp,ns
O ×E ,v .

Define a space E ord,⋆
K p as in loc. cit. with MK p replaced by M ⋆

K p . (This is simply the closure in E ord,⋆
K p of

the classical points of E ord
K p that correspond to representations satisfying (⋆).) Define a Hida⋆ family

for (G×H)′ to be an irreducible component of E ord,⋆
K p .

Then Theorem D and Theorem E hold for Hida⋆ families rather than Hida families.
– Theorem F is not affected.
– Theorem G is not affected, and the related alternative proof of the theorem of Greenberg–Stevens

mentioned in Remark 7.3.4 remains valid.

The original proofs still apply. For the main theorems (B and D), the proofs in § 7.1 need to replace
Lemma 7.1.4 with the statement that in a Hida⋆ family, the classical points of trivial weight that satisfy
condition (p-crys) are dense; the last paragraph in the proof of Lemma 7.1.4 applies verbatim to prove that
statement. (The condition (ram) is no longer relevant, since the corrected version of [Dis/a, Theorem B]
does not require it.)

Errata. — In footnote 12 on p. 529, the citation to reference [78] should not point to § I.2 (I am grateful
to M.H. Nicole for bringing this to my attention), but to Proposition II.2.4 (2). In the third-last line of
the proof of Lemma 4.1.1, the symbol ‘∼=’ should be replaced by ‘,→’.
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[NN16] Jan Nekovář and Wiesława Nizioł, Syntomic cohomology and p-adic regulators for varieties over p-adic fields, Algebra

Number Theory 10 (2016), no. 8, 1695–1790. With appendices by Laurent Berger and Frédéric Déglise. MR3556797
↑56

[Ota20] Kazuto Ota, Big Heegner points and generalized Heegner cycles, J. Number Theory 208 (2020), 305–334, DOI
10.1016/j.jnt.2019.08.005. MR4032299 ↑17

[PR87a] Bernadette Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math. 89 (1987), no. 3, 455–510,
DOI 10.1007/BF01388982 (French). MR903381 (89d:11034) ↑2, 6, 9

[PR87b] , Fonctions L p-adiques, théorie d’Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), no. 4, 399–456
(French, with English summary). MR928018 (89d:11094) ↑2

[PR95] , Fonctions L p-adiques des représentations p-adiques, 1995 (French, with English and French summaries).
MR1327803 (96e:11062) ↑3

[Qiu] Conqling Qiu, Modularity and Heights of CM cycles on Kuga-Sato varieties, preprint. ↑3
[Rou96] Raphaël Rouquier, Caractérisation des caractères et pseudo-caractères, J. Algebra 180 (1996), no. 2, 571–586, DOI

10.1006/jabr.1996.0083 (French). MR1378546 ↑30, 31
[Sah17] Jyoti Prakash Saha, Conductors in p-adic families, Ramanujan J. 44 (2017), no. 2, 359–366. MR3715419 ↑33
[Sai93] Hiroshi Saito, On Tunnell’s formula for characters of GL(2), Compositio Math. 85 (1993), no. 1, 99–108. MR1199206

(93m:22021) ↑8
[Sai09] Takeshi Saito, Hilbert modular forms and p-adic Hodge theory, Compos. Math. 145 (2009), no. 5, 1081–1113, DOI

10.1112/S0010437X09004175. MR2551990 ↑24, 56
[Sal99] David J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics, vol. 94, Published

by American Mathematical Society, Providence, RI; on behalf of Conference Board of the Mathematical Sciences,
Washington, DC, 1999. MR1692654 ↑30, 32

[ST03] Peter Schneider and Jeremy Teitelbaum, Algebras of p-adic distributions and admissible representations, Invent. Math.
153 (2003), no. 1, 145–196, DOI 10.1007/s00222-002-0284-1. MR1990669 ↑70

[ST05] , Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297–326, DOI
10.1090/S1088-4165-05-00277-3. MR2133762 ↑70

[Sev14] Marco Adamo Seveso, Heegner cycles and derivatives of p-adic L-functions, J. Reine Angew. Math. 686 (2014), 111–148,
DOI 10.1515/crelle-2012-0027. MR3176601 ↑67

[Shn16] Ariel Shnidman, p-adic heights of generalized Heegner cycles, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 3, 1117–1174
(English, with English and French summaries). MR3494168 ↑6, 9

[SW99] C. M. Skinner and A. J. Wiles, Residually reducible representations and modular forms, Inst. Hautes Études Sci. Publ.
Math. 89 (1999), 5–126 (2000). MR1793414 ↑28

[Tat79] John Tate, Number theoretic background, Automorphic forms, representations and L-functions ( Corvallis, Ore., 1977),
Proc. Sympos. Pure Math., vol. XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. ↑13

[TY07] Richard Taylor and Teruyoshi Yoshida, Compatibility of local and global Langlands correspondences, J. Amer. Math.
Soc. 20 (2007), no. 2, 467–493. MR2276777 ↑47

http://www.ams.org/mathscinet-getitem?mr=4334978
http://www.ams.org/mathscinet-getitem?mr=4402388
http://www.ams.org/mathscinet-getitem?mr=3769677
http://www.ams.org/mathscinet-getitem?mr=3805453
http://www.ams.org/mathscinet-getitem?mr=3683110
http://www.ams.org/mathscinet-getitem?mr=2956034
http://www.ams.org/mathscinet-getitem?mr=804682
http://www.ams.org/mathscinet-getitem?mr=804682
http://www.ams.org/mathscinet-getitem?mr=2851872
http://www.ams.org/mathscinet-getitem?mr=3988589
http://www.ams.org/mathscinet-getitem?mr=1135466
http://www.ams.org/mathscinet-getitem?mr=1263527
http://www.ams.org/mathscinet-getitem?mr=1263527
http://www.ams.org/mathscinet-getitem?mr=1343644
http://www.ams.org/mathscinet-getitem?mr=1343644
http://www.ams.org/mathscinet-getitem?mr=1738867
http://www.ams.org/mathscinet-getitem?mr=2333680
http://www.ams.org/mathscinet-getitem?mr=2333680
http://www.ams.org/mathscinet-getitem?mr=3556797
http://www.ams.org/mathscinet-getitem?mr=4032299
http://www.ams.org/mathscinet-getitem?mr=903381
http://www.ams.org/mathscinet-getitem?mr=903381
http://www.ams.org/mathscinet-getitem?mr=928018
http://www.ams.org/mathscinet-getitem?mr=928018
http://www.ams.org/mathscinet-getitem?mr=1327803
http://www.ams.org/mathscinet-getitem?mr=1327803
http://www.ams.org/mathscinet-getitem?mr=1378546
http://www.ams.org/mathscinet-getitem?mr=3715419
http://www.ams.org/mathscinet-getitem?mr=1199206
http://www.ams.org/mathscinet-getitem?mr=1199206
http://www.ams.org/mathscinet-getitem?mr=2551990
http://www.ams.org/mathscinet-getitem?mr=1692654
http://www.ams.org/mathscinet-getitem?mr=1990669
http://www.ams.org/mathscinet-getitem?mr=2133762
http://www.ams.org/mathscinet-getitem?mr=3176601
http://www.ams.org/mathscinet-getitem?mr=3494168
http://www.ams.org/mathscinet-getitem?mr=1793414
http://www.ams.org/mathscinet-getitem?mr=2276777


86 DANIEL DISEGNI

[Tia14] Ye Tian, Congruent numbers and Heegner points, Camb. J. Math. 2 (2014), no. 1, 117–161, DOI
10.4310/CJM.2014.v2.n1.a4. MR3272014 ↑10

[TX16] Yichao Tian and Liang Xiao, p-adic cohomology and classicality of overconvergent Hilbert modular forms, Astérisque
382 (2016), 73–162 (English, with English and French summaries). MR3581176 ↑24

[Tun83] Jerrold B. Tunnell, Local ε-factors and characters of GL(2), Amer. J. Math. 105 (1983), no. 6, 1277–1307, DOI
10.2307/2374441. MR721997 (86a:22018) ↑8

[Ven12] Rodolfo Venerucci, p-adic regulators and p-adic families of modular forms, Thesis, Università di Milano (2012), available
at https://air.unimi.it/retrieve/handle/2434/219975/275017/phd_unimi_R08514.pdf. ↑15, 53, 54

[Ven16] , Exceptional zero formulae and a conjecture of Perrin-Riou, Invent. Math. 203 (2016), no. 3, 923–972, DOI
10.1007/s00222-015-0606-8. MR3461369 ↑67

[Wal85] J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math. 54
(1985), no. 2, 173–242 (French). MR783511 (87g:11061b) ↑45, 60, 65

[Xue19] Hang Xue, Arithmetic theta lifts and the arithmetic Gan-Gross-Prasad conjecture for unitary groups, Duke Math. J. 168
(2019), no. 1, 127–185, DOI 10.1215/00127094-2018-0039. MR3909895 ↑6

[YZZ12] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier Formula on Shimura Curves, Annals of Mathematics
Studies, vol. 184, Princeton University Press, Princeton, NJ, 2012. ↑3, 6, 21, 40, 46, 55, 56

[YZZ] , Triple product L-series and Gross–Kudla–Schoen cycles, preprint. ↑6
[Zha97] Shouwu Zhang, Heights of Heegner cycles and derivatives of L-series, Invent. Math. 130 (1997), no. 1, 99–152, DOI

10.1007/s002220050179. MR1471887 ↑2

DANIEL DISEGNI, Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
E-mail : disegni@bgu.ac.il

http://www.ams.org/mathscinet-getitem?mr=3272014
http://www.ams.org/mathscinet-getitem?mr=3581176
http://www.ams.org/mathscinet-getitem?mr=721997
http://www.ams.org/mathscinet-getitem?mr=721997
https://air.unimi.it/retrieve/handle/2434/219975/275017/phd_unimi_R08514.pdf
http://www.ams.org/mathscinet-getitem?mr=3461369
http://www.ams.org/mathscinet-getitem?mr=783511
http://www.ams.org/mathscinet-getitem?mr=783511
http://www.ams.org/mathscinet-getitem?mr=3909895
http://www.ams.org/mathscinet-getitem?mr=1471887

	1. Introduction and statements of the main results
	1.1. The p-adic Beĭlinson–Bloch–Kato conjecture in analytic rank 1
	1.2. The p-adic Gross–Zagier formula for arbitrary weight
	1.3. The universal Heegner classes
	1.4. The universal formula
	1.5. Applications
	1.6. Outline of the proofs
	1.7. Related contemporary work
	1.8. Acknowledgements
	1.9. Notation

	2. Automorphic and Galois representations 
	2.1. Groups
	2.2. Algebraic representations
	2.3. Shimura varieties and local systems
	2.4. Ordinary automorphic representations
	2.5. Galois representations

	3. Sheaves on Hida families
	3.1. Hida theory
	3.2. Galois representations in families
	3.3. Universal ordinary representation and local-global compatibility

	4. Pairings
	4.1. Global dualities
	4.2. Local toric pairings
	4.3. Ordinary toric pairings
	4.4. Interpolation of the toric pairings

	5. Selmer sheaves and p-adic heights
	5.1. Continuous cohomology
	5.2. Specialisations
	5.3. Selmer complexes and height pairings

	6. Universal Heegner class
	6.1. Tate cycles and Abel–Jacobi maps
	6.2. Heegner cycles
	6.3. Universal Heegner class
	6.4. Local properties of the universal Heegner class

	7. The main theorems, and a conjecture
	7.1. Proofs of the main theorems
	7.2. A universal Waldspurger formula
	7.3. Bertolini–Darmon conjectures and exceptional zeros

	Appendix A. p-adic semilocal constructions
	A.1. Preliminaries
	A.2. Toric, ordinary, and anti-ordinary parts
	A.3. Pairings at p
	A.4. Pairings at infinity

	Appendix B. Correction
	References

